1
|
Wang L, Xu P, Li X, Zhang Q. Comprehensive bioinformatics analysis identified HMGB3 as a promising immunotherapy target for glioblastoma multiforme. Discov Oncol 2025; 16:478. [PMID: 40192954 PMCID: PMC11977083 DOI: 10.1007/s12672-025-02235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) presents significant therapeutic challenges due to its heterogeneous tumorigenicity, drug resistance, and immunosuppression. Although several molecular markers have been developed, there still lack of sensitive molecular for accurately detection. Studying the mechanisms underlying the development of GBM and finding relevant prognostic biomarkers remains crucial. METHODS Single-cell RNA sequencing, bulk RNA-seq, and cancer immune cycle activities of GBM were used to assess the expression of different molecular related to GBM. Bioinformatics analyses were carried to evaluate the functional of the high mobility group protein B3 (HMGB3) in GBM. RESULTS HMGB3 was highly expressed in GBM tissues and influenced the interpatient and intratumoral transcriptomic heterogeneity as well as immunosuppression in GBM. HMGB3 also contributes to a no inflamed tumor microenvironment (TME) and has an inhibitory effect on tumor-associated immune cell infiltration. Besides, HMGB3 participated GBM chemotherapeutic sensitivity and negative correlation with 140 medicines. CONCLUSION HMGB3 as a heterogeneous and immunosuppressive molecule in the GBM TME, making it a potential target for precision therapy for GBM.
Collapse
Affiliation(s)
- Libin Wang
- Department of Neurosurgery, Shenzhen Nanshan People's Hospital, Shenzhen, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
- Medical Research Center, Shenzhen Nanshan People's Hospital, Shenzhen, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Peizhi Xu
- Department of Neurosurgery, Shenzhen Nanshan People's Hospital, Shenzhen, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
- Department of Neurosurgery, The 6th Affiliated Hospital of Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Xinglong Li
- Department of Neurosurgery, Shenzhen Nanshan People's Hospital, Shenzhen, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
- Medical Research Center, Shenzhen Nanshan People's Hospital, Shenzhen, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
| | - Qinghua Zhang
- Department of Neurosurgery, Shenzhen Nanshan People's Hospital, Shenzhen, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
2
|
Li A, Xu D. Integrative Bioinformatic Analysis of Cellular Senescence Genes in Ovarian Cancer: Molecular Subtyping, Prognostic Risk Stratification, and Chemoresistance Prediction. Biomedicines 2025; 13:877. [PMID: 40299498 PMCID: PMC12025183 DOI: 10.3390/biomedicines13040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Ovarian cancer (OC) is a heterogeneous malignancy associated with a poor prognosis, necessitating robust biomarkers for risk stratification and therapy optimization. Cellular senescence-related genes (CSGs) are emerging as pivotal regulators of tumorigenesis and immune modulation, yet their prognostic and therapeutic implications in OC remain underexplored. Methods: We integrated RNA-sequencing data from TCGA-OV (n = 376), GTEx (n = 88), and GSE26712 (n = 185) to identify differentially expressed CSGs (DE-CSGs). Consensus clustering, Cox regression, LASSO-penalized modeling, and immune infiltration analyses were employed to define molecular subtypes, construct a prognostic risk score, and characterize tumor microenvironment (TME) dynamics. Drug sensitivity was evaluated using the Genomics of Drug Sensitivity in Cancer (GDSC)-derived chemotherapeutic response profiles. Results: Among 265 DE-CSGs, 31 were prognostic in OC, with frequent copy number variations (CNVs) in genes such as STAT1, FOXO1, and CCND1. Consensus clustering revealed two subtypes (C1/C2): C2 exhibited immune-rich TME, elevated checkpoint expression (PD-L1, CTLA4), and poorer survival. A 19-gene risk model stratified patients into high-/low-risk groups, validated in GSE26712 (AUC: 0.586-0.713). High-risk patients showed lower tumor mutation burden (TMB), immune dysfunction, and resistance to Docetaxel/Olaparib. Six hub genes (HMGB3, MITF, CKAP2, ME1, CTSD, STAT1) were independently predictive of survival. Conclusions: This study establishes CSGs as critical determinants of OC prognosis and immune evasion. The molecular subtypes and risk model provide actionable insights for personalized therapy, while identified therapeutic vulnerabilities highlight opportunities to overcome chemoresistance through senescence-targeted strategies.
