1
|
Bai T, Wang L, Qiao Z, Wang Z. Cuproptosis, a potential target for the therapy of diabetic critical limb ischemia. Free Radic Biol Med 2025; 234:131-140. [PMID: 40246253 DOI: 10.1016/j.freeradbiomed.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Diabetic patients are considered as the high risk population to develop critical limb ischemia (CLI), a peripheral vascular disease (PVD) resulted from atherosclerosis. Cuproptosis is a novel copper-dependent cell death that has shown the regulatory role in diabetes, while its effect on diabetic CLI has not been explored yet. In this study, Diabetic CLI mice was induced by femoral artery ligation (FAL) on diabetic mice. Endothelial injury in diabetic CLI was mimicked in human microvascular endothelial cells (HMEC-1) via the induction with high glucose (HG) and nutrient deprivation (ND). Besides, copper chelator Ammonium Tetrathiomolybdate (TM), which has shown the anti-cuproptosis property, was administrated to explore its potential effects on diabetic CLI mice and HG/ND-induced HMEC-1 cells. Strikingly, obvious cuproptosis was found in the gastrocnemius muscles of diabetic CLI mice and HG/ND-induced HMEC-1 cells, as evidenced by the copper overload and dysregulated cuproptosis-related proteins (such as Fe-S cluster proteins, copper exporter ATP7A, and copper importer SLC31A1). More importantly, TM protected against the hindlimb ischemic damages in diabetic CLI mice and alleviated cuproptosis-associated cell deaths in HG/ND-induced HMEC-1 cells. In summary, this study indicates the involvements of cuproptosis in diabetic CLI, and provides novel insights into copper chelator TM on diabetic CLI therapy.
Collapse
Affiliation(s)
- Tao Bai
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Luhao Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhentao Qiao
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Shao T, Han L, Xie Y, Shi Z, Yang Q, Liu A, Liu Y, Chen L, Huang J, Peng B, Bai H, Chen H, Li L, Bian K. Bilateral Synergistic Effects of Phototherapy-Based NIR-II Absorption Photosensitizer for Allergic Rhinitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412249. [PMID: 39981945 DOI: 10.1002/smll.202412249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Allergic rhinitis (AR) is the most prevalent global health issue, affecting approximately 3 billion people, with its incidence increasing annually. The current first-line pharmacotherapy for symptom relief has limited efficacy and often results in notable side effects. Here, aza-BODIPY-based nanoparticles (RH@NPs) are developed that exhibit mild photothermal therapy (PTT) and type I photodynamic therapy (PDT) capabilities. Enhanced intramolecular charge transfer induces NIR-II absorption of the photosensitizer (RH), facilitating deeper tissue penetration for augmented AR therapy. Additionally, the use of an asymmetric donor-acceptor-acceptor' configuration promotes the self-assembly of RH, enhancing its intersystem crossing ability and enabling efficient photophysical activity. The synergistic effects of PTT (enhancing HSF1 DNA-binding activity to inhibit epithelial-mesenchymal transition by epigenetically regulating the expression of epithelial-mesenchymal transition-associated genes) and PDT (activating NRF2 transcriptional activity to stimulate the antioxidant defense system) enable RH@NPs to provide a superior therapeutic effect in a mouse model of AR. This effect is achieved by mechanically reducing the allergic response rather than merely alleviating symptoms. Notably, the photosensitizer-based physical therapy demonstrates enhanced safety. This study is the first to successfully investigate the application of phototherapy for AR and elucidate its mechanism of action, offering a novel, straightforward, and efficient treatment strategy for AR.
