1
|
Hushmandi K, Alimohammadi M, Heiat M, Hashemi M, Nabavi N, Tabari T, Raei M, Aref AR, Farahani N, Daneshi S, Taheriazam A. Targeting Wnt signaling in cancer drug resistance: Insights from pre-clinical and clinical research. Pathol Res Pract 2025; 267:155837. [PMID: 39954370 DOI: 10.1016/j.prp.2025.155837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Cancer drug resistance, encompassing both acquired and intrinsic chemoresistance, remains a significant challenge in the clinical management of tumors. While advancements in drug discovery and the development of various small molecules and anti-cancer compounds have improved patient responses to chemotherapy, the frequent and prolonged use of these drugs continues to pose a high risk of developing chemoresistance. Therefore, understanding the primary mechanisms underlying drug resistance is crucial. Wnt proteins, as secreted signaling molecules, play a pivotal role in transmitting signals from the cell surface to the nucleus. Aberrant expression of Wnt proteins has been observed in a variety of solid and hematological tumors, where they contribute to key processes such as proliferation, metastasis, stemness, and immune evasion, often acting in an oncogenic manner. Notably, the role of the Wnt signaling pathway in modulating chemotherapy response in human cancers has garnered significant attention. This review focuses on the involvement of Wnt signaling and its related molecular pathways in drug resistance, highlighting their associations with cancer hallmarks, stemness, and tumorigenesis linked to chemoresistance. Additionally, the overexpression of Wnt proteins has been shown to accelerate cancer drug resistance, with regulation mediated by non-coding RNAs. Elevated Wnt activity reduces cell death in cancers, particularly by affecting mechanisms like apoptosis, autophagy, and ferroptosis. Furthermore, pharmacological compounds and small molecules have demonstrated the potential to modulate Wnt signaling in cancer therapy. Given its impact, Wnt expression can also serve as a prognostic marker and a factor influencing survival outcomes in human cancers.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Liang C, Chen M, Mu Z, Tian X, Zhao W, Hu Y, Su J. Zinc Transporter 9 (ZnT9) Improves Obesity-Induced Asthenospermia by Attenuating Endoplasmic Reticulum Stress (ERS). Biol Trace Elem Res 2025:10.1007/s12011-025-04512-5. [PMID: 39821185 DOI: 10.1007/s12011-025-04512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
The aim of this study was to explore the role of the ZnT9 protein in obesity-induced sperm maturation disorders in men. We generated a mouse model of obesity-induced weak spermatogenesis via a high-fat diet (HFD) for 10 weeks. In addition to the HFD, a 5-week intervention of salubrinal (SAL) (an inhibitor of endoplasmic reticulum stress) (1 mg/kg/day), ZnSO4 (15 mg/kg/day), and their combination was started at week 6, after which sperm viability and epididymal tissue damage were assessed. To investigate the role of the ZnT9 protein in spermatogenesis, the expression levels of the ZnT9 protein, endoplasmic reticulum stress (ERS)-related protein, Wnt pathway protein, and apoptosis-related protein in epididymal tissue were measured. Compared with those in the normal (N) group, the mice in the HFD group presented decreased sperm motility, damaged epididymal tissue, epididymal tissue showed decreased expression of ZnT9, β-catenin, LEF protein and mRNA, and increased expression of total cholesterol (TC) and triglycerides (TG), GRP78, Caspase-3, BAX protein and mRNA, as well as increased apoptosis as shown by TUNEL staining. Compared with the HFD group, HFD + ZnSO4 group, HFD + SAL group, and HFD + ZnSO4 + SAL groups resulted in reduced epididymal damage, improved decreased total cholesterol (TC) and triglycerides (TG), sperm viability, increased expression of ZnT9, β-catenin, LEF protein and mRNA, and decreased expression of GRP78, Caspase-3, and BAX protein and mRNA, as well as decreased apoptosis as shown by TUNEL staining in epididymal tissues. According to this study, obesity leads to elevated ERS and affects ZnT9 protein synthesis. Inhibition of the Wnt pathway ultimately leads to cell death and damage in epididymal tissue and decreased sperm viability.