Collapse
Affiliation(s)
| | - Dianbo Xu
- Department of Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| |
Collapse
|
3
|
Kulkarni S, Seneviratne N, Tosun Ç, Madhusudan S. PARP inhibitors in ovarian cancer: Mechanisms of resistance and implications to therapy. DNA Repair (Amst) 2025; 149:103830. [PMID: 40203475 DOI: 10.1016/j.dnarep.2025.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Advanced epithelial ovarian cancer of the high-grade serous subtype (HGSOC) remains a significant clinical challenge due to the development of resistance to current platinum-based chemotherapies. PARP1/2 inhibitors (PARPi) exploit the well-characterised homologous recombination repair deficiency (HRD) in HGSOC and offer an effective targeted approach to treatment. Several clinical trials demonstrated that PARPi (olaparib, rucaparib, niraparib) significantly improved progression-free survival (PFS) in HGSOC in the recurrent maintenance setting. However, 40-70 % of patients develop Resistance to PARPi presenting an ongoing challenge in the clinic. Therefore, there is an unmet need for novel targeted therapies and biomarkers to identify intrinsic or acquired resistance to PARPi in ovarian cancer. Understanding the mechanisms of resistance to PARPi is crucial for identifying molecular vulnerabilities, developing effective biomarkers for patient stratification and guiding treatment decisions. Here, we summarise the current landscape of mechanisms associated with PARPi resistance such as restored homologous recombination repair functionality, replication fork stability and alterations to PARP1 and PARP2 and the DNA damage response. We highlight the role of circulating tumour DNA (ctDNA) in identifying acquired resistance biomarkers and its potential in guiding 'real-time' treatment decisions. Moreover, we explore other innovative treatment strategies aimed at overcoming specific resistance mechanisms, including the inhibition of ATR, WEE1 and POLQ. We also examine the role of PARPi rechallenge in patients with acquired resistance.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Çağla Tosun
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Srinivasan Madhusudan
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
4
|
Conceição CJF, Moe E, Ribeiro PA, Raposo M. PARP1: A comprehensive review of its mechanisms, therapeutic implications and emerging cancer treatments. Biochim Biophys Acta Rev Cancer 2025; 1880:189282. [PMID: 39947443 DOI: 10.1016/j.bbcan.2025.189282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The Poly (ADP-ribose) polymerase-1 (PARP1) enzyme is involved in several signalling pathways related to homologous repair (HR), base excision repair (BER), and non-homologous end joining (NHEJ). Studies demonstrated that the deregulation of PARP1 function and control mechanisms can lead to cancer emergence. On the other side, PARP1 can be a therapeutic target to maximize cancer treatment. This is done by molecules that can modulate radiation effects, such as DNA repair inhibitors (PARPi). With this approach, tumour cell viability can be undermined by targeting DNA repair mechanisms. Thus, treatment using PARPi represents a new era for cancer therapy, and even new horizons can be attained by coupling these molecules with a nano-delivery system. For this, drug delivery systems such as liposomes encompass all the required features due to its excellent biocompatibility, biodegradability, and low toxicity. This review presents a comprehensive overview of PARP1 biological features and mechanisms, its role in cancer development, therapeutic implications, and emerging cancer treatments by PARPi-mediated therapies. Although there are a vast number of studies regarding PARP1 biological function, some PARP1 mechanisms are not clear yet, and full-length PARP1 structure is missing. Nevertheless, literature reports demonstrate already the high usefulness and vast possibilities offered by combined PARPi cancer therapy.
Collapse
Affiliation(s)
- Carlota J F Conceição
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Elin Moe
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Lin X, Qiu Y, Soni A, Stuschke M, Iliakis G. Reversing regulatory safeguards: Targeting the ATR pathway to overcome PARP inhibitor resistance. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200934. [PMID: 39968096 PMCID: PMC11834088 DOI: 10.1016/j.omton.2025.200934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The development of poly (ADP-ribose) polymerase inhibitors (PARPis) is widely considered a therapeutic milestone in the management of BRCA1/2-deficient malignancies. Since a growing number of cancer treatment guidelines include PARPis, the inevitably emerging PARPi resistance becomes a serious limitation that must be addressed. Targeting the DNA damage response signaling kinase, ATR (ataxia telangiectasia and rad3-related serine/threonine kinase), activated in response to PARPi-induced replication stress, represents a promising approach in fighting PARPi-resistant cancers. The success of this combination therapy in preclinical models has inspired efforts to translate its potential through extensive clinical research and clinical trials. However, the available clinical evidence suggests that PARPi/ATRi combinations have yet to reach their anticipated therapeutic potential. In this review, we summarize work elucidating mechanisms underpinning the effectiveness of ATRi in fighting PARPi resistance and review translational studies reporting efficacy in different types of cancer. Finally, we discuss potential biomarkers of patient selection for customized combinations of PARPi/ATRi treatments.
