1
|
Tang Z, Zhang Z, Zhao J, Zhang F, Zhang Y, Wen Y, Li M, Sun J, Shi L, Chen W, Li Z, Guo Z, Liu Y. Integrated analysis of multiple programmed cell death-related prognostic genes and functional validation of apoptosis-related genes in osteosarcoma. Int J Biol Macromol 2025; 307:142113. [PMID: 40089239 DOI: 10.1016/j.ijbiomac.2025.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Osteosarcoma (OS) is one of the most prevalent bone malignancies with a poor prognosis. Various types of programmed cell death patterns can influence cancer progression and response to treatment. We aimed to integrate different molecular characteristics of cell death for risk stratification and personalized therapy. First, we obtained transcriptomic, single-cell transcriptomic, and clinical information from the TARGET-OS and GEO databases as well as analyzed genes in fourteen cell death patterns to establish the cell death index (CDI) signature. A nomogram constructed from the CDI calculated from seven genes in combination with metastasis could effectively predict the prognosis of OS patients. Subsequently, the prognostic value and immune characteristics in CDI-defined subgroups were analyzed. A construct nomogram model was also constructed with clinical information. Notably, immunohistochemistry confirmed that the expression of GALNT14, a core gene in CDI model, correlated with poor survival. Deficiency of the highly expressed prognostic gene GALNT14 significantly repressed OS progression and OS cell proliferation by promoting apoptosis. We subsequently demonstrated that Bortezomib, a targeted inhibitor of GALNT14, can be used to enhance chemosensitivity. Finally, it was further elucidated that Bortezomib reduces MT2A glycosylation and improves its stability to promote apoptosis in OS cells by inhibiting GALNT14 expression. In summary, integration of multiple cell death genes may improve the ability to stratify risk in patients with OS, and targeting GALNT14 with Bortezomib improves chemotherapy sensitivity and induces apoptosis.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China; Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Zhang
- Department of Orthopedic Surgery, Guyuan People's Hospital, Ningxia, China
| | - Jungang Zhao
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yiran Zhang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yanhua Wen
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Miaozhen Li
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jin Sun
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| | - Zheng Guo
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| | - Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
2
|
Wu W, Fu Y, Li H, Xiang Y, Zeng Y, Cai J, Dong Z. GALNT3 in Ischemia-Reperfusion Injury of the Kidney. J Am Soc Nephrol 2025; 36:348-360. [PMID: 39446490 PMCID: PMC11888950 DOI: 10.1681/asn.0000000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Key Points N -acetylgalactosaminyltransferase-3 (GALNT3) was downregulated in both ischemic AKI and cisplatin nephrotoxicity. GALNT3 played a protective role in renal tubular cells, and its downregulation contributed to AKI. Mechanistically, GALNT3 protected kidney tubular cells at least partially through O-glycosylation of EGF receptor. Background Damages to subcellular organelles, such as mitochondria and endoplasmic reticulum, are well recognized in tubular cell injury and death in AKI. However, the changes and involvement of Golgi apparatus are much less known. In this study, we report the regulation and role of N -acetylgalactosaminyltransferase-3 (GALNT3), a key enzyme for protein glycosylation in Golgi apparatus, in AKI. Methods AKI was induced in mice by renal ischemia–reperfusion injury or cisplatin. In vitro , rat kidney proximal tubular cells were subjected to hypoxia/reoxygenation (H/R) injury. To determine the role of GALNT3, its specific inhibitor T3inh-1 was tested in mice, and the effects of GALNT3 overexpression as well as knockdown were examined in the rat renal proximal tubular cells. EGF receptor (EGFR) activation was induced by recombinant EGF or by overexpressing EGFR. Results GALNT3 was significantly decreased in both in vivo and in vitro models of AKI induced by renal ischemia–reperfusion injury and cisplatin. T3Inh-1, a specific GALNT3 inhibitor, exacerbated ischemic AKI and suppressed tubular cell proliferation in mice. Moreover, knockdown of GALNT3 increased apoptosis during H/R treatment in rat renal proximal tubular cells, whereas overexpression of GALNT3 attenuated H/R-induced apoptosis, further supporting a protective role of GALNT3. Mechanistically, GALNT3 contributed to O-glycosylation of EGFR and associated EGFR signaling. Activation or overexpression of EGFR suppressed the proapoptotic effect of GALNT3 knockdown in H/R-treated rat renal proximal tubular cells. Conclusions GALNT3 protected kidney tubular cells in AKI at least partially through O-glycosylation of EGFR.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yuqing Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
- Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
3
|
Lin YH, Yu J, Teng YC, Huang CG, Lim SN, Lai MW, Lin WR. The ZNF717-rs2918520 genotype contributes to COVID-19 severity: a Taiwanese cohort study. BMC Infect Dis 2025; 25:201. [PMID: 39934654 PMCID: PMC11817965 DOI: 10.1186/s12879-025-10551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has been a challenging pandemic since late 2019 and patients with COVID-19-related severe respiratory failure associated with high mortality rates worldwide. Genetic information such as single nucleotide polymorphisms (SNPs) serves as a predictor or prognostic factor in disease development and cancer progression. This study aimed to explore the clinical associations of SNPs with mild and severe COVID-19 symptoms in the Taiwanese population. METHODS SARS-CoV-2-infected patients in pilot cohort study (cohort 1, n = 39) and validation cohort (cohort 2, n = 71) were enrolled. The clinical significance of SNPs in those patients with mild and severe symptoms was investigated by whole exon sequencing, polymerase chain reaction and Sanger sequencing. RESULTS The current study investigated Taiwanese patients with COVID-19. We found that clinical parameters such as age, aspartate aminotransferase, blood urea nitrogen, C-reactive protein, ferritin, and segment were positively associated with severe COVID-19 symptoms but that albumin, lymphocytes, and basophils correlated negatively with severe symptoms in two independent cohorts. By conducting whole-exome sequencing, we identified a novel SNP, ZNF717-rs2918520, the GG genotype of which was significantly associated with severe symptoms in COVID-19 patients. CONCLUSIONS Our findings highlight that the ZNF717-rs2918520 GG genotype may serve as a predictor for evaluating the severity of COVID-19 in Taiwan.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jen Yu
- Department of internal medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chuan Teng
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, 5, Fu-Shin Street, Taoyuan, 333, Taiwan.
| |
Collapse
|
4
|
Wang B, He X, Zhou Y, Tan Z, Li X, Guan F, Lei L. Proximity Labeling-Based Identification of MGAT3 Substrates and Revelation of the Tumor-Suppressive Role of Bisecting GlcNAc in Breast Cancer via GLA Degradation. Cells 2025; 14:103. [PMID: 39851531 PMCID: PMC11764451 DOI: 10.3390/cells14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Glycosylation plays a critical role in various biological processes, yet identifying specific glycosyltransferase substrates remains a challenge due to the complexity of glycosylation. Here, we employ proximity labeling with biotin ligases BASU and TurboID to map the proximitome of MGAT3, a glycosyltransferase responsible for the biosynthesis of the bisecting GlcNAc structure, in HEK293T cells. This approach enriched 116 and 189 proteins, respectively, identifying 17 common substrates shared with bisecting GlcNAc-bearing proteome obtained via intact glycopeptide enrichment methods. Gene ontology analysis revealed that the enriched proteins were predominantly localized in the exosome, endoplasmic reticulum, and Golgi apparatus, consistent with subcellular localization of MGAT3 substrates. Notably, four novel substrates, GOLM2, CCDC134, ASPH, and ERO1A, were confirmed to bear bisecting GlcNAc modification, validating the utility of the proximity labeling method. Furthermore, we observed that bisecting GlcNAc modification inhibits breast cancer progression by promoting the degradation of α-galactosidase A (GLA). These findings demonstrate the efficacy of proximity labeling in identifying glycosyltransferase substrates and provide insights into the functional impact of bisecting GlcNAc modification.
Collapse
Affiliation(s)
- Bowen Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (B.W.); (Y.Z.)
| | - Xin He
- Department of Functional Laboratory, College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China;
| | - Yue Zhou
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (B.W.); (Y.Z.)
| | - Zengqi Tan
- Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (Z.T.); (X.L.)
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (Z.T.); (X.L.)
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (B.W.); (Y.Z.)
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (B.W.); (Y.Z.)