Collapse
Affiliation(s)
- Chen Liang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Mingyang Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Zhidan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Xinyan Tian
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Yarong Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China.
| | - Juan Su
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China.
| |
Collapse
|
3
|
Dhungana P, Wei X, Meuti ME, Sim C. Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens. INSECT MOLECULAR BIOLOGY 2024; 33:777-791. [PMID: 38989821 PMCID: PMC11537818 DOI: 10.1111/imb.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan E. Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
4
|
Ye K, Wang PC, Chen YX, Huang QZ, Chi P. E3 ubiquitin ligase BTBD3 inhibits tumorigenesis of colorectal cancer by regulating the TYRO3/Wnt/β-catenin signaling axis. Cancer Cell Int 2024; 24:306. [PMID: 39227913 PMCID: PMC11373184 DOI: 10.1186/s12935-024-03478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/β-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/β-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/β-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/β-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated β-catenin and led to β-catenin degradation, therefore blocked the Wnt/β-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Kai Ye
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Peng-Cheng Wang
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Yan-Xin Chen
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Qiao-Zhen Huang
- Department of Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Zhang L, Li Y, Fu C, Yang L, Li G, Wu Y, Tong H, Tian G, Wang K, Wang J, Ying X, Li Z. Exploration and validation of ceRNA regulatory networks in colorectal cancer based on associations whole transcriptome sequencing. Sci Rep 2024; 14:20446. [PMID: 39227669 PMCID: PMC11372121 DOI: 10.1038/s41598-024-71465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a wide-spread gastrointestinal cancer that is associated with augmented morbidity and mortality, and we do not yet have a deep understanding of its epidemiology and carcinogenicity. The transcriptome can reveal the complexity and heterogeneity of tumors and uncover new biomarkers or treatment options. In this study, we identified messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), round RNAs (circRNAs), and microRNAs (miRNAs) using whole-transcriptome sequencing and generated competing endogenous RNA (ceRNA) modulatory axes. We conducted whole transcriptome sequencing on 10 CRC and para-cancer (CRCP) samples and discovered 2465 differentially expressed (DE) mRNAs (DEmRNAs), 77 DE miRNAs (DEmiRNAs). 2852 DE lncRNAs (DElncRNAs) and 1477 DE circRNAs (DEcircRNAs). In addition, utilizing co-DE analysis, we generated the ceRNA axis. Subsequently, we employed the ceRNA axis to identify essential genes and corresponding associations with lncRNAs, circRNAs, and miRNAs in CRC. ceRNA regulatory network including mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA. These modulatory axes potentially modulate the positive regulation of smooth muscle contraction, melanosome, plasma membrane, integral plasma membrane component and so on. Finally, the results of RNA sequencing (RNA-SEQ) were combined with the TCGA and GEO databases, and the DEGs strongly correlated with the TCGA-COAD overall survival (OS) as estimated by univariate cox and logarithmic rank analyses were cross-analyzed, and the co-upregulated DEGs were screened. Among the many DEs, KPNA2 was chosen for additional analysis. Using invitro experimentations, western blot, CCK8, EdU and other experiments were performed to verify the results. We found siRNA-based KPNA2 depletion reduces bladder cancer cells' viability, migratory, and proliferative activities, which showed that the DEmRNA profiles were comparable to the sequencing information, confirming that the sequencing data were very reliable. These evidences highlight the ceRNA regulatory mechanisms in CRC and will aid future research into the molecular mechanisms behind colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Lulu Zhang
- Medical research center, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yulei Li
- Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Chao Fu
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - LiXia Yang
- Medical research center, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Gang Li
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yiyang Wu
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Huanjun Tong
- Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Guojiang Tian
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Kaifang Wang
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Adiministrative Region, China
| | - Jun Wang
- Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Xiaojiang Ying
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| | - Zhenjun Li
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
6
|
Zhou J, Zhang M, Gao A, Herman JG, Guo M. Epigenetic silencing of KCTD8 promotes hepatocellular carcinoma growth by activating PI3K/AKT signaling. Epigenomics 2024; 16:929-944. [PMID: 39023358 PMCID: PMC11370965 DOI: 10.1080/17501911.2024.2370590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: The aim of current study is to explore the epigenetic changes and function of KCTD8 in human hepatocellular carcinoma (HCC). Materials & methods: HCC cell lines and tissue samples were employed. Methylation specific PCR, flow cytometry, immunoprecipitation and xenograft mouse models were used.Results: KCTD8 was methylated in 44.83% (104/232) of HCC and its methylation may act as an independent poor prognostic marker. KCTD8 expression was regulated by DNA methylation. KCTD8 suppressed HCC cell growth both in vitro and in vivo via inhibiting PI3K/AKT pathway.Conclusion: Methylation of KCTD8 is an independent poor prognostic marker, and epigenetic silencing of KCTD8 increases the malignant tendency in HCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA15213, USA
| | - Mingzhou Guo
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
7
|
Rizk R, Devost D, Pétrin D, Hébert TE. KCTD Proteins Have Redundant Functions in Controlling Cellular Growth. Int J Mol Sci 2024; 25:4993. [PMID: 38732215 PMCID: PMC11084553 DOI: 10.3390/ijms25094993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gβ1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gβ1. Our work demonstrates a unique relationship between KCTD proteins and Gβ1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.