Collapse
Affiliation(s)
- Tao Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu Han
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Xie
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhenxiong Shi
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qilong Yang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Aojie Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yi Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Langlang Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jingman Huang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Bo Peng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hua Bai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongli Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lin Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible, Electronics (IFE), Xiamen University, Xiamen, 361005, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
3
|
Liang B, Xiong Y, Cobo ER, Kastelic J, Tong X, Han B, Gao J. Bovine milk-derived extracellular vesicles reduce oxidative stress and ferroptosis induced by Klebsiella pneumoniae in bovine mammary epithelial cells. J Anim Sci Biotechnol 2025; 16:24. [PMID: 39953606 PMCID: PMC11827381 DOI: 10.1186/s40104-025-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Ferroptosis is characterized by increased production of reactive oxygen species (ROS) and membrane lipid peroxidation that can exacerbate inflammatory damage. Extracellular vesicles (EVs) isolated from bovine milk have many biological functions, including antioxidant properties. However, the role of EVs on Klebsiella pneumoniae-induced ferroptosis and oxidative stress in bovine mammary epithelial cells (bMECs) and murine mammary tissue is unclear. In this study, EVs were isolated from bovine colostrum, mature milk and clinical mastitis milk (defined as C-EVs, M-EVs and CM-EVs, respectively) and assessed by transmission electron microscopy, Western blot and transcriptome sequencing. Effects of EVs on K. pneumoniae-induced ferroptosis and oxidative stress in bMECs were evaluated with immunofluorescence and Western blot. RESULTS In bMECs, infection with K. pneumoniae induced oxidative stress, decreasing protein expression of Nrf2, Keap1 and HO-1 plus SOD activity, and increasing ROS concentrations. However, protein expression of GPX4, ACSL4 and S100A4 in bMECs, all factors that regulate ferroptosis, was downregulated by K. pneumoniae. Furthermore, this bacterium compromised tight junctions in murine mammary tissue, with low expression of ZO-1 and Occludin, whereas protein expression of Nrf2 and GPX4 was also decreased in mammary tissue. Adding C-EVs, M-EVs or CM-EVs reduced oxidative stress and ferroptosis in K. pneumoniae-infected bMECs in vitro and murine mammary tissues in vivo. CONCLUSION In conclusion, all 3 sources of milk-derived EVs alleviated oxidative stress and ferroptosis in K. pneumoniae-infected bMECs and mammary tissues.
Collapse
Affiliation(s)
- Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China
| | - Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
4
|
Zhou L, Li R, Wang F, Zhou R, Xia Y, Jiang X, Cheng S, Wang F, Li D, Zhang J, Mao L, Cai X, Zhang H, Qiu J, Tian X, Zou Z, Chen C. N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135736. [PMID: 39265400 DOI: 10.1016/j.jhazmat.2024.135736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Excessive exposure to metals in daily life has been proposed as an environmental risk factor for neurological disorders. Oxidative stress is an inevitable stage involved in the neurotoxic effects induced by metals, nevertheless, the underlying mechanisms are still unclear. In this study, we used arsenic as a representative environmental heavy metal to induce neuronal oxidative stress and demonstrated that both in vitro and in vivo exposure to arsenic significantly increased the level of N6-methyladenosine (m6A) by down-regulating its demethylase FTO. Importantly, the results obtained from FTO transgenic mice and FTO overexpressed/knockout cells indicated that FTO likely regulated neuronal oxidative stress by modulating activating transcription factor 3 (ATF3) in a m6A-dependent manner. We also identified the specific m6A reader protein, YTHDC1, which interacted with ATF3 and thereby affecting its regulatory effects on oxidative stress. To further explore potential intervention strategies, cerebral metabolomics was conducted and we newly identified myo-inositol as a metabolite that exhibited potential in protecting against arsenic-induced oxidative stress and cognitive dysfunction. Overall, these findings provide new insights into the importance of the FTO-ATF3 signaling axis in neuronal oxidative stress from an m6A perspective, and highlight a beneficial metabolite that can counteract the oxidative stress induced by arsenic.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Renjie Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fu Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruiqi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Cai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Wu S, Gan M, Wang Y, Pan Y, He Y, Feng J, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Shen L. Copper mediated follicular atresia: Implications for granulosa cell death. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135391. [PMID: 39106724 DOI: 10.1016/j.jhazmat.2024.135391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
3-nitropropanoic acid is a potent oxidative stress inducer that is conventionally regarded as a regulator of follicular atresia by regulating granulosa cells (GCs) death through the apoptosis pathway. There has been no research investigating the impact of copper metal overload induced Cuproptosis in ovarian GCs as a factor contributing to hindered follicular development.To elucidate whether 3-NP-induced oxidative stress plays a contributory role in promoting Cuproptosis, and discuss the role of Cuproptosis in the development of ovarian follicles.We conducted an analysis of cuproptosis occurrence in murine GCs and C57BL/6 J mice under the influence of 3-NP and 3-NP with added exogenous copper.The results revealed that 3-NP serving as a robust facilitator of exogenous copper uptake by upregulating the expression of copper transporter 1 (CTR1). In turn, culminated in the accumulation of intracellular copper within mouse granulosa cells (mGCs). Furthermore, 3-NP promoted mitochondrial permeability transition pore opening and concurrently reduced the stability of lipoic acid proteins. These actions collectively induced the oligomerization of Dihydrolipoamide S-Acetyltransferase (DLAT), ultimately leading to cuproptosis in GCs and consequent follicular atresia. Heavy metal copper and fungal decomposition product 3-NP, induce ovarian atresia via cuproptosis, modulating the reproductive performance of female animals.