| |
Collapse
|
5
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
6
|
Tang B, Wang K, Ren Q, Zhou J, Xu Y, Liu L, Yin B, Zhang Y, Huang Q, Lv R, Luo Z, Zhao H, Shen L. GALNT14-mediated O-glycosylation drives lung adenocarcinoma progression by reducing endogenous reactive oxygen species generation. Cell Signal 2024; 124:111477. [PMID: 39426495 DOI: 10.1016/j.cellsig.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Aberrant glycosylation, resulting from dysregulated expression of glycosyltransferases, is a prevalent feature of cancer cells. N-acetylgalactosaminyltransferase-14 (GALNT14) serves as a pivotal enzyme responsible for initiating O-GalNAcylation. It remains unclear whether and how GALNT14 affects lung adenocarcinoma (LUAD). Here, GALNT14 expression in LUAD was analyzed by searching public databases and verified by examining clinical samples. Bioinformatics, LC-MS/MS, RNA-seq, and RIP-seq analyses were used to uncover the mechanism underlying GALNT14. We observed that GALNT14 was frequently overexpressed in LUAD tissues. High GALNT14 expression was positively associated with advanced TNM stage, larger tumor size, and unfavorable prognosis. Functionally, GALNT14 facilitated LUAD cell proliferation, migration, and invasion in vitro and accelerated tumor growth in vivo. Mechanistically, GALNT14 reduced the accumulation of endogenous reactive oxygen species (ROS) to exert its oncogenic function via O-glycosylating hnRNPUL1 to upregulate AKR1C2 expression. Meanwhile, GALNT14 expression was directly modulated by miR-125a.These findings indicated that GALNT14-mediated O-GalNAcylation could drive LUAD progression via eliminating ROS and might be a valuable therapeutic target.
Collapse
Affiliation(s)
- Bingbing Tang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Kelong Wang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China
| | - Qiulei Ren
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Junshuo Zhou
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuewen Xu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Liaoyuan Liu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Bin Yin
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yaling Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Qian Huang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ruiqi Lv
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| | - Hongyan Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| |
Collapse
|
7
|
Sun W, Guo L, Ye J, Zhou M, Shu C, Ying X, Liu H, Liu F. Construction and experimental verification of a novel nine-glycosylation-related gene prognostic risk model for clear cell renal carcinoma. Heliyon 2024; 10:e39258. [PMID: 39524749 PMCID: PMC11544054 DOI: 10.1016/j.heliyon.2024.e39258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Patients with clear cell renal carcinoma (ccRCC) typically have poor prognosis. Glycosylation modification plays an important role in ccRCC. This study aimed to develop a novel signature for predicting ccRCC prognosis based on glycosylation-related genes (GRGs). Methods Differentially expressed GRGs (DE_GRGs) were identified using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus and used for constructing the risk model. The function of key genes was validated. Results Twenty-two DE_GRGs were intersected between GSE53757 and TCGA. Patients with ccRCC were divided into two clusters based on the expression profile of these DE_GRGs. Significant differences in the infiltration of 10 immune cell types were observed between two subclusters. Subsequently, the prognostic signatures of nine DE_GRGs (CHST9, COLGALT1, FUT3, FUT6, HS3ST2, POMGNT2, ST8SIA4, UGT3A1, and UGT8) were established. Patients in the high-risk group showed a poorer prognosis relative to the low-risk group. According to univariate and multivariate Cox regression analyses, the risk score, stage, and grade could be independent prognostic factors. A nomogram incorporating information on gender, age, risk group, TNM stage, and clinical stage showed accurate prediction in the survival probability. Except for CHST9, HS3ST2, and ST8SIA4, expression patterns of the remaining 6 DE_GRGs in Caki-1 and 786-O cells were confirmed by quantitative real-time PCR. FUT6 overexpression resulted in the inhibition of proliferation, migration, and invasion of ccRCC cells. Conclusion This study established a nine-DE_GRG-based prognostic signature, which independently predicted ccRCC prognosis. This finding emphasizes that GRGs are stratification factors for the precise prognosis of ccRCC.
Collapse
Affiliation(s)
- Wanlei Sun
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Long Guo
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jianqing Ye
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhou
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Cong Shu
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xin Ying
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Hongliang Liu
- Department of General surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Liu
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| |
Collapse
|
8
|
Xu X, Peng Q, Jiang X, Tan S, Yang W, Han Y, Oyang L, Lin J, Shen M, Wang J, Li H, Xia L, Peng M, Wu N, Tang Y, Wang H, Liao Q, Zhou Y. Altered glycosylation in cancer: molecular functions and therapeutic potential. Cancer Commun (Lond) 2024; 44:1316-1336. [PMID: 39305520 PMCID: PMC11570773 DOI: 10.1002/cac2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 11/19/2024] Open
Abstract
Glycosylation, a key mode of protein modification in living organisms, is critical in regulating various biological functions by influencing protein folding, transportation, and localization. Changes in glycosylation patterns are a significant feature of cancer, are associated with a range of pathological activities in cancer-related processes, and serve as critical biomarkers providing new targets for cancer diagnosis and treatment. Glycoproteins like human epidermal growth factor receptor 2 (HER2) for breast cancer, alpha-fetoprotein (AFP) for liver cancer, carcinoembryonic antigen (CEA) for colon cancer, and prostate-specific antigen (PSA) for prostate cancer are all tumor biomarkers approved for clinical use. Here, we introduce the diversity of glycosylation structures and newly discovered glycosylation substrate-glycosylated RNA (glycoRNA). This article focuses primarily on tumor metastasis, immune evasion, metabolic reprogramming, aberrant ferroptosis responses, and cellular senescence to illustrate the role of glycosylation in cancer. Additionally, we summarize the clinical applications of protein glycosylation in cancer diagnostics, treatment, and multidrug resistance. We envision a promising future for the clinical applications of protein glycosylation.