Collapse
Affiliation(s)
- Xixi Lin
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ye Qiu
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aashish Soni
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
6
|
Wu Y, Zeng Y, Wu Y, Ha X, Feng Z, Liu C, Liu Z, Wang J, Ju X, Huang S, Liang L, Zheng B, Yang L, Wang J, Wu X, Li S, Wen H. HIF-1α-induced long noncoding RNA LINC02776 promotes drug resistance of ovarian cancer by increasing polyADP-ribosylation. Clin Transl Med 2025; 15:e70244. [PMID: 40118782 PMCID: PMC11928293 DOI: 10.1002/ctm2.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Chemoresistance remains a major hurdle in ovarian cancer (OC) treatment, as many patients eventually develop resistance to platinum-based chemotherapy and/or PARP inhibitors (PARPi). METHODS We performed transcriptome-wide analysis by RNA sequencing (RNA-seq) data of platinum-resistant and -sensitive OC tissues. We demonstrated the role of LINC02776 in platinum resistance in OC cells, mice models and patient-derived organoid (PDO) models. RESULTS We identify the long noncoding RNA LINC02776 as a critical factor of platinum resistance. Elevated expression of LINC02776 is observed in platinum-resistant OC and serves as an independent prognostic factor for OC patients. Functionally, silencing LINC02776 reduces proliferation and DNA damage repair in OC cells, thereby enhancing sensitivity to platinum and PARPi in both xenograft mouse models and patient-derived organoid (PDO) models with acquired chemoresistance. Mechanistically, LINC02776 binds to the catalytic domain of poly (ADP-ribose) polymerase 1 (PARP1), promoting PARP1-dependent polyADP-ribosylation (PARylation) and facilitating homologous recombination (HR) restoration. Additionally, high HIF-1α expression in platinum-resistant tissues further stimulates LINC02776 transcription. CONCLUSIONS Our findings suggest that targeting LINC02776 represents a promising therapeutic strategy for OC patients who have developed resistance to platinum or PARPi. KEY POINTS LINC02776 promotes OC cell proliferation by regulating DNA damage and apoptosis signaling pathways. LINC02776 binds PARP1 to promote DNA damage-triggered PARylation in OC cells. LINC02776 mediates cisplatin and olaparib resistance in OC cells by enhancing PARP1-mediated PARylation activity and regulating the PARP1-mediated HR pathway. The high expression of LINC02776 is induced by HIF-1α in platinum-resistant OC cells and tissues.
Collapse
Affiliation(s)
- Yangjun Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zeng
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yong Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xinyu Ha
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zheng Feng
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Chaohua Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ziqi Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jiajia Wang
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xingzhu Ju
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shenglin Huang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Linhui Liang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Bin Zheng
- Accurate International Biotechnology Co. Ltd.GuangzhouChina
| | - Lulu Yang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Jun Wang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Xiaohua Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wen
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
7
|
Shen J, Wang X, Mpano O, Wang Y, Shan Y, Lou X, Ye P, Yan X. Survival analysis of recurrent ovarian cancer under different PARP inhibitor treatment patterns: a single-center retrospective study. Front Oncol 2025; 14:1504084. [PMID: 39868380 PMCID: PMC11757106 DOI: 10.3389/fonc.2024.1504084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Objective To compare the effects of different treatment modes containing PARPis and traditional treatment modes on the survival of patients with recurrent ovarian cancer. Methods From December 2012 to December 2023, 131 recurrent ovarian cancer patients were screened. The patients were followed up retrospectively, and the relevant data was collected and analyzed. Results Eighty-three patients used PARPis throughout the treatment process, and the median OS was not reached. Forty-eight patients did not use PARPis, and the median OS was 45.4 months. The two groups ' BRCA gene status, NACT, postoperative residual disease status, and PFI differ (P < 0.05). There was no significant difference in recurrence characteristics between the PARPis use and non-use groups in first-line maintenance therapy (P < 0.05). The use of PARPis, CA125 level and PFI were the independent influencing factors of OS in patients with recurrent ovarian cancer (P < 0.05). The median OS of patients with PARPis maintenance treatment in the single-line, second-line and last-line has not been reached. The median OS in the multi-line group was 69.5 months. Conclusion The use of PARPis, CA125 level and PFI were independent influencing factors of OS in patients with recurrent ovarian cancer. The first-line maintenance use of PARPis will not cause differences in disease recurrence characteristics. Compared with the patients without PARPis, patients with recurrent ovarian cancer receiving PARPis maintenance therapy have longer OS. The group of patients with PARPis maintenance treatment in the second and last lines showed better OS (P < 0.05). However, OS was not significantly different between the second-line and last-line groups (P < 0.05). There was no significant difference in OS between the multiple-line use PARPis and single-line use PARPis groups.