Collapse
Affiliation(s)
- Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinkang Feng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Wai KW, Low LE, Goh BH, Yap WH. Nrf2 Connects Cellular Autophagy and Vascular Senescence in Atherosclerosis: A Mini-Review. J Lipid Atheroscler 2024; 13:292-305. [PMID: 39355399 PMCID: PMC11439754 DOI: 10.12997/jla.2024.13.3.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 10/03/2024] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that maintains intracellular redox equilibrium, modulates the expression of antioxidant genes, scavenger receptors, and cholesterol efflux transporters, all of which contribute significantly to foam cell development and plaque formation. Nrf2 has recently emerged as a key regulator that connects autophagy and vascular senescence in atherosclerosis. Autophagy, a cellular mechanism involved in the breakdown and recycling of damaged proteins and organelles, and cellular senescence, a state of irreversible growth arrest, are both processes implicated in the pathogenesis of atherosclerosis. The intricate interplay of these processes has received increasing attention, shedding light on their cumulative role in driving the development of atherosclerosis. Recent studies have revealed that Nrf2 plays a critical role in mediating autophagy and senescence in atherosclerosis progression. Nrf2 activation promotes autophagy, which increases lipid clearance and prevents the development of foam cells. Meanwhile, the activation of Nrf2 also inhibits cellular senescence by regulating the expression of senescence markers to preserve cellular homeostasis and function and delay the progression of atherosclerosis. This review provides an overview of the molecular mechanisms through which Nrf2 connects cellular autophagy and vascular senescence in atherosclerosis. Understanding these mechanisms can provide insights into potential therapeutic strategies targeting Nrf2 to modulate cellular autophagy and vascular senescence, thereby preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Kai Wen Wai
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, Subang Jaya, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Chen N, Guo L, Wang L, Dai S, Zhu X, Wang E. Sleep fragmentation exacerbates myocardial ischemia‒reperfusion injury by promoting copper overload in cardiomyocytes. Nat Commun 2024; 15:3834. [PMID: 38714741 PMCID: PMC11076509 DOI: 10.1038/s41467-024-48227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 05/10/2024] Open
Abstract
Sleep disorders increase the risk and mortality of heart disease, but the brain-heart interaction has not yet been fully elucidated. Cuproptosis is a copper-dependent type of cell death activated by the excessive accumulation of intracellular copper. Here, we showed that 16 weeks of sleep fragmentation (SF) resulted in elevated copper levels in the male mouse heart and exacerbated myocardial ischemia-reperfusion injury with increased myocardial cuproptosis and apoptosis. Mechanistically, we found that SF promotes sympathetic overactivity, increases the germination of myocardial sympathetic nerve terminals, and increases the level of norepinephrine in cardiac tissue, thereby inhibits VPS35 expression and leads to impaired ATP7A related copper transport and copper overload in cardiomyocytes. Copper overload further leads to exacerbated cuproptosis and apoptosis, and these effects can be rescued by excision of the sympathetic nerve or administration of copper chelating agent. Our study elucidates one of the molecular mechanisms by which sleep disorders aggravate myocardial injury and suggests possible targets for intervention.