Collapse
Affiliation(s)
- Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mengzhou Shen
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jiewen Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Haofan Li
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| | - Qianjin Liao
- Department of OncologyHunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP. R. China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| |
Collapse
|
9
|
Poddar MS, Chu YD, Pendharkar G, Liu CH, Yeh CT. Exploring cancer-associated fibroblast-induced resistance to tyrosine kinase inhibitors in hepatoma cells using a liver-on-a-chip model. LAB ON A CHIP 2024; 24:5043-5054. [PMID: 39356081 DOI: 10.1039/d4lc00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Liver cancer is a significant global contributor to cancer-related mortality. Despite available targeted therapies, resistance to tyrosine kinase inhibitors (TKIs) like sorafenib and lenvatinib poses a formidable challenge. The tumor microenvironment (TME), inhabited by cancer-associated fibroblasts (CAFs), profoundly influences this resistance. To uncover the mechanisms, a 3D microfluidic chip replicating liver architecture was fabricated to probe the intricate mechanisms of TKI resistance. The chip design mirrors the hexagonal structure of liver lobules, situating liver cancer cells at the core, encircled by fibroblasts, with rigorous assessments confirming biocompatibility and consistent cell growth. After determining the IC50 values of sorafenib and lenvatinib in 2D co-culture, a transwell setup revealed drug resistance development in co-cultured cells. Within the 3D microfluidic chip, live/dead assays highlighted elevated viability under drug exposure, emphasizing fibroblast-driven drug resistance. The study identifies AHSG and CLEC3B as potential mediators of drug resistance in co-culture, significantly upregulated in the co-cultured medium. Functional tests confirmed their roles, as introducing recombinant AHSG and CLEC3B enhanced liver cancer cell resistance to sorafenib and lenvatinib in both 2D and 3D scenarios. In conclusion, by replicating the complex TME using microfluidic technology, this study sheds light on the roles of AHSG and CLEC3B as well as possible approaches for improving the effectiveness of liver cancer treatment.
Collapse
Affiliation(s)
- Madhu Shree Poddar
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30044, Taiwan, R.O.C..
| | - Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, R.O.C..
| | - Gaurav Pendharkar
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30044, Taiwan, R.O.C..
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, R.O.C..
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, R.O.C
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| |
Collapse
|
10
|
Sun L, Li Z, Shu P, Lu M. N-acetylgalactosaminyltransferase GALNT6 is a potential therapeutic target of clear cell renal cell carcinoma progression. Cancer Sci 2024; 115:3320-3332. [PMID: 39105355 PMCID: PMC11447896 DOI: 10.1111/cas.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
High expression of truncated O-glycans Tn antigen predicts adverse clinical outcome in patients with clear cell renal cell carcinoma (ccRCC). To understand the biosynthetic underpinnings of Tn antigen changes in ccRCC, we focused on N-acetylgalactosaminyltransferases (GALNTs, also known as GalNAcTs) known to be involved in Tn antigen synthesis. Data from GSE15641 profile and local cohort showed that GALNT6 was significantly upregulated in ccRCC tissues. The current study aimed to determine the role of GALNT6 in ccRCC, and whether GALNT6-mediated O-glycosylation aggravates malignant behaviors. Gain- and loss-of-function experiments showed that overexpression of GALNT6 accelerated ccRCC cell proliferation, migration, and invasion, as well as promoted ccRCC-derived xenograft tumor growth and lung metastasis. In line with this, silencing of GALNT6 yielded the opposite results. Mechanically, high expression of GALNT6 led to the accumulation of Tn antigen in ccRCC cells. By undertaking immunoprecipitation coupled with liquid chromatography/mass spectrometry, vicia villosa agglutinin blot, and site-directed mutagenesis assays, we found that O-glycosylation of prohibitin 2 (PHB2) at Ser161 was required for the GALNT6-induced ccRCC cell proliferation, migration, and invasion. Additionally, we identified lens epithelium-derived growth factor (LEDGF) as a key regulator of GALNT6 transcriptional induction in ccRCC growth and an upstream contributor to ccRCC aggressive behavior. Collectively, our findings indicate that GALNT6-mediated abnormal O-glycosylation promotes ccRCC progression, which provides a potential therapeutic target in ccRCC development.