Collapse
Affiliation(s)
| | | | | | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, QC H3G 1Y6, Canada; (R.R.); (D.D.); (D.P.)
| |
Collapse
|
8
|
Cao P, Li Q, Zou D, Wang L, Wang Z. Identification of crucial ubiquitin-associated genes for predicting the effects of immunotherapy and therapeutic agents in colorectal cancer. Gene 2024; 904:148215. [PMID: 38307218 DOI: 10.1016/j.gene.2024.148215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND A growing body of research indicates that colorectal cancer (CRC) is significantly influenced by the ubiquitin-proteasome system. Nevertheless, reliable immune landscapes and ubiquitin-associated prognostic markers are still scarce. METHODS We systematically analyzed the RNA-seq data of 2,830 ubiquitin-related genes from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A CRC prognostic risk model was developed based on ubiquitin-associated gene signatures. In-depth multi-dimensional analyses were performed on ubiquitin-related subgroups with high and low risk. Drug response sensitivity for high-risk CRC patients was also predicted. RESULTS A total of 131 ubiquitin-related differentially expressed genes were retrieved, of which 9 prognostic genes for CRC were ultimately identified and further validated by our clinical CRC tumor and adjacent normal samples. The expression pattern of these 9 ubiquitin-associated genes was found to be strongly related to overall survival, immune cell fractions, and immune-related genes of CRC patients. CRC patients stratified by the ubiquitin prognostic model exhibited distinct clinicopathological characteristics and immune landscapes. A comprehensive framework for personalized medicine prediction identified regorafenib and sorafenib as the most promising therapeutic agents for high ubiquitin-related risk CRC patients, which was confirmed in cell viability assays. CONCLUSIONS Ubiquitin characteristics can reflect CRC prognosis and help develop innovative biomarkers for precision treatment.
Collapse
Affiliation(s)
- Peng Cao
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qilin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Danyi Zou
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong, University of Science & Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Ai LJ, Li GD, Chen G, Sun ZQ, Zhang JN, Liu M. Molecular subtyping and the construction of a predictive model of colorectal cancer based on ion channel genes. Eur J Med Res 2024; 29:219. [PMID: 38576045 PMCID: PMC10993535 DOI: 10.1186/s40001-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is a highly heterogeneous malignancy with an unfavorable prognosis. The purpose of this study was to address the heterogeneity of CRC by categorizing it into ion channel subtypes, and to develop a predictive modeling based on ion channel genes to predict the survival and immunological states of patients with CRC. The model will provide guidance for personalized immunotherapy and drug treatment. METHODS A consistent clustering method was used to classify 619 CRC samples based on the expression of 279 ion channel genes. Such a method was allowed to investigate the relationship between molecular subtypes, prognosis, and immune infiltration. Furthermore, a predictive modeling was constructed for ion channels to evaluate the ion channel properties of individual tumors using the least absolute shrinkage and selection operator. The expression patterns of the characteristic genes were validated through molecular biology experiments. The effect of potassium channel tetramerization domain containing 9 (KCTD9) on CRC was verified by cellular functional experiments. RESULTS Four distinct ion channel subtypes were identified in CRC, each characterized by unique prognosis and immune infiltration patterns. Notably, Ion Cluster3 exhibited high levels of immune infiltration and a favorable prognosis, while Ion Cluster4 showed relatively lower levels of immune infiltration and a poorer prognosis. The ion channel score could predict overall survival, with lower scores correlated with longer survival. This score served as an independent prognostic factor and presented an excellent predictive efficacy in the nomogram. In addition, the score was closely related to immune infiltration, immunotherapy response, and chemotherapy sensitivity. Experimental evidence further confirmed that low expression of KCTD9 in tumor tissues was associated with an unfavorable prognosis in patients with CRC. The cellular functional experiments demonstrated that KCTD9 inhibited the proliferation, migration and invasion capabilities of LOVO cells. CONCLUSIONS Ion channel subtyping and scoring can effectively predict the prognosis and evaluate the immune microenvironment, immunotherapy response, and drug sensitivity in patients with CRC.
