1
|
Ding Z, Wang X, Guo S, Kang Y, Cao M, Hu L, Zhang B, Xiong L, Pei J, Yang T, Guo X. Characteristic analysis of N 6-methyladenine in different parts of yak epididymis. BMC Genomics 2025; 26:500. [PMID: 40389816 DOI: 10.1186/s12864-025-11684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND The epididymis is essential for sperm maturation. During sperm maturation, markable alterations of the payload of small noncoding RNAs are observed in the epididymis, which indicated the role of epigenetic alterations in sperm maturation. However, the N6-Methyladenosine (m6A) modification profile of the epididymis remains unelucidated. Therefore, in this study, we assessed the m6A modification levels in the caput, corpus, and cauda of the yak epididymis using a combination of methylated RNA immunoprecipitation and RNA sequencing. RESULTS The m6A levels were significantly increased in the corpus of the epididymis. Functional enrichment analysis of differentially methylated RNA (DMR) between the corpus and caput group revealed the significant enrichment of DMRs in the gap junction, ErbB signaling pathway, and mTOR signaling pathway, which participate in cell communication and sperm maturation. In addition, the DMRs of cauda-vs-corpus group were enriched in apoptosis, the FoxO signaling pathway, the PI3K-Akt signaling pathway, and the tumor necrosis factor signaling pathway that were associated with sperm autophagy, oxidative stress, and sperm maturation. Furthermore, we identified the key genes exhibiting significant changes in m6A levels but with no differences in RNA levels, including YY1-associated factor 2, forkhead box J2, and forkhead box O1. This finding indicated that m6A modifications affect these genes during translation, thereby participating in sperm maturation. CONCLUSIONS In summary, we generated the m6A profile of the yak epididymis, which will aid in further elucidating the maturation process of sperm and reveal more information related to male infertility.
Collapse
Affiliation(s)
- Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Ben Zhang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Tao Yang
- Haibei Animal Husbandry Science and Technology Demonstration Park Management Committee, Haibei, 810299, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China.
| |
Collapse
|
2
|
Zhang Y, Wu Q, Bai F, Hu Y, Xu B, Tang Y, Wu J. Granulosa cell-specific FOXJ2 overexpression induces premature ovarian insufficiency by triggering apoptosis via mitochondrial calcium overload. J Ovarian Res 2025; 18:75. [PMID: 40205506 PMCID: PMC11984056 DOI: 10.1186/s13048-025-01651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Follicle development is a complicated biological process that produces mature oocytes, and requires nutrients, growth factors, and steroids produced by ovarian granulosa cells (GCs). High fork head box J2 (FOXJ2) expression might negatively regulate ovarian function; however, the mechanism is unclear. This study aimed to investigate the effect and mechanism of FOXJ2 overexpression in GCs on regulating follicle development and fertility. METHODS A GC-specific conditional Foxj2 knock-in mouse model (Amh-cre; Foxj2tg/tg mouse) was generated. Reproductive phenotypes were compared between Amh-cre; Foxj2tg/tg and control mice using fertility evaluation, oocyte collection, estrus cycle analysis, hormone evaluation, and ovarian follicle assessment. Then, RNA sequencing and bioinformatic analyses were used to detect the altered transcriptome of GCs collected from the Amh-cre; Foxj2tg/tg and wild-type mice. Western blotting, transmission electron microscopy, immunofluorescence staining, and flow cytometry were used to explore apoptosis and mitochondrial calcium homeostasis. Furthermore, Chromatin immunoprecipitation-PCR and dual-luciferase reporter assays were used to detect the target gene of FOXJ2. Moreover, short hairpin RNA interference was performed on primary GCs and human ovarian granulosa-like tumor (KGN) cells to explore the relationship between FOXJ2 and its target gene in apoptosis and mitochondrial calcium overload. RESULTS FOXJ2 overexpression in GCs led to reduced fertility, hormonal abnormalities, and follicle atresia, starting at the initiation of sexual maturity, resulting in a premature ovarian insufficiency (POI)-like phenotype. Increased apoptosis and mitochondrial calcium overload were detected in the GCs of Amh-cre; Foxj2tg/tg mice. Mcu (encoding a mitochondrial calcium uniporter) was observed to be upregulated in the GCs of the Amh-cre; Foxj2tg/tg mice and was a direct target of FOXJ2. Moreover, Mcu knockdown restored mitochondrial calcium homeostasis and reduced the apoptosis in the GCs of the Amh-cre; Foxj2tg/tg mice and in KGN cells transfected with FOXJ2-overexpression lentivirus.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Qiqian Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Furong Bai
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China
| | - Bufang Xu
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Shanghai General Hospital, Urologic Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Yujie Tang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China.
| | - Jingwen Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Building 5, Room 506 280 South Chongqing Road, Huangpu District, Shanghai, 200025, China.