Collapse
Affiliation(s)
- Luhaoran Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zeyu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Shu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Min Lu
- Department of Colorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Shu T, Zhang Y, Sun T, Zhu Y. Polypeptide N-Acetylgalactosaminyl transferase 14 is a novel mediator in pancreatic β-cell function and growth. Mol Cell Endocrinol 2024; 591:112269. [PMID: 38763428 DOI: 10.1016/j.mce.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic β cells and regulates β cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in β cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating β cells biology, providing a missing link of β cells O-glycosylation to diabetes development.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Central Laboratory, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
12
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
13
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
14
|
Chien H, Chu YD, Hsu YP, Yeh CT, Lai MW, Chang ML, Lim SN, Chen CW, Lin WR. An SNP Marker Predicts Colorectal Cancer Outcomes with 5-Fluorouracil-Based Adjuvant Chemotherapy Post-Resection. Int J Mol Sci 2024; 25:6642. [PMID: 38928347 PMCID: PMC11203489 DOI: 10.3390/ijms25126642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) is a global health concern, necessitating adjuvant chemotherapy post-curative surgery to mitigate recurrence and enhance survival, particularly in intermediate-stage patients. However, existing therapeutic disparities highlight the need for biomarker-guided adjuvant chemotherapy to achieve better CRC inhibition. This study explores the molecular mechanisms underlying the inhibition of CRC through a genome-wide association study (GWAS) focused on 5-fluorouracil (5-FU)-based adjuvant therapy in intermediate-stage CRC patients, a domain previously unexplored. We retrospectively included 226 intermediate-stage CRC patients undergoing surgical resection followed by 5-FU-based adjuvant chemotherapy. The exploration cohort comprised 31 patients, and the validation cohort included 195 individuals. Genotyping was carried out using either Axiom Genome-Wide TWB 2.0 Array Plate-based or polymerase chain reaction-based methods on genomic DNA derived from collected tissue samples. Statistical analyses involved descriptive statistics, Kaplan-Meier analyses, and Cox proportional hazard analyses. From the GWAS, potential genetic predictors, GALNT14-rs62139523 and DNMBP-rs10786578 genotypes, of 5-FU-based adjuvant therapy following surgery in intermediate-stage CRC patients were identified. Validation in a larger cohort of 195 patients emphasized the predictive significance of GALNT14-rs62139523 genotypes, especially the "A/G" genotype, for improved overall and progression-free survival. This predictive association remained robust across various subgroups, with exceptions for specific demographic and clinical parameters such as age < 58 years old, CEA ≤ 2.5 ng/mL, tumor diameter > 44.0 mm, and tumor-free margin ≥ 50 mm. This study identifies that the GALNT14-rs62139523 "A/G" genotype modulates therapeutic outcomes, establishing it as a promising biomarker for predicting favorable responses to 5-FU-based adjuvant chemotherapy in intermediate-stage CRC patients, although further investigations are needed to detail these mechanisms.
Collapse
Affiliation(s)
- Hao Chien
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (H.C.); (C.-T.Y.); (M.-L.C.)
| | - Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (Y.-D.C.); (Y.-P.H.); (M.-W.L.)
| | - Yi-Ping Hsu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (Y.-D.C.); (Y.-P.H.); (M.-W.L.)
| | - Chau-Ting Yeh
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (H.C.); (C.-T.Y.); (M.-L.C.)
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (Y.-D.C.); (Y.-P.H.); (M.-W.L.)
- Institute of Stem Cell and Translational Cancer Research, Linkou Chang Gung Memorial Hospital, Taoyuan 333323, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (Y.-D.C.); (Y.-P.H.); (M.-W.L.)
- Division of Pediatric Gastroenterology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Ming-Ling Chang
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (H.C.); (C.-T.Y.); (M.-L.C.)
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (Y.-D.C.); (Y.-P.H.); (M.-W.L.)
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Chun-Wei Chen
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (H.C.); (C.-T.Y.); (M.-L.C.)
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (Y.-D.C.); (Y.-P.H.); (M.-W.L.)
| | - Wey-Ran Lin
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (H.C.); (C.-T.Y.); (M.-L.C.)