Collapse
Affiliation(s)
- Lian-Jie Ai
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guo-Dong Li
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Chen
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zi-Quan Sun
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jin-Ning Zhang
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ming Liu
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
10
|
Li J, Li S, Xing X, Liu N, Lai S, Liao D, Li J. FTO-mediated ZNF687 accelerates tumor growth, metastasis, and angiogenesis in colorectal cancer through the Wnt/β-catenin pathway. Biotechnol Appl Biochem 2024; 71:245-255. [PMID: 37983718 DOI: 10.1002/bab.2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Colorectal cancer (CRC) is a common and lethal cancer. ZNF687 has been disclosed to take part in diversified cancers' progression by serving as a facilitator. However, the detailed regulatory functions of ZNF687 in the CRC have not been investigated. This work is planned to probe the impacts of ZNF687 on CRC progression. The IHC, RT-qPCR, and western blot assays were used to examine mRNA and protein gene expressions. The cell proliferation measurement was accompanied by a CCK-8 assay. The Transwell assay was performed to evaluate cell invasion and migration. The angiogenesis ability was evaluated by a tube formation experiment. The m6A level was evaluated through MeRIP and m6A dot blot assays. The binding ability between ZNF687 and FTO (fat mass and obesity associated protein) was tested through an RIP assay. The β-catenin nuclear translocation was assessed through an immunofluorescence assay. The tumor growth was evaluated through an in vivo assay. ZNF687 exhibited higher expression in CRC cells and resulted in a poor prognosis. Additionally, ZNF687 inhibition suppressed CRC cell proliferation, invasion, migration, and angiogenesis. Furthermore, the suppression of ZNF687 retarded the Wnt pathway. Through rescue assays, the reduced cell migration, proliferation, invasion, and angiogenesis mediated by ZNF687 knockdown could be reversed after BML-284 (the activator of the Wnt pathway) treatment. Finally, it was explained that ZNF687 knockdown inhibited in vivo tumor growth. This study manifested that FTO-mediated ZNF687 aggravated tumor growth, metastasis, and angiogenesis of CRC through Wnt/β-catenin pathway. This finding may provide a hopeful molecular target for CRC treatment.
Collapse
Affiliation(s)
- Junyi Li
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shixin Li
- Department of Oncology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoxiao Xing
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nini Liu
- Department of Anorectal Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Suyu Lai
- Department of Anorectal Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daixiang Liao
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Jiang J, Li X, Zhang C, Wang J, Li J. Anti-cancer effects of Coix seed extract through KCTD9-mediated ubiquitination of TOP2A in lung adenocarcinoma. Cell Div 2024; 19:6. [PMID: 38374109 PMCID: PMC10877835 DOI: 10.1186/s13008-024-00112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Coix seed extract (CSE), a traditional Chinese medicine, has been reported as an adjunctive therapy in cancers. However, the molecular targets are largely unclear. The study is designed to unveil its function in lung adenocarcinoma (LUAD) and the possible molecular mechanism. METHODS The HERB database was utilized to predict the molecular targets of the Coix seed, followed by prognostic value prediction in the Kaplan-Meier Plotter database. LUAD cells were infected with sh-KCTD9 after co-culture with CSE, and cell viability, growth, proliferation, and apoptosis were determined. The substrates of KCTD9 were predicted using a protein-protein interaction network and verified. The expression of PD-L1, the contents of TNF-α, IFN-γ, CXCL10, and CXCL9 in the co-culture system of LUAD cells and T cells and the proliferation of T cells were evaluated to study the immune escape of LUAD cells in response to CSE and sh-KCTD9. Lastly, tumor growth and immune escape were observed in tumor-bearing mice. RESULTS CSE inhibited malignant behavior and immune escape of LUAD cells, and the reduction of KCTD9 reversed the inhibitory effect of CSE on malignant behavior and immune escape of LUAD cells. Knockdown of KCTD9 expression inhibited ubiquitination modification of TOP2A, and knockdown of TOP2A suppressed immune escape of LUAD cells in the presence of knockdown of KCTD9. CSE exerted anticancer effects in mice, but the reduction of KCTD9 partially compromised the anticancer effect of CSE. CONCLUSION CSE inhibits immune escape and malignant progression of LUAD through KCTD9-mediated ubiquitination modification of TOP2A.