| |
Collapse
|
3
|
Cai D, Li J, Peng Z, Fu R, Chen C, Liu F, Li Y, Su Y, Li C, Chen W. Interplay of Ferroptosis, Cuproptosis, Autophagy and Pyroptosis in Male Infertility: Molecular Crossroads and Therapeutic Opportunities. Int J Mol Sci 2025; 26:3496. [PMID: 40331931 PMCID: PMC12026609 DOI: 10.3390/ijms26083496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Male infertility is intricately linked to dysregulated cell death pathways, including ferroptosis, cuproptosis, pyroptosis, and autophagy. Ferroptosis, driven by iron-dependent lipid peroxidation through the Fenton reaction and inactivation of the GPX4/Nrf2/SLC7A11 axis, disrupts spermatogenesis under conditions of oxidative stress, environmental toxin exposure, or metabolic disorders. Similarly, cuproptosis-characterized by mitochondrial dysfunction and disulfide stress due to copper overload-exacerbates germ cell apoptosis via FDX1 activation and NADPH depletion. Pyroptosis, mediated by the NLRP3 inflammasome and gasdermin D, amplifies testicular inflammation and germ cell loss via IL-1β/IL-18 release, particularly in response to environmental insults. Autophagy maintains testicular homeostasis by clearing damaged organelles and proteins; however, its dysregulation impairs sperm maturation and compromises blood-testis barrier integrity. These pathways intersect through shared regulators; reactive oxygen species and mTOR modulate the autophagy-pyroptosis balance, while Nrf2 and FDX1 bridge ferroptosis-cuproptosis crosstalk. Therapeutic interventions targeting these mechanisms have shown promise in preclinical models. However, challenges persist, including the tissue-specific roles of gasdermin isoforms, off-target effects of pharmacological inhibitors, and transgenerational epigenetic impacts of environmental toxins. This review synthesizes current molecular insights into the cell death pathways implicated in male infertility, emphasizing their interplay and translational potential for restoring spermatogenic function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wei Chen
- Health Science Center, Hunan Normal University, Changsha 410013, China; (D.C.); (J.L.); (Z.P.); (R.F.); (C.C.); (F.L.); (Y.L.); (Y.S.); (C.L.)
| |
Collapse
|
4
|
Cai X, Zhang H, Kong S, Xu W, Zheng J, Wang N, He S, Li S, Shen Y, Wang K, Zhang Z, Cai H, Ma F, Bai S, Zhu F, Xiao F, Wang F. TMEM232 is required for the formation of sperm flagellum and male fertility in mice. Cell Death Dis 2024; 15:806. [PMID: 39516485 PMCID: PMC11549365 DOI: 10.1038/s41419-024-07200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Asthenoteratozoospermia is a major cause of male infertility. Thus far, the identified related genes can explain only a small share of asthenoteratozoospermia cases, suggesting the involvement of other genes. The transmembrane protein TMEM232 is highly expressed in mouse testes. In the present study, to determine its function of TMEM232 in testes, we constructed a Tmem232-null mouse model using CRISPR-Cas9 technology. Tmem232 knockout (KO) male mice was completely infertile, and their sperm were immotile, with morphological defects of the flagellum. Electron microscopy revealed an aberrant midpiece-principal junction and the loss of the fourth outer microtubule doublet in the sperm of Tmem232-/- mice. Sperm cells presented an 8 + 2 conformation and an irregular arrangement of the mitochondrial sheath. Proteomic analysis revealed altered expression of proteins related to flagellar motility, sperm capacitation, the integrity and stability of sperm structure, especially an upregulated expression of multiple ribosome components in TMEM232-deficient spermatids. Additionally, TMEM232 was observed to be involved in autophagy by interacting with autophagy-related proteins, such as ATG14, to regulate ribosome homeostasis during spermiogenesis. These results suggest that TMEM232, as a potential scaffold protein involving in the correct assembly, distribution, and stability maintenance of certain functional complexes by recruiting key intracellular proteins, is essential for the formation of a highly structured flagellum and plays an important role in the autophagic elimination of cytosolic ribosomes to provide energy for sperm motility.