Collapse
Affiliation(s)
- Na Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Sisi Dai
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaocheng Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
| |
Collapse
|
8
|
Xu Y, Xu Q, Zheng Z, Jiang X, Shi Y, Huang Y, Liu Y. Fructose aggravates copper-deficiency-induced cardiac remodeling by inhibiting SERCA2a. J Pharm Pharmacol 2024; 76:567-578. [PMID: 38271051 DOI: 10.1093/jpp/rgae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVES Accumulating evidence demonstrates that copper deficiency (CuD) is a risk factor for cardiovascular diseases, besides, fructose has been strongly linked to the development of cardiovascular diseases. However, how CuD or fructose causes cardiovascular diseases is not clearly delineated. The present study aims to investigate the mechanism of CuD or fructose on cardiac remodeling. METHODS We established a model of CuD- or fructose-induced cardiac hypertrophy in 3-week-old male Sprague-Dawley (SD) rats by CuD diet supplemented with or without 30% fructose for 4 weeks. In vitro study was performed by treating cardiomyocytes with tetrathiomolydbate (TM) and fructose. Echocardiography, histology analysis, immunofluorescence, western blotting, and qPCR were performed. KEY FINDINGS Our findings revealed that CuD caused noticeable cardiac hypertrophy either in the presence or absence of fructose supplement. Fructose exacerbated CuD-induced cardiac remodeling and intramyocardial lipid accumulation. Furthermore, we presented that the inhibition of autophagic flux caused by Ca2+ disturbance is the key mechanism by which CuD- or fructose-induced cardiac remodeling. The reduced expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in cardiomyocytes accounts for the elevated cytoplasmic Ca2+ concentration. CONCLUSIONS Collectively, our study suggested that fructose aggravated CuD-induced cardiac remodeling through the blockade of autophagic flux via SERCA2a decreasing-induced Ca2+ imbalance.
Collapse
Affiliation(s)
- Yi Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiuxia Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhirui Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xin Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuansen Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yipu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| |
Collapse
|
9
|
Gu Q, An Y, Xu M, Huang X, Chen X, Li X, Shan H, Zhang M. Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications. Aging Dis 2024; 16:917-945. [PMID: 38739940 PMCID: PMC11964418 DOI: 10.14336/ad.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications. In February 2023, Liu Xiaoguang and his team discovered "disulfidptosis," a novel pathway of programmed cell death. Their findings demonstrated that disulfidptosis is triggered in glucose-starved cells exhibiting high expression of a protein called SLC7A11. Furthermore, disulfidptosis is marked by a drastic imbalance in the NADPH/NADP+ ratio and the abnormal accumulation of disulfides like cystine. These changes ultimately lead to the destabilization of the F-actin network, causing cell death. Given that high SLC7A11 expression is a key feature of certain cancers, these findings indicate that disulfidptosis could serve as the basis of innovative anti-cancer therapies. Hence, this review delves into the discovery of disulfidptosis, its underlying molecular mechanisms and metabolic regulation, and its prospective applications in disease treatment.