Collapse
Affiliation(s)
- Jingtian Shen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Olivier Mpano
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yihan Shan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinning Lou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Piaopiao Ye
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Bai YR, Yang WG, Jia R, Sun JS, Shen DD, Liu HM, Yuan S. The recent advance and prospect of poly(ADP-ribose) polymerase inhibitors for the treatment of cancer. Med Res Rev 2025; 45:214-273. [PMID: 39180380 DOI: 10.1002/med.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Chemotherapies are commonly used in cancer therapy, their applications are limited to low specificity, severe adverse reactions, and long-term medication-induced drug resistance. Poly(ADP-ribose) polymerase (PARP) inhibitors are a novel class of antitumor drugs developed to solve these intractable problems based on the mechanism of DNA damage repair, which have been widely applied in the treatment of ovarian cancer, breast cancer, and other cancers through inducing synthetic lethal effect and trapping PARP-DNA complex in BRCA gene mutated cancer cells. In recent years, PARP inhibitors have been widely used in combination with various first-line chemotherapy drugs, targeted drugs and immune checkpoint inhibitors to expand the scope of clinical application. However, the intricate mechanisms underlying the drug resistance to PARP inhibitors, including the restoration of homologous recombination, stabilization of DNA replication forks, overexpression of drug efflux protein, and epigenetic modifications pose great challenges and desirability in the development of novel PARP inhibitors. In this review, we will focus on the mechanism, structure-activity relationship, and multidrug resistance associated with the representative PARP inhibitors. Furthermore, we aim to provide insights into the development prospects and emerging trends to offer guidance for the clinical application and inspiration for the development of novel PARP inhibitors and degraders.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wei-Guang Yang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Rui Jia
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ju-Shan Sun
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- Gynecology Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuo Yuan
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Nishiyama H, Niinuma T, Kitajima H, Ishiguro K, Yamamoto E, Sudo G, Sasaki H, Yorozu A, Aoki H, Toyota M, Kai M, Suzuki H. HOXA11-As Promotes Lymph Node Metastasis Through Regulation of IFNL and HMGB Family Genes in Pancreatic Cancer. Int J Mol Sci 2024; 25:12920. [PMID: 39684631 DOI: 10.3390/ijms252312920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have shown that long noncoding RNAs (lncRNAs) play pivotal roles in the development and progression of cancer. In the present study, we aimed to identify lncRNAs associated with lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC). We analyzed data from The Cancer Genome Atlas (TCGA) database to screen for genes overexpressed in primary PDAC tumors with lymph node metastasis. Our screen revealed 740 genes potentially associated with lymph node metastasis, among which were multiple lncRNA genes located in the HOXA locus, including HOXA11-AS. Elevated expression of HOXA11-AS was associated with more advanced tumor stages and shorter overall survival in PDAC patients. HOXA11-AS knockdown suppressed proliferation and migration of PDAC cells. RNA-sequencing analysis revealed that HOXA11-AS knockdown upregulated interferon lambda (IFNL) family genes and downregulated high-mobility group box (HMGB) family genes in PDAC cells. Moreover, HMGB3 knockdown suppressed proliferation and migration by PDAC cells. These results suggest that HOXA11-AS contributes to PDAC progression, at least in part, through regulation of IFNL and HMGB family genes and that HOXA11 AS is a potential therapeutic target in PDAC.
Collapse
Affiliation(s)
- Hayato Nishiyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hajime Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
10
|
Bates M, Mohamed BM, Lewis F, O'Toole S, O'Leary JJ. Biomarkers in high grade serous ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189224. [PMID: 39581234 DOI: 10.1016/j.bbcan.2024.189224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. HGSC patients typically present with advanced disease, which is often resistant to chemotherapy and recurs despite initial responses to therapy, resulting in the poor prognosis associated with this disease. There is a need to utilise biomarkers to manage the various aspects of HGSC patient care. In this review we discuss the current state of biomarkers in HGSC, focusing on the various available immunohistochemical (IHC) and blood-based biomarkers, which have been examined for their diagnostic, prognostic and theranostic potential in HGSC. These include various routine clinical IHC biomarkers such as p53, WT1, keratins, PAX8, Ki67 and p16 and clinical blood-borne markers and algorithms such as CA125, HE4, ROMA, RMI, ROCA, and others. We also discuss various components of the liquid biopsy as well as a number of novel IHC biomarkers and non-routine blood-borne biomarkers, which have been examined in various ovarian cancer studies. We also discuss the future of ovarian cancer biomarker research and highlight some of the challenges currently facing the field.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Faye Lewis
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
12
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
13
|
He H, Wei Y, Chen Y, Zhao X, Shen X, Zhu Q, Yin H. High expression circRALGPS2 in atretic follicle induces chicken granulosa cell apoptosis and autophagy via encoding a new protein. J Anim Sci Biotechnol 2024; 15:42. [PMID: 38468340 PMCID: PMC10926623 DOI: 10.1186/s40104-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The reproductive performance of chickens mainly depends on the development of follicles. Abnormal follicle development can lead to decreased reproductive performance and even ovarian disease among chickens. Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer. In recent years, the involvement of circRNAs in follicle development and atresia regulation has been confirmed. RESULTS In the present study, we used healthy and atretic chicken follicles for circRNA RNC-seq. The results showed differential expression of circRALGPS2. It was then confirmed that circRALGPS2 can translate into a protein, named circRALGPS2-212aa, which has IRES activity. Next, we found that circRALGPS2-212aa promotes apoptosis and autophagy in chicken granulosa cells by forming a complex with PARP1 and HMGB1. CONCLUSIONS Our results revealed that circRALGPS2 can regulate chicken granulosa cell apoptosis and autophagy through the circRALGPS2-212aa/PARP1/HMGB1 axis.