Collapse
Affiliation(s)
- Xinying Cai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Weilong Xu
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Jie Zheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Ning Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shuai He
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shupei Li
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yiru Shen
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Ke Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Zengyunou Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Haijian Cai
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Fang Ma
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Fuxi Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fengli Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| |
Collapse
|
5
|
Jia Q, Li J, Guo X, Li Y, Wu Y, Peng Y, Fang Z, Zhang X. Neuroprotective effects of chaperone-mediated autophagy in neurodegenerative diseases. Neural Regen Res 2024; 19:1291-1298. [PMID: 37905878 PMCID: PMC11467915 DOI: 10.4103/1673-5374.385848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins. Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis, while providing nutrients and support for cell survival. Chaperone-mediated autophagy activity can be detected in almost all cells, including neurons. Owing to the extreme sensitivity of neurons to their environmental changes, maintaining neuronal homeostasis is critical for neuronal growth and survival. Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases. It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction. Under certain conditions, regulation of chaperone-mediated autophagy activity attenuates neurotoxicity. In this paper, we review the changes in chaperone-mediated autophagy in neurodegenerative diseases, brain injury, glioma, and autoimmune diseases. We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jin Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, China
| | - Xiaofeng Guo
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yi Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - You Wu
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuliang Peng
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
6
|
Samare-Najaf M, Neisy A, Samareh A, Moghadam D, Jamali N, Zarei R, Zal F. The constructive and destructive impact of autophagy on both genders' reproducibility, a comprehensive review. Autophagy 2023; 19:3033-3061. [PMID: 37505071 PMCID: PMC10621263 DOI: 10.1080/15548627.2023.2238577] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Reproduction is characterized by a series of massive renovations at molecular, cellular, and tissue levels. Recent studies have strongly tended to reveal the involvement of basic molecular pathways such as autophagy, a highly conserved eukaryotic cellular recycling, during reproductive processes. This review comprehensively describes the current knowledge, updated to September 2022, of autophagy contribution during reproductive processes in males including spermatogenesis, sperm motility and viability, and male sex hormones and females including germ cells and oocytes viability, ovulation, implantation, fertilization, and female sex hormones. Furthermore, the consequences of disruption in autophagic flux on the reproductive disorders including oligospermia, azoospermia, asthenozoospermia, teratozoospermia, globozoospermia, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and other disorders related to infertility are discussed as well.Abbreviations: AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; E2: estrogen; EDs: endocrine disruptors; ER: endoplasmic reticulum; FSH: follicle stimulating hormone; FOX: forkhead box; GCs: granulosa cells; HIF: hypoxia inducible factor; IVF: in vitro fertilization; IVM: in vitro maturation; LCs: Leydig cells; LDs: lipid droplets; LH: luteinizing hormone; LRWD1: leucine rich repeats and WD repeat domain containing 1; MAP1LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-kB: nuclear factor kappa B; P4: progesterone; PCOS: polycystic ovarian syndrome; PDLIM1: PDZ and LIM domain 1; PI3K: phosphoinositide 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: class III phosphatidylinositol 3-kinase; POI: premature ovarian insufficiency; ROS: reactive oxygen species; SCs: Sertoli cells; SQSTM1/p62: sequestosome 1; TSGA10: testis specific 10; TST: testosterone; VCP: vasolin containing protein.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Asma Neisy
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Guo S, Pei J, Wang X, Cao M, Xiong L, Kang Y, Ding Z, La Y, Chu M, Bao P, Guo X. Transcriptome Studies Reveal the N6-Methyladenosine Differences in Testis of Yaks at Juvenile and Sexual Maturity Stages. Animals (Basel) 2023; 13:2815. [PMID: 37760215 PMCID: PMC10525320 DOI: 10.3390/ani13182815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Studying the mechanism of spermatogenesis is key to exploring the reproductive characteristics of male yaks. Although N6-methyladenosine (m6A) RNA modification has been reported to regulate spermatogenesis and reproductive function in mammals, the molecular mechanism of m6A in yak testis development and spermatogenesis remains largely unknown. Therefore, we collected testicular tissue from juvenile and adult yaks and found that the m6A level significantly increased after sexual maturity in yaks. In MeRIP-seq, 1702 hypermethylated peaks and 724 hypomethylated peaks were identified. The hypermethylated differentially methylated RNAs (DMRs) (CIB2, AK1, FOXJ2, PKDREJ, SLC9A3, and TOPAZ1) mainly regulated spermatogenesis. Functional enrichment analysis showed that DMRs were significantly enriched in the adherens junction, gap junction, and Wnt, PI3K, and mTOR signaling pathways, regulating cell development, spermatogenesis, and testicular endocrine function. The functional analysis of differentially expressed genes showed that they were involved in the biological processes of mitosis, meiosis, and flagellated sperm motility during the sexual maturity of yak testis. We also screened the key regulatory factors of testis development and spermatogenesis by combined analysis, which included BRCA1, CREBBP, STAT3, and SMAD4. This study indexed the m6A characteristics of yak testicles at different developmental stages, providing basic data for further research of m6A modification regulating yak testicular development.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