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (Y.-D.C.); (Y.-P.H.); (M.-W.L.)
| |
Collapse
|
15
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
16
|
Zhang B, Li W, Cao J, Zhou Y, Yuan X. Prohibitin 2: A key regulator of cell function. Life Sci 2024; 338:122371. [PMID: 38142736 DOI: 10.1016/j.lfs.2023.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The PHB2 gene is located on chromosome 12p13 and encodes prohibitin 2, a highly conserved protein of 37 kDa. PHB2 is a dimer with antiparallel coils, possessing a unique negatively charged region crucial for its mitochondrial molecular chaperone functions. Thus, PHB2 plays a significant role in cell life activities such as mitosis, mitochondrial autophagy, signal transduction, and cell death. This review discusses how PHB2 inhibits transcription factors or nuclear receptors to maintain normal cell functions; how PHB2 in the cytoplasm or membrane ensures normal cell mitosis and regulates cell differentiation; how PHB2 affects mitochondrial structure, function, and cell apoptosis through mitochondrial intimal integrity and mitochondrial autophagy; how PHB2 affects mitochondrial stress and inhibits cell apoptosis by regulating cytochrome c migration and other pathways; how PHB2 affects cell growth, proliferation, and metastasis through a mitochondrial independent mechanism; and how PHB2 could be applied in disease treatment. We provide a theoretical basis and an innovative perspective for a comprehensive understanding of the role and mechanism of PHB2 in cell function regulation.
Collapse
Affiliation(s)
- Bingjie Zhang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
17
|
Zhan S, Qiu M, Wei X, Wei J, Qin L, Jiang B, Wen Q, Chen P, Lin Q, Wei X, Zhou Z, Jiang Y, Liang X, Li R, Liu Y, Yu H. Potentially functional genetic variants in ferroptosis-related CREB3 and GALNT14 genes predict survival of hepatitis B virus-related hepatocellular carcinoma. Cancer Med 2024; 13:e6848. [PMID: 38151984 PMCID: PMC10807646 DOI: 10.1002/cam4.6848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a known crucial player in the development of cancers. However, the effect of single nucleotide polymorphisms (SNPs) in ferroptosis-related genes on survival in hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) patients remains unknown. METHODS We used two-stage multivariable Cox proportional hazards regression analyses to estimate the associations between 48,774 SNPs in 480 ferroptosis-related genes and overall survival (OS) of 866 HBV-HCC patients. RESULTS We identified that two potentially functional SNPs (CREB3 rs10814274 C > T and GALNT14 rs17010547 T > C) were significantly independently associated with the OS of HBV-HCC patients (CT + TT verse CC, hazards ratio (HR) = 0.77, 95% confidence interval (CI) = 0.67-0.89, p < 0.001 for rs10814274 and TC + CC verse TT, HR = 0.66, 95% CI = 0.53-0.82, p < 0.001 for rs17010547, respectively). Additional joint assessment of protective genotypes of these two SNPs showed that patients with 1-2 protective genotypes had a significantly better OS compared with those carrying 0 protective genotypes (HR = 0.56, 95% CI = 0.45-0.70, p < 0.001). Moreover, the expression quantitative trait loci (eQTL) analysis revealed that the survival-associated SNP rs10814274 T allele was significantly correlated with reduced CREB3 transcript levels in both normal liver tissues and whole blood cells, while the GALNT14 rs17010547 C allele had a significant correlation with increased GALNT14 transcript levels in whole blood cells. CONCLUSION These results suggest that genetic variants of CREB3 and GALNT14 may affect the survival of HBV-HCC patients, likely via transcriptional regulation of respective genes. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Shicheng Zhan
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Moqin Qiu
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningChina
| | - Xueyan Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Junjie Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Liming Qin
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Binbin Jiang
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuping Wen
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Peiqin Chen
- Editorial Department of Chinese Journal of Oncology Prevention and TreatmentGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuling Lin
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Xiaoxia Wei
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Zihan Zhou
- Department of Cancer Prevention and ControlGuangxi Medical University Cancer HospitalNanningChina
| | - Yanji Jiang
- Scientific Research DepartmentGuangxi Medical University Cancer HospitalNanningChina
| | - Xiumei Liang
- Department of Disease Process ManagementGuangxi Medical University Cancer HospitalNanningChina
| | - Runwei Li
- Department of Civil Engineering, College of EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Yingchun Liu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
| | - Hongping Yu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
18
|