Collapse
Affiliation(s)
- Haorong He
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanhang Wei
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuqi Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoxu Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
14
|
Fan A, Gao M, Tang X, Jiao M, Wang C, Wei Y, Gong Q, Zhong J. HMGB1/RAGE axis in tumor development: unraveling its significance. Front Oncol 2024; 14:1336191. [PMID: 38529373 PMCID: PMC10962444 DOI: 10.3389/fonc.2024.1336191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
High mobility group protein 1 (HMGB1) plays a complex role in tumor biology. When released into the extracellular space, it binds to the receptor for advanced glycation end products (RAGE) located on the cell membrane, playing an important role in tumor development by regulating a number of biological processes and signal pathways. In this review, we outline the multifaceted functions of the HMGB1/RAGE axis, which encompasses tumor cell proliferation, apoptosis, autophagy, metastasis, and angiogenesis. This axis is instrumental in tumor progression, promoting tumor cell proliferation, autophagy, metastasis, and angiogenesis while inhibiting apoptosis, through pivotal signaling pathways, including MAPK, NF-κB, PI3K/AKT, ERK, and STAT3. Notably, small molecules, such as miRNA-218, ethyl pyruvate (EP), and glycyrrhizin exhibit the ability to inhibit the HMGB1/RAGE axis, restraining tumor development. Therefore, a deeper understanding of the mechanisms of the HMGB1/RAGE axis in tumors is of great importance, and the development of inhibitors targeting this axis warrants further exploration.
Collapse
Affiliation(s)
- Anqi Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Fu X, Li P, Zhou Q, He R, Wang G, Zhu S, Bagheri A, Kupfer G, Pei H, Li J. Mechanism of PARP inhibitor resistance and potential overcoming strategies. Genes Dis 2024; 11:306-320. [PMID: 37588193 PMCID: PMC10425807 DOI: 10.1016/j.gendis.2023.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023] Open
Abstract
PARP inhibitors (PARPi) are a kind of cancer therapy that targets poly (ADP-ribose) polymerase. PARPi is the first clinically approved drug to exert synthetic lethality by obstructing the DNA single-strand break repair process. Despite the significant therapeutic effect in patients with homologous recombination (HR) repair deficiency, innate and acquired resistance to PARPi is a main challenge in the clinic. In this review, we mainly discussed the underlying mechanisms of PARPi resistance and summarized the promising solutions to overcome PARPi resistance, aiming at extending PARPi application and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ping Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qi Zhou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Guannan Wang
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shiya Zhu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amir Bagheri
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gary Kupfer
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
16
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
17
|
Xu L, Ma Y, Ji Y, Ma Y, Wang Y, Zhao X, Ge S. Obesity exacerbates postoperative cognitive dysfunction by activating the PARP1/NAD +/SIRT1 axis through oxidative stress. Exp Gerontol 2023; 183:112320. [PMID: 39492487 DOI: 10.1016/j.exger.2023.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The purposes of this study were to explore the impact of obesity on postoperative cognitive dysfunction (POCD) and to investigate the underlying mechanism by which obesity exacerbates POCD. In this study, fifteen-month-old male C57BL/6 J mice were fed a High-fat diet for three months to establish obesity models. Internal fixation of tibial fractures under isoflurane inhalation was performed to construct a POCD animal model. Three days after surgery, mice were subjected to the Morris water maze (MWM) experiment to evaluate their learning and memory abilities. The findings from the MWM experiment revealed that in comparison to the Ad Libitum Surgical group (ALS), mice in the High-fat Surgical group (HFS) exhibited prolonged escape latencies and reduced platform crossings. These outcomes suggest the potential exacerbating role of obesity in cognitive impairment within the POCD mouse models. Immunofluorescence (IF) findings demonstrate that obesity intensifies anesthesia and surgery-induced oxidative stress levels within the hippocampus. Compared to the Ad Libitum Control group (ALC), an elevation in PARP1 expression and a reduction in the NAD+/NADH ratio and SIRT1 expression were observed in the hippocampus of mice from the ALS. Moreover, when contrasting the HFS group with the ALS group, increased PARP1 expression along with decreased NAD+/NADH ratio and SIRT1 expression were evident. In vitro studies found that compared with the Control group (CON), oil red staining and BODIPY probe staining showed significant lipid droplet aggregation in the palmitic acid (PA) group. IF results demonstrated that HT22 cells in the PA group experienced oxidative stress and activation of the PARP1/NAD+/SIRT1 axis in contrast to the CON group. Moreover, manipulation of PARP1 expression in HT22 cells through PARP1 lentivirus-based silencing or overexpression revealed a converse relationship between PARP1 expression levels and the NAD+/NADH ratio as well as SIRT1 expression levels. This study concludes that obesity may exacerbate POCD by triggering activation of the oxidative stress-induced PARP1/NAD+/SIRT1 axis.