Collapse
Affiliation(s)
- Qiuyang Gu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Xianzhe Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Zhu H, Zhong Y, Chen R, Wang L, Li Y, Jian Z, Gu L, Xiong X. ATG5 Knockdown Attenuates Ischemia‒Reperfusion Injury by Reducing Excessive Autophagy-Induced Ferroptosis. Transl Stroke Res 2024; 15:153-164. [PMID: 36522583 DOI: 10.1007/s12975-022-01118-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Autophagy has been described to be both protective and pathogenic in cerebral ischemia/reperfusion (I/R) injury. The underlying association between autophagy and ferroptosis in ischemic stroke has not yet been clearly investigated. The purpose of this study was to explore the role of autophagy-related gene 5 (ATG5) in experimental ischemic stroke. After injection of ATG5 shRNA lentivirus, mice underwent surgery for transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. The infarct volume, neurological function, apoptosis, reactive oxygen species (ROS), autophagy, and ferroptosis levels were evaluated. After MCAO, ATG5-knockdown mice had a smaller infarct size and fewer neurological deficits than wild-type mice. The levels of apoptosis and ROS in ischemic mouse brains were alleviated through ATG5 knockdown. The expression of LC3 I/II was reduced through ATG5 knockdown after MCAO. Additionally, the expression of beclin1 and LC3 II was increased after I/R, but the increase was counteracted by preconditioning with ATG5 knockdown. After ischemic stroke, the levels of Fe2+ and malondialdehyde (MDA) were increased, but they were reduced by ATG5 knockdown. Similarly, the expression of glutathione peroxidase 4 (GPX4) and glutathione (GSH) was decreased by I/R but elevated by ATG5 knockdown. The present study shows that ATG5 knockdown attenuates autophagy-induced ferroptosis, which may offer a novel potential approach for ischemic stroke treatment.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Yang S, Zhang T, Ge Y, Cheng Y, Yin L, Pu Y, Chen Z, Liang G. Ferritinophagy Mediated by Oxidative Stress-Driven Mitochondrial Damage Is Involved in the Polystyrene Nanoparticles-Induced Ferroptosis of Lung Injury. ACS NANO 2023; 17:24988-25004. [PMID: 38086097 DOI: 10.1021/acsnano.3c07255] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nanoplastics are a common type of contaminant in the air. However, no investigations have focused on the toxic mechanism of lung injury induced by nanoplastic exposure. In the present study, polystyrene nanoplastics (PS-NPs) caused ferroptosis in lung epithelial cells, which could be alleviated by ferrostatin-1, deferoxamine, and N-acetylcysteine. Further investigation found that PS-NPs disturbed mitochondrial structure and function and triggered autophagy. Mechanistically, oxidative stress-derived mitochondrial damage contributed to ferroptosis, and autophagy-dependent ferritinophagy was a pivotal intermediate link, resulting in ferritin degradation and iron ion release. Furthermore, inhibition of ferroptosis using ferrostatin-1 alleviated pulmonary and systemic toxicity to reverse the mouse lung injury induced by PS-NPs inhalation. Most importantly, the lung-on-a-chip was further used to clarify the role of ferroptosis in the PS-NPs-induced lung injury by visualizing the ferroptosis, oxidative stress, and alveolar-capillary barrier dysfunction at the organ level. In summary, our study indicated that ferroptosis was an important mechanism for nanoplastics-induced lung injury through different lung cells, mouse inhalation models, and three-dimensional-based lung-on-a-chip, providing an insightful reference for pulmonary toxicity assessment of nanoplastics.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
12
|
Qi H, Shi H, Yan M, Zhao L, Yin Y, Tan X, Qi H, Li H, Weng K, Tang Y, Dai Y. Ammonium tetrathiomolybdate relieves oxidative stress in cisplatin-induced acute kidney injury via NRF2 signaling pathway. Cell Death Discov 2023; 9:259. [PMID: 37491360 PMCID: PMC10368633 DOI: 10.1038/s41420-023-01564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Cisplatin is an efficient chemotherapeutic agent for various solid tumors, but its usage is restricted by nephrotoxicity. A single dose of cisplatin can cause acute kidney injury (AKI), which is characterized by rapid reduction in kidney function. However, the current therapies, such as hydration, are limited. It is vital to develop novel therapeutic reagents that have both anticancer and renoprotective properties. The objective of this study was to determine whether ammonium tetrathiomolybdate (TM), a copper chelator used to treat cancer and disorders of copper metabolism, may offer protection against cisplatin-induced AKI. In this study, we demonstrated that TM treatment had antioxidative effects and mitigated cisplatin-induced AKI both in vivo and in vitro. Mechanically, TM inhibited NRF2 ubiquitination, which activated the NRF2 pathway in HK-2 cells and promoted the expression of target genes. It should be noted that the protective effect conferred by TM against cisplatin was compromised by the knockdown of the NRF2 gene. Furthermore, TM selectively activated the NRF2 pathways in the liver and kidney. The current study provided evidence for additional clinical applications of TM by showing that it activates NRF2 and has a favorable therapeutic impact on cisplatin-induced AKI.
Collapse
Affiliation(s)
- Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Haoyu Shi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaolin Tan
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Huiyue Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kangqiang Weng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|