Chu YD, Cheng LC, Lim SN, Lai MW, Yeh CT, Lin WR. Aldolase B-driven lactagenesis and CEACAM6 activation promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect. Cell Death Dis 2023; 14:660. [PMID: 37816733 PMCID: PMC10564793 DOI: 10.1038/s41419-023-06187-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy worldwide and is associated with a high mortality rate. Changes in bioenergy metabolism, such as the Warburg effect, are often observed in CRC. Aldolase B (ALDOB) has been identified as a potential regulator of these changes, but its exact role in CRC cell behavior and bioenergetic homeostasis is not fully understood. To investigate this, two cohorts of CRC patients were analyzed independently. The results showed that higher ALDOB expression was linked to unfavorable prognosis, increased circulating carcinoembryonic antigen (CEA) levels, and altered bioenergetics in CRC. Further analysis using cell-based assays demonstrated that ALDOB promoted cell proliferation, chemoresistance, and increased expression of CEA in CRC cells. The activation of pyruvate dehydrogenase kinase-1 (PDK1) by ALDOB-induced lactagenesis and secretion, which in turn mediated the effects on CEA expression. Secreted lactate was found to enhance lactate dehydrogenase B (LDHB) expression in adjacent cells and to be a crucial modulator of ALDOB-mediated phenotypes. Additionally, the effect of ALDOB on CEA expression was downstream of the bioenergetic changes mediated by secreted lactate. The study also identified CEA cell adhesion molecule-6 (CEACAM6) as a downstream effector of ALDOB that controlled CRC cell proliferation and chemoresistance. Notably, CEACAM6 activation was shown to enhance protein stability through lysine lactylation, downstream of ALDOB-mediated lactagenesis. The ALDOB/PDK1/lactate/CEACAM6 axis plays an essential role in CRC cell behavior and bioenergetic homeostasis, providing new insights into the involvement of CEACAM6 in CRC and the Warburg effect. These findings may lead to the development of new treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Division of Pediatric Gastroenterology Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| |
Collapse
|
19
|
Ma X, Tao Z, Chen L, Duan S, Zhou G, Ma Y, Xiong Z, Zhu L, Ma X, Mao Y, Hu Y, Zeng N, Wang J, Bao Y, Luo F, Wu C, Jiang F. Genetic analysis of potential biomarkers and therapeutic targets associated with ferroptosis from bronchopulmonary dysplasia. Medicine (Baltimore) 2023; 102:e34371. [PMID: 37478211 PMCID: PMC10662800 DOI: 10.1097/md.0000000000034371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
Ferroptosis is a recently identified form of cell death that is distinct from the conventional modes such as necrosis, apoptosis, and autophagy. Its role in bronchopulmonary dysplasia (BPD) remains inadequately understood. To address this gap, we obtained BPD-related RNA-seq data and ferroptosis-related genes (FRGs) from the GEO database and FerrDb, respectively. A total of 171 BPD-related differentially expressed ferroptosis-related genes (DE-FRGs) linked to the regulation of autophagy and immune response were identified. Least absolute shrinkage and selection operator and SVM-RFE algorithms identified 23 and 14 genes, respectively, as marker genes. The intersection of these 2 sets yielded 9 genes (ALOX12B, NR1D1, LGMN, IFNA21, MEG3, AKR1C1, CA9, ABCC5, and GALNT14) with acceptable diagnostic capacity. The results of the functional enrichment analysis indicated that these identified marker genes may be involved in the pathogenesis of BPD through the regulation of immune response, cell cycle, and BPD-related pathways. Additionally, we identified 29 drugs that target 5 of the marker genes, which could have potential therapeutic implications. The ceRNA network we constructed revealed a complex regulatory network based on the marker genes, further highlighting their potential roles in BPD. Our findings offer diagnostic potential and insight into the mechanism underlying BPD. Further research is needed to assess its clinical utility.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Ziyu Tao
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Leiming Chen
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shaozhi Duan
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Guoping Zhou
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Yunxia Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Zhenqin Xiong
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Lan Zhu
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Xuejiao Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Yan Mao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ni Zeng
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fei Luo
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
20
|
Zheng Y, Gao K, Gao Q, Zhang S. Glycoproteomic contributions to hepatocellular carcinoma research: a 2023 update. Expert Rev Proteomics 2023; 20:211-220. [PMID: 37882248 DOI: 10.1080/14789450.2023.2265064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) represents a significant burden globally, which ranks sixth among the most frequently diagnosed cancers and stands as the third leading cause of cancer-related mortality. Glycoproteomics, as an important branch of proteomics, has already made significant achievements in the field of HCC research. Aberrant protein glycosylation has shown to promote the malignant transformation of hepatocytes by modulating a wide range of tumor-promoting signaling pathways. The glycoproteome provides valuable information for understanding cancer progression, tumor immunity, and clinical outcome, which could serve as potential diagnostic, prognostic, and therapeutic tools in HCC. AREAS COVERED In this review, recent advances of glycoproteomics contribute to clinical applications (diagnosis and prognosis) and molecular mechanisms (hepatocarcinogenesis, progression, stemness and recurrence, and drug resistance) of HCC are summarized. EXPERT OPINION Glycoproteomics shows promise in HCC, enhancing early detection, risk stratification, and personalized treatments. Challenges include sample heterogeneity, diverse glycans structures, sensitivity issues, complex workflows, limited databases, and incomplete understanding of immune cell glycosylation. Addressing these limitations requires collaborative efforts, technological advancements, standardization, and validation studies. Future research should focus on targeting abnormal protein glycosylation therapeutically. Advancements in glycobiomarkers and glycosylation-targeted therapies will greatly impact HCC diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yingqi Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