Collapse
Affiliation(s)
- Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yimei Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Ying Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
18
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
19
|
Ma H, Qi G, Han F, Gai P, Peng J, Kong B. HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal 2023; 21:144. [PMID: 37328851 PMCID: PMC10273509 DOI: 10.1186/s12964-023-01172-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/21/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Ovarian cancer, particularly epithelial ovarian cancer (EOC), is the leading cause of cancer-related mortality among women. Our previous study revealed that high HMGB3 levels are associated with poor prognosis and lymph node metastasis in patients with high-grade serous ovarian carcinoma; however, the role of HMGB3 in EOC proliferation and metastasis remains unknown. METHODS MTT, clonogenic, and EdU assays were used to assess cell proliferation. Transwell assays were performed to detect cell migration and invasion. Signaling pathways involved in HMGB3 function were identified by RNA sequencing (RNA-seq). MAPK/ERK signaling pathway protein levels were evaluated by western blot. RESULTS HMGB3 knockdown inhibited ovarian cancer cell proliferation and metastasis, whereas HMGB3 overexpression facilitated these processes. RNA-seq showed that HMGB3 participates in regulating stem cell pluripotency and the MAPK signaling pathway. We further proved that HMGB3 promotes ovarian cancer stemness, proliferation, and metastasis through activating the MAPK/ERK signaling pathway. In addition, we demonstrated that HMGB3 promotes tumor growth in a xenograft model via MAPK/ERK signaling. CONCLUSIONS HMGB3 promotes ovarian cancer malignant phenotypes and stemness through the MAPK/ERK signaling pathway. Targeting HMGB3 is a promising strategy for ovarian cancer treatment that may improve the prognosis of women with this disease. Video Abstract.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Panpan Gai
- 71217 of the Chinese People's Liberation Army, Laiyang, 265200, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
20
|
Dong J, Ru Y, Zhai L, Gao Y, Guo X, Chen B, Lv X. LMNB1 deletion in ovarian cancer inhibits the proliferation and metastasis of tumor cells through PI3K/Akt pathway. Exp Cell Res 2023; 426:113573. [PMID: 37003558 DOI: 10.1016/j.yexcr.2023.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Ovarian cancer (OC) is a common malignant tumor in gynecology. LMNB1 is an important component of the nuclear skeleton. The expression of LMNB1 in ovarian cancer is significantly higher than that in normal tissues, but its role in tumor still needs comprehensive investigation. In this study, we overexpressed and knocked down LMNB1 in ovarian cancer cells and explore the effect of LMNB1 on the cell proliferation, migration and the underlying mechanism. We analyzed the expression levels of LMNB1 in ovarian cancer and their clinical relevance by using bioinformatics methods, qRT-PCR, Western blot and immunohistochemistry. To state the effect and mechanism of LMNB1 on OC in vitro and in vivo, we performed mouse xenograft studies, CCK8, cloning formation, Edu incorporation, wound healing, transwell and flow cytometry assay in stable LMNB1 knockdown OC cells, following by RNA-seq. Overexpression of LMNB1 indicates the progression of OC. LMNB1 knockdown inhibited the proliferation and migration of OC cells by suppressing the FGF1-mediated PI3K-Akt signaling pathway. Our study shows LMNB1 as a novel prognostic factor and therapeutic target in OC.
Collapse
Affiliation(s)
- Jian Dong
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Lianghao Zhai
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Yunge Gao
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Xin Guo
- Department of Endoscopic Surgery, Chinese People's Liberation Army 986th Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China.
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| |
Collapse
|
21
|
Rajawat J, Awasthi P, Banerjee M. PARP inhibitor olaparib induced differential protein expression in cervical cancer cells. J Proteomics 2023; 275:104823. [PMID: 36646275 DOI: 10.1016/j.jprot.2023.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
PARP inhibitors are a potential class of chemotherapeutic drugs but PARP inhibitor response has not been explored systematically. We lack a specific understanding of the subset of the proteome preferentially modified in various cancers by PARP inhibitors. Implications of PARP inhibitor and PARP1 in cervical cancer treatment and resistance are not fully elucidated. We conducted a mass spectrometry-based proteomic analysis of cervical cancer Hela cells treated with olaparib. We aimed to identify the alteration in the protein signaling pathway induced by PARP inhibitors beyond the DNA damage response pathway. Our data demonstrate a significant reduction in PARP activity and enhanced cell death after olaparib treatment. We further observed articulated proteomic changes with a significant enrichment of proteins in diverse cellular processes. The differentially expressed proteins were predominantly associated with RNA metabolism, mRNA splicing, processing, and RNA binding. Our data also identified proteins that could probably contribute to survival mechanisms resulting in resistance to PARP inhibitors. Hence, we put forth the overview of proteomic changes induced by PARP inhibitor olaparib in cervical cancer cells. This study highlights the significant proteins modified during PARP inhibition and thus could be a probable target for combination therapies with PARP inhibitors in cervical cancer. SIGNIFICANCE.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, U.P, India
| | - Poorwa Awasthi
- CSIR-Indian Institute of Toxicology Research, Lucknow 226001, U.P, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, U.P, India..