Collapse
Affiliation(s)
- Jiuyang Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xue Li
- Department of Internal Medicine, Daoli District People's Hospital, Harbin, 150016, Heilongjiang, People's Republic of China
| | - Chun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Jiafu Wang
- Department of PET-CT, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Jin Li
- Department of Traditional Chinese Medicine, The Fourth Affiliated Hospital of Harbin Medical University Songbei, No. 766, Xiang'an North Street, Songbei District, Harbin, 150070, Heilongjiang, People's Republic of China.
| |
Collapse
|
12
|
Erfanian N, Safarpour H, Tavakoli T, Mahdiabadi MA, Nasseri S, Namaei MH. Investigating the therapeutic potential of Bifidobacterium breve and Lactobacillus rhamnosus postbiotics through apoptosis induction in colorectal HT-29 cancer cells. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:68-78. [PMID: 38682058 PMCID: PMC11055435 DOI: 10.18502/ijm.v16i1.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Colorectal cancer (CRC) is a prevalent form of cancer worldwide. Recent studies suggest that postbiotics derived from probiotic bacteria have the potential as an adjunct therapy for CRC. This study investigates the anti-cancer effects of Bifidobacterium breve (B. breve) and Lactobacillus rhamnosus (L. rhamnosus) postbiotics on the HT-29 cell line. Materials and Methods Through MTT and scratch assay, we investigated the anti-proliferation and anti-migration effects of B. breve and L. rhamnosus postbiotics on HT-29 cells. Furthermore, postbiotic-mediated apoptosis was assessed by analyzing the expression of Bax, Bcl-2, and caspase-3. We also investigated the effects of B. breve postbiotics on the expression of three important genes involved in metastasis, including RSPO2, NGF, and MMP7. Consequently, we validated the expression of selected genes in twelve adenocarcinoma tissues. Results The results demonstrated the significant impact of postbiotics on HT-29 cells, highlighting their ability to induce anti-proliferation, anti-migration, and apoptosis-related effects. Notably, these effects were more pronounced using B. breve postbiotics than L. rhamnosus. Additionally, B. breve postbiotics could inhibit metastasis through upregulation of RSPO2 while downregulating NGF and MMP7 expression in HT-29 cells. Conclusion Our research suggests that postbiotic metabolites may be effective biological products for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahmineh Tavakoli
- Department of Internal Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Ali Mahdiabadi
- Department of Internal Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hassan Namaei
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
13
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
JIang W, Dong J, Zhang W, Huang Z, Guo T, Zhang K, Jiang X, Du T. Development and Validation of a Prognostic Model based on 11 E3-related Genes for Colon Cancer Patients. Curr Pharm Des 2024; 30:935-951. [PMID: 38898815 DOI: 10.2174/0113816128292398240306160051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Colon cancer is a common tumor in the gastrointestinal tract with a poor prognosis. According to research reports, ubiquitin-dependent modification systems have been found to play a crucial role in the development and advancement of different types of malignant tumors, including colon cancer. However, further investigation is required to fully understand the mechanism of ubiquitination in colon cancer. METHODS We collected the RNA expression matrix of the E3 ubiquitin ligase-related genes (E3RGs) from the patients with colon adenocarcinoma (COAD) using The Cancer Genome Atlas program (TCGA). The "limma" package was used to obtain differentially expressed E3RGs between COAD and adjacent normal tissues. Then, univariate COX regression and least absolute shrinkage and selection operator (LASSO) analysis were performed to construct the prognostic signature and nomogram model. Afterward, we used the original copy number variation data of COAD to find potential somatic mutation and employed the "pRRophetic" package to investigate the disparity in the effectiveness of chemotherapy drugs between high and low-risk groups. The RT-qPCR was also implied to detect mRNA expression levels in tumor tissues. RESULTS A total of 137 differentially expressed E3RG3 were screened and 11 genes (CORO2B, KCTD9, RNF32, BACH2, RBCK1, DPH7, WDR78, UCHL1, TRIM58, WDR72, and ZBTB18) were identified for the construction of prognostic signatures. The Kaplan-Meier curve showed a worse prognosis for patients with high risk both in the training and test cohorts (P = 1.037e-05, P = 5.704e-03), and the area under the curve (AUC) was 0.728 and 0.892 in the training and test cohorts, respectively. Based on the stratified analysis, this 11- E3RGs signature was a novel and attractive prognostic model independent of several clinicopathological parameters (age, sex, stage, TNM) in COAD. The DEGs were subjected to GO and KEGG analysis, which identified pathways associated with cancer progression. These pathways included the cAMP signaling pathway, calcium signaling pathway, Wnt signaling pathway, signaling pathways regulating stem cell pluripotency, and proteoglycans in cancer. Additionally, immune infiltration analysis revealed significant differences in the infiltration of macrophages M0, T cells follicular helper, and plasma cells between the two groups. CONCLUSION We developed a novel independent risk model consisting of 11 E3RGs and verified the effectiveness of this model in test cohorts, providing important insights into survival prediction in COAD and several promising targets for COAD therapy.