21
|
Cheng Z, Huang H, Li M, Liang X, Tan Y, Chen Y. Lactylation-Related Gene Signature Effectively Predicts Prognosis and Treatment Responsiveness in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2023; 16:ph16050644. [PMID: 37242427 DOI: 10.3390/ph16050644] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor associated with high morbidity and mortality. Therefore, it is of great importance to develop effective prognostic models and guide clinical treatment in HCC. Protein lactylation is found in HCC tumors and is associated with HCC progression. METHODS The expression levels of lactylation-related genes were identified from the TCGA database. A lactylation-related gene signature was constructed using LASSO regression. The prognostic value of the model was assessed and further validated in the ICGC cohort, with the patients split into two groups based on risk score. Glycolysis and immune pathways, treatment responsiveness, and the mutation of signature genes were analyzed. The correlation between PKM2 expression and the clinical characteristics was investigated. RESULTS Sixteen prognostic differentially expressed lactylation-related genes were identified. An 8-gene signature was constructed and validated. Patients with higher risk scores had poorer clinical outcomes. The two groups were different in immune cell abundance. The high-risk group patients were more sensitive to most chemical drugs and sorafenib, while the low-risk group patients were more sensitive to some targeted drugs such as lapatinib and FH535. Moreover, the low-risk group had a higher TIDE score and was more sensitive to immunotherapy. PKM2 expression correlated with clinical characteristics and immune cell abundance in the HCC samples. CONCLUSIONS The lactylation-related model exhibited robust predictive efficiency in HCC. The glycolysis pathway was enriched in the HCC tumor samples. A low-risk score indicated better treatment response to most targeted drugs and immunotherapy. The lactylation-related gene signature could be used as a biomarker for the effective clinical treatment of HCC.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huichao Huang
- Department of Infectious Disease, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xujun Liang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuying Tan
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
22
|
Chen X, Lei W, Meng H, Jiang Y, Zhang S, Chen H, Du M, Xue X. Succinylation modification provides new insights for the treatment of immunocompromised individuals with drug-resistant Aspergillus fumigatus infection. Front Immunol 2023; 14:1161642. [PMID: 37138872 PMCID: PMC10150703 DOI: 10.3389/fimmu.2023.1161642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Invasive Aspergillus fumigatus infection poses a serious threat to global human health, especially to immunocompromised individuals. Currently, triazole drugs are the most commonly used antifungals for aspergillosis. However, owing to the emergence of drug-resistant strains, the effect of triazole drugs is greatly restricted, resulting in a mortality rate as high as 80%. Succinylation, a novel post-translational modification, is attracting increasing interest, although its biological function in triazole resistance remains unclear. In this study, we initiated the screening of lysine succinylation in A. fumigatus. We discovered that some of the succinylation sites differed significantly among strains with unequal itraconazole (ITR) resistance. Bioinformatics analysis showed that the succinylated proteins are involved in a broad range of cellular functions with diverse subcellular localizations, the most notable of which is cell metabolism. Further antifungal sensitivity tests confirmed the synergistic fungicidal effects of dessuccinylase inhibitor nicotinamide (NAM) on ITR-resistant A. fumigatus. In vivo experiments revealed that treatment with NAM alone or in combination with ITR significantly increased the survival of neutropenic mice infected with A. fumigatus. In vitro experiments showed that NAM enhanced the killing effect of THP-1 macrophages on A. fumigatus conidia. Our results suggest that lysine succinylation plays an indispensable role in ITR resistance of A. fumigatus. Dessuccinylase inhibitor NAM alone or in combination with ITR exerted good effects against A. fumigatus infection in terms of synergistic fungicidal effect and enhancing macrophage killing effect. These results provide mechanistic insights that will aid in the treatment of ITR-resistant fungal infections.
Collapse
Affiliation(s)
- Xianzhen Chen
- Institute of Dermatology, Naval Medical University, Shanghai, China
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenzhi Lei
- Institute of Dermatology, Naval Medical University, Shanghai, China
| | - Hui Meng
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Yi Jiang
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Sanli Zhang
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Mingwei Du
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| |
Collapse
|