| |
Collapse
|
22
|
Fischetti M, Di Donato V, Palaia I, Perniola G, Tomao F, Perrone C, Giancotti A, Di Mascio D, Monti M, Muzii L, Benedetti Panici P, Bogani G. Advances in small molecule maintenance therapies for high-grade serous ovarian cancer. Expert Opin Pharmacother 2023; 24:65-72. [PMID: 36458890 DOI: 10.1080/14656566.2022.2154144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Ovarian cancer is one of the most lethal gynecological tumors with a lack of effective treatment modalities especially in advanced/recurrent disease. Nevertheless, recently, new small molecules have emerged as an effective approach for the management of ovarian cancer patients, especially in the maintenance setting. AREAS COVERED This review summarizes the role of small molecules used in the management of high-grade serous ovarian cancer. The authors performed a critical review of current evidence and ongoing studies. Of note, tyrosine kinase inhibitors (TKIs) and poly(ADP-ribose) polymerase (PARP) inhibitors are the most intriguing medications in this setting. EXPERT OPINION Protein-targeted therapies against tumor tissues have progressed significantly in the last years due to an enhanced knowledge of the biological and molecular processes of carcinogenesis. Treatment with small molecules allows the targeting of specific proteins involved in cancer biology. TKIs seem promising but further data are necessary to assess the pros and cons of adopting this treatment modality. PARP inhibitors represent the new standard of care for ovarian cancer patients harboring either a BRCA mutation or with homologous recombination deficiency (HRD). Interestingly, the accumulation of data has highlighted that PARP inhibitors provide benefits even in patients with HR proficient tumors.
Collapse
Affiliation(s)
- Margherita Fischetti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Chiara Perrone
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Marco Monti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Giorgio Bogani
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| |
Collapse
|
23
|
Zhu T, Zheng JY, Huang LL, Wang YH, Yao DF, Dai HB. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Front Pharmacol 2023; 14:1137151. [PMID: 36909172 PMCID: PMC9995695 DOI: 10.3389/fphar.2023.1137151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a key DNA damage sensor that is recruited to damaged sites after DNA strand breaks to initiate DNA repair. This is achieved by catalyzing attachment of ADP-ribose moieties, which are donated from NAD+, on the amino acid residues of itself or other acceptor proteins. PARP inhibitors (PARPi) that inhibit PARP catalytic activity and induce PARP trapping are commonly used for treating BRCA1/2-deficient breast and ovarian cancers through synergistic lethality. Unfortunately, resistance to PARPi frequently occurs. In this review, we present the novel substrates and regulators of the PARP1-catalyzed poly (ADP-ribosyl)ation (PARylatison) that have been identified in the last 3 years. The overall aim is the presentation of protein interactions of potential therapeutic intervention for overcoming the resistance to PARPi.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju-Yan Zheng
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Ling Huang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Wang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di-Fei Yao
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Bin Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Wu Z, Huang Y, Yuan W, Wu X, Shi H, Lu M, Xu A. Expression, tumor immune infiltration, and prognostic impact of HMGs in gastric cancer. Front Oncol 2022; 12:1056917. [PMID: 36568211 PMCID: PMC9780705 DOI: 10.3389/fonc.2022.1056917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background In the past decade, considerable research efforts on gastric cancer (GC) have been expended, however, little advancement has been made owing to the lack of effective biomarkers and treatment options. Herein, we aimed to examine the levels of expression, mutations, and clinical relevance of HMGs in GC to provide sufficient scientific evidence for clinical decision-making and risk management. Methods GC samples were obtained from The Cancer Genome Atlas (TCGA). University of California Santa Cruz (UCSC) XENA, Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, cBioPortal, GeneMANIA, STRING, LinkedOmics, and DAVID databases were employed. The "ggplot2" package in the R software (×64 3.6.3) was used to thoroughly analyze the effects of HMGs. qRT-PCR was performed to assess HMG levels in GC cell lines. Results A total of 375 GC tissues and 32 paraneoplastic tissues were analyzed. The levels of HMGA1, HMGA2, HMGB1, HMGB2, HMGB3, HMGN1, HMGN2, and HMGN4 expression were increased in GC tissues relative to normal gastric tissues. HMGA1, HMGA2, HMGB1, HMGB2, and HMGB3 were highly expressed in GC cell lines. The OS was significantly different in the group showing low expressions of HMGA1, HMGA2, HMGB1, HMGB2, HMGB3, HMGN2, HMGN3, and HMGN5. There was a significant difference in RFS between the groups with low HMGA2, HMGB3, and high HMGN2 expression. The levels of HMGA2, HMGB3, and HMGN1 had a higher accuracy for prediction to distinguish GC from normal tissues (AUC value > 0.9). HMGs were tightly associated with immune infiltration and tumor immune escape and antitumor immunity most likely participates in HMG-mediated oncogenesis in GC. GO and KEGG enrichment analyses showed that HMGs played a vital role in the cell cycle pathway. Conclusions Our results strongly suggest a vital role of HMGs in GC. HMGA2 and HMGB3 could be potential markers for prognostic prediction and treatment targets for GC by interrupting the cell cycle pathway. Our findings might provide renewed perspectives for the selection of prognostic biomarkers among HMGs in GC and may contribute to the determination of the optimal strategy for the treatment of these patients.