Collapse
Affiliation(s)
- Wanju JIang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth Peoples Hospital, Tongji University, Shanghai 200072, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kehui Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Erfanian N, Nasseri S, Miraki Feriz A, Safarpour H, Namaei MH. Characterization of Wnt signaling pathway under treatment of Lactobacillus acidophilus postbiotic in colorectal cancer using an integrated in silico and in vitro analysis. Sci Rep 2023; 13:22988. [PMID: 38151510 PMCID: PMC10752892 DOI: 10.1038/s41598-023-50047-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent and life-threatening cancer closely associated with the gut microbiota. Probiotics, as a vital microbiota group, interact with the host's colonic epithelia and immune cells by releasing a diverse range of metabolites named postbiotics. The present study examined the effects of postbiotics on CRC's prominent differentially expressed genes (DEGs) using in silico and in vitro analysis. Through single-cell RNA sequencing (scRNA-seq), we identified four DEGs in CRC, including secreted frizzled-related protein 1 (SFRP1), secreted frizzled-related protein 2 (SFRP2), secreted frizzled-related protein 4 (SFRP4), and matrix metallopeptidase 7 (MMP7). Enrichment analysis and ExpiMap, a novel deep learning-based method, determined that these DEGs are involved in the Wnt signaling pathway as a primary cascade in CRC. Also, spatial transcriptome analysis showed specific expression patterns of the SFRP2 gene in fibroblast cell type. The expression of selected DEGs was confirmed on CRC and normal adjacent tissues using Real-Time quantitative PCR (RT-qPCR). Moreover, we examined the effects of postbiotics extracted from Lactobacillus acidophilus (L. acidophilus) on the proliferation, migration, and cell cycle distribution of HT-29 cells using MTT, scratch, and flow cytometry assays. Our results showed that L. acidophilus postbiotics induce cell cycle arrest at G1 phase and also had anti-proliferative and anti-migration effects on HT-29 cells, while it did not exert anti-proliferative activity on control fibroblasts. Finally, we revealed that treating HT-29 cells with postbiotics can affect the expression of selected DEGs. We suggested that L. acidophilus postbiotics have therapeutic potential in CRC by modulating key genes in the Wnt pathway.