8
|
Zhao M, Yu WX, Liu SJ, Deng YJ, Zhao ZW, Guo J, Gao QH. Identification and immuno-infiltration analysis of cuproptosis regulators in human spermatogenic dysfunction. Front Genet 2023; 14:1115669. [PMID: 37065492 PMCID: PMC10090386 DOI: 10.3389/fgene.2023.1115669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Cuproptosis seems to promote the progression of diverse diseases. Hence, we explored the cuproptosis regulators in human spermatogenic dysfunction (SD), analyzed the condition of immune cell infiltration, and constructed a predictive model.Methods: Two microarray datasets (GSE4797 and GSE45885) related to male infertility (MI) patients with SD were downloaded from the Gene Expression Omnibus (GEO) database. We utilized the GSE4797 dataset to obtain differentially expressed cuproptosis-related genes (deCRGs) between SD and normal controls. The correlation between deCRGs and immune cell infiltration status was analyzed. We also explored the molecular clusters of CRGs and the status of immune cell infiltration. Notably, weighted gene co-expression network analysis (WGCNA) was used to identify the cluster-specific differentially expressed genes (DEGs). Moreso, gene set variation analysis (GSVA) was performed to annotate the enriched genes. Subsequently, we selected an optimal machine-learning model from four models. Finally, nomograms, calibration curves, decision curve analysis (DCA), and the GSE45885 dataset were utilized to verify the predictions’ accuracy.Results: Among SD and normal controls, we confirmed that there are deCRGs and activated immune responses. Through the GSE4797 dataset, we obtained 11 deCRGs. ATP7A, ATP7B, SLC31A1, FDX1, PDHA1, PDHB, GLS, CDKN2A, DBT, and GCSH were highly expressed in testicular tissues with SD, whereas LIAS was lowly expressed. Additionally, two clusters were identified in SD. Immune-infiltration analysis showed the existing heterogeneity of immunity at these two clusters. Cuproptosis-related molecular Cluster2 was marked by enhanced expressions of ATP7A, SLC31A1, PDHA1, PDHB, CDKN2A, DBT, and higher proportions of resting memory CD4+ T cells. Furthermore, an eXtreme Gradient Boosting (XGB) model based on 5-gene was built, which showed superior performance on the external validation dataset GSE45885 (AUC = 0.812). Therefore, the combined nomogram, calibration curve, and DCA results demonstrated the accuracy of predicting SD.Conclusion: Our study preliminarily illustrates the relationship between SD and cuproptosis. Moreover, a bright predictive model was developed.
Collapse
Affiliation(s)
- Ming Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xiao Yu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Sheng-Jing Liu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying-Jun Deng
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi-Wei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jun Guo, ; Qing-He Gao,
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jun Guo, ; Qing-He Gao,
| |
Collapse
|
9
|
Wang J, Liu Y, Gao Y, Liang J, Wang B, Xia Q, Xie Y, Shan F, Xia Q. Comprehensive bioinformatics analysis and molecular validation of lncRNAs-mediated ceRNAs network in schizophrenia. Life Sci 2022; 312:121205. [PMID: 36410410 DOI: 10.1016/j.lfs.2022.121205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
AIMS The present study aimed to investigate how Schizophrenia (SCZ)-specific long non-coding RNAs (lncRNAs) served as competing endogenous RNAs (ceRNAs) to modulate the biological functions and pathways involved in the pathogenesis of SCZ. MAIN METHODS Microarray dataset (GSE54913) was obtained from Gene Expression Omnibus (GEO) database. Differently expressed (DE) lncRNAs and mRNAs were identified by "limma" package. The binding miRNAs of lncRNAs and target mRNAs of shared miRNAs were predicted by miRcode, miRDB, miRTarbase and targetscan databases. Following the ceRNAs theory, interaction network was established and visualized with the cytoscape. Functional enrichment analysis uncovered the concentrated functions and signaling pathways that may be associated with SCZ progression. Protein-protein interaction (PPI) analysis was utilized to determine hub genes. Quantitative real-time PCR (qRT-PCR) and receiver operating characteristic curve (ROC) were performed to evaluate the expression and diagnostic value of ceRNAs members, respectively. KEY FINDINGS DElncRNAs and DEmRNAs were initially screened from GSE54913 to construct the SCZ-related ceRNAs network with 42 nodes and 53 edges. Functional enrichment analysis revealed that ceRNAs members appeared to be highly correlated with transcription factor activation, cell replication and tumor-related pathways. Once validated, a significant ceRNAs subnetwork was proposed as being implicated in the pathogenesis of SCZ. ROC analysis indicated that SCZ-related ceRNAs members may be sensitive diagnostic biomarkers for SCZ. SIGNIFICANCE The significant SCZ-related ceRNAs subnetworks (lncRNA-C2orf48A/hsa-miR-20b-5p,-17-5p/KIF23, FOXJ2) may represent promising predictive and diagnostic biomarkers and provide novel insights into the mechanism by which lncRNAs act as microRNA sponges and contribute to the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Jiequan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Yaru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230022, China
| | - Yejun Gao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Baoshi Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230022, China
| | - Yawen Xie
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Feng Shan
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Qingrong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China.
| |
Collapse
|