Collapse
Affiliation(s)
- Zhiheng Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yang Huang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Weiwei Yuan
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xiong Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China, State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
25
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
26
|
Chu YY, Yam C, Yamaguchi H, Hung MC. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors. J Biomed Sci 2022; 29:86. [PMID: 36284291 PMCID: PMC9594904 DOI: 10.1186/s12929-022-00870-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) exploit the concept of synthetic lethality and offer great promise in the treatment of tumors with deficiencies in homologous recombination (HR) repair. PARPi exert antitumor activity by blocking Poly(ADP-ribosyl)ation (PARylation) and trapping PARP1 on damaged DNA. To date, the U.S. Food and Drug Administration (FDA) has approved four PARPi for the treatment of several cancer types including ovarian, breast, pancreatic and prostate cancer. Although patients with HR-deficient tumors benefit from PARPi, majority of tumors ultimately develop acquired resistance to PARPi. Furthermore, even though BRCA1/2 mutations are commonly used as markers of PARPi sensitivity in current clinical practice, not all patients with BRCA1/2 mutations have PARPi-sensitive disease. Thus, there is an urgent need to elucidate the molecular mechanisms of PARPi resistance to support the development of rational effective treatment strategies aimed at overcoming resistance to PARPi, as well as reliable biomarkers to accurately identify patients who will most likely benefit from treatment with PARPi, either as monotherapy or in combination with other agents, so called marker-guided effective therapy (Mget). In this review, we summarize the molecular mechanisms driving the efficacy of and resistance to PARPi as well as emerging therapeutic strategies to overcome PARPi resistance. We also highlight the identification of potential markers to predict PARPi resistance and guide promising PARPi-based combination strategies.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hirohito Yamaguchi
- Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
27
|
Lu X, Huang X, Xu H, Lu S, You S, Xu J, Zhan Q, Dong C, Zhang N, Zhang Y, Cao L, Zhang X, Zhang N, Zhang L. The role of E3 ubiquitin ligase WWP2 and the regulation of PARP1 by ubiquitinated degradation in acute lymphoblastic leukemia. Cell Death Dis 2022; 8:421. [PMID: 36257929 PMCID: PMC9579143 DOI: 10.1038/s41420-022-01209-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
Acute lymphoblastic leukemia (ALL) has been a huge threat for people's health and finding effective target therapy is urgent and important. WWP2, as one of E3 ubiquitin ligase, is involved in many biological processes by specifically binding to substrates. PARP1 plays a role in cell apoptosis and is considered as a therapeutic target of certain cancers. In this study, we firstly found that WWP2 expressed higher in newly diagnosed ALL patients comparing with complete remission (CR) ALL patients and normal control people, and WWP2 in relapse ALL patients expressed higher than normal control people. WWP2 expression was related with the FAB subtype of ALL and the proportion of blast cells in bone marrow blood tested by flow cytometry. We demonstrated knockout WWP2 inhibited the ALL growth and enhanced apoptosis induced by Dox in vitro and vivo for the first time. WWP2 negatively regulated and interacted with PARP1 and WWP2 mechanically degraded PARP1 through polyubiquitin-proteasome pathway in ALL. These findings suggested WWP2 played a role in ALL development as well as growth and apoptosis, and also displayed a regulatory pathway of PARP1, which provided a new potential therapeutic target for the treatment of ALL.
Collapse
Affiliation(s)
- Xinxin Lu
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Huang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiqi Xu
- Department of Hematology, General Hospital of PLA Northern Theater Command, Shenyang, Liaoning, China
| | - Saien Lu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qianru Zhan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chao Dong
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Zhang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xingang Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lijun Zhang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
Guo L, Dou Y, Xia D, Yin Z, Xiang Y, Luo L, Zhang Y, Wang J, Liang T. SLOAD: a comprehensive database of cancer-specific synthetic lethal interactions for precision cancer therapy via multi-omics analysis. Database (Oxford) 2022; 2022:6677988. [PMID: 36029479 PMCID: PMC9419874 DOI: 10.1093/database/baac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Synthetic lethality has been widely concerned because of its potential role in cancer treatment, which can be harnessed to selectively kill cancer cells via identifying inactive genes in a specific cancer type and further targeting the corresponding synthetic lethal partners. Herein, to obtain cancer-specific synthetic lethal interactions, we aimed to predict genetic interactions via a pan-cancer analysis from multiple molecular levels using random forest and then develop a user-friendly database. First, based on collected public gene pairs with synthetic lethal interactions, candidate gene pairs were analyzed via integrating multi-omics data, mainly including DNA mutation, copy number variation, methylation and mRNA expression data. Then, integrated features were used to predict cancer-specific synthetic lethal interactions using random forest. Finally, SLOAD (http://www.tmliang.cn/SLOAD) was constructed via integrating these findings, which was a user-friendly database for data searching, browsing, downloading and analyzing. These results can provide candidate cancer-specific synthetic lethal interactions, which will contribute to drug designing in cancer treatment that can promote therapy strategies based on the principle of synthetic lethality.
Database URL http://www.tmliang.cn/SLOAD/
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuyang Dou
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Daoliang Xia
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yangyang Xiang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University , No. 1, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuting Zhang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University , No. 1, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| |
Collapse
|