Collapse
Affiliation(s)
- Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mohammad Hassan Namaei
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
16
|
Chen B, Liu X, Yu P, Xie F, Kwan JSH, Chan WN, Fang C, Zhang J, Cheung AHK, Chow C, Leung GWM, Leung KT, Shi S, Zhang B, Wang S, Xu D, Fu K, Wong CC, Wu WKK, Chan MWY, Tang PMK, Tsang CM, Lo KW, Tse GMK, Yu J, To KF, Kang W. H. pylori-induced NF-κB-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancer-associated fibroblast-mediated tumour microenvironment remodelling. Clin Transl Med 2023; 13:e1481. [PMID: 37983931 PMCID: PMC10659770 DOI: 10.1002/ctm2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common tumours in East Asia countries and is associated with Helicobacter pylori infection. H. pylori utilizes virulence factors, CagA and VacA, to up-regulate pro-inflammatory cytokines and activate NF-κB signaling. Meanwhile, the PIEZO1 upregulation and cancer-associated fibroblast (CAF) enrichment were found in GC progression. However, the mechanisms of PIEZO1 upregulation and its involvement in GC progression have not been fully elucidated. METHODS The CAF enrichment and clinical significance were investigated in animal models and primary samples. The expression of NF-κB and PIEZO1 in GC was confirmed by immunohistochemistry staining, and expression correlation was analysed in multiple GC datasets. GSEA and Western blot analysis revealed the YAP1-CTGF axis regulation by PIEZO1. The stimulatory effects of CTGF on CAFs were validated by the co-culture system and animal studies. Patient-derived organoid and peritoneal dissemination models were employed to confirm the role of the PIEZO1-YAP1-CTGF cascade in GC. RESULTS Both CAF signature and PIEZO1 were positively correlated with H. pylori infection. PIEZO1, a mechanosensor, was confirmed as a direct downstream of NF-κB to promote the transformation from intestinal metaplasia to GC. Mechanistic studies revealed that PIEZO1 transduced the oncogenic signal from NF-κB into YAP1 signaling, a well-documented oncogenic pathway in GC progression. PIEZO1 expression was positively correlated with the YAP1 signature (CTGF, CYR61, and c-Myc, etc.) in primary samples. The secreted CTGF by cancer cells stimulated the CAF infiltration to form a stiffened collagen-enrichment microenvironment, thus activating PIEZO1 to form a positive feedback loop. Both PIEZO1 depletion by shRNA and CTGF inhibition by Procyanidin C1 enhanced the efficacy of 5-FU in suppressing the GC cell peritoneal metastasis. CONCLUSION This study elucidates a novel driving PIEZO1-YAP1-CTGF force, which opens a novel therapeutic avenue to block the transformation from precancerous lesions to GC. H. pylori-NF-κB activates the PIEZO1-YAP1-CTGF axis to remodel the GC microenvironment by promoting CAF infiltration. Targeting PIEZO1-YAP1-CTGF plus chemotherapy might serve as a potential therapeutic option to block GC progression and peritoneal metastasis.
Collapse
|
17
|
Chen H, Zhao T, Fan J, Yu Z, Ge Y, Zhu H, Dong P, Zhang F, Zhang L, Xue X, Lin X. Construction of a prognostic model for colorectal adenocarcinoma based on Zn transport-related genes identified by single-cell sequencing and weighted co-expression network analysis. Front Oncol 2023; 13:1207499. [PMID: 37829346 PMCID: PMC10565862 DOI: 10.3389/fonc.2023.1207499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent malignancies and the third most lethal cancer globally. The most reported histological subtype of CRC is colon adenocarcinoma (COAD). The zinc transport pathway is critically involved in various tumors, and its anti-tumor effect may be through improving immune function. However, the Zn transport pathway in COAD has not been reported. Methods The determination of Zn transport-related genes in COAD was carried out through single-cell analysis of the GSE 161277 obtained from the GEO dataset. Subsequently, a weighted co-expression network analysis of the TCGA cohort was performed. Then, the prognostic model was conducted utilizing univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Functional enrichment, immune microenvironment, and survival analyses were also carried out. Consensus clustering analysis was utilized to verify the validity of the prognostic model and explore the immune microenvironment. Ultimately, cell experiments, including CCK-8,transwell and scratch assays, were performed to identify the function of LRRC59 in COAD. Results According to the Zn transport-related prognostic model, the individuals with COAD in TCGA and GEO databases were classified into high- and low-risk groups. The group with low risk had a comparatively more favorable prognosis. Two groups had significant variations in the immune infiltration, MHC, and the expression of genes related to the immune checkpoint. The cell experiments indicated that the proliferation, migration, and invasion of the HCT-116, DLD-1, and RKO cell lines were considerably increased after LRRC59 knockdown. It proved that LRRC59 was indeed a protective factor for COAD. Conclusion A prognostic model for COAD was developed using zinc transport-related genes. This model can efficiently assess the immune microenvironment and prognosis of individuals with COAD. Subsequently, the function of LRRC59 in COAD was validated via cell experiments, highlighting its potential as a biomarker.
Collapse
Affiliation(s)
- Hua Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Zhao
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianing Fan
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwen Ge
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - He Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|