1
|
Liu B, Yao X, Huang Q, Shi Z, Wei J, Li S, Li M, Chen X, Dai J. Sodium fluoride promotes myopia progression via the activation of the ferroptosis pathway by PIEZO1 and pharmacological targeting PIEZO1 represents an innovative approach for myopia treatment. Cell Biol Toxicol 2025; 41:64. [PMID: 40175653 PMCID: PMC11965261 DOI: 10.1007/s10565-025-10020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Sodium fluoride-induced ocular damage constitutes a significant public health concern globally; however, the precise molecular mechanisms underlying this issue remain obscure. This study aims to investigate the effects of sodium fluoride on myopia and to offer novel theoretical foundations for future strategies in myopia prevention and control. The experimental data showed that sodium fluoride could promote myopia progression, and through bioinformatics analysis, we found that sodium fluoride could affect the ferroptosis pathway. Western blotting and redox kit assays further confirmed that sodium fluoride activates the ferroptosis pathway. We also demonstrated that PIEZO1 plays a crucial role in sodium fluoride-induced myopia, and that the PIEZO1 inhibitor (GsMTx4) can inhibit the ferroptosis pathway. Subsequently, we identified PIEZO1 as a potential target of baicalin, which inhibited PIEZO1 expression in vivo and in vitro, as confirmed by molecular docking modeling and CETSA assays. Finally, we found that baicalin inhibited sodium fluoride-induced myopia via PIEZO1. Taken together, our findings indicate that sodium fluoride can promote myopia progression by activating the ferroptosis pathway through PIEZO1, and that targeting PIEZO1 expression can delay myopia progression, which may provide a new drug target for myopia treatment in the future.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinying Huang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zehui Shi
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinfei Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shijia Li
- Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiuping Chen
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
2
|
He J, Yin L, Yuan Q, Su X, Shen Y, Deng Z. DCC-2036 inhibits osteosarcoma via targeting HCK and the PI3K/AKT-mTORC1 axis to promote autophagy. World J Surg Oncol 2025; 23:115. [PMID: 40176057 PMCID: PMC11963706 DOI: 10.1186/s12957-025-03778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Osteosarcoma is a common bone tumor in adolescents and children, characterized by rapid progression, high malignancy, poor prognosis, and a tendency for pulmonary metastasis. Despite extensive research efforts, the specific driver gene associated with osteosarcoma remains unidentified, underscoring the urgent need for novel therapeutic targets and targeted treatment options. METHODS In vitro studies were conducted to assess the effects of DCC-2036 on the proliferation, migration, and invasion of osteosarcoma (OS) cell lines, employing cloning and Transwell experiments. Network pharmacological analysis, complemented by in vitro experimental validation, indicated the critical target responsible for the inhibitory effects of DCC-2036. RNA sequencing analysis demonstrated that DCC-2036 could induce autophagy in OS cells, with relative protein levels assessed using Western blotting following treatment with the autophagy inhibitor 3-MA and the mTOR agonist MHY1485. In vivo studies further confirmed the role of DCC-2036 in cell proliferation through subcutaneous tumorigenesis. RESULTS In this study, we demonstrated that the small molecule tyrosine kinase inhibitor DCC-2036 effectively inhibited osteosarcoma (OS) cells in both cellular and animal models. We found that DCC-2036 significantly suppressed the proliferation of osteosarcoma cells and induced apoptosis; additionally, it notably inhibited cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). HCK was identified as the key target mediating the effects of DCC-2036 on osteosarcoma. Mechanistically, DCC-2036 was shown to inhibit the expression of phosphorylated AKT (p-AKT), phosphorylated S6 kinase (p-S6K), and phosphorylated 4E-binding protein 1 (p-4EBP1) within the downstream PI3K/AKT/mTORC1 signaling pathway. Furthermore, in vivo experiments utilizing subcutaneous tumor xenografts in mice demonstrated that DCC-2036 effectively inhibited the growth of xenografted 143B cells in BALB/C-nude mice. CONCLUSIONS Collectively, these findings indicate that DCC-2036 promotes autophagy in osteosarcoma (OS) cells by targeting the HCK/AKT/mTORC1 axis and exerts anti-tumor effects without significant toxicity. Consequently, DCC-2036 emerges as a promising therapeutic agent for the treatment of HCK-overexpressing osteosarcoma.
Collapse
Affiliation(s)
- Jun He
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400072, PR China
- The Nanhua Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Liyang Yin
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Qiong Yuan
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Xiaotao Su
- The Nanhua Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yingying Shen
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China.
| | - Zhongliang Deng
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400072, PR China.
| |
Collapse
|
3
|
Liu W, Cui Z, Wan Q, Liu Y, Chen M, Cheng Y, Sang X, Su Y, Gu S, Li C, Liu C, Chen S, Wang Z, Wang X. The BET inhibitor JQ1 suppresses tumor survival by ABCB5-mediated autophagy in uveal melanoma. Cell Signal 2024; 125:111483. [PMID: 39442901 DOI: 10.1016/j.cellsig.2024.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Uveal melanoma (UM), the most common adult ocular tumor, is aggressive and resistant to treatment, posing threat to patients' lives. The novel, effective therapies and the exploration of chemosensitizer for UM are imperative. The anticancer efficacy was evaluated with and without JQ1 treatment or ABCB5 gene silencing or overexpression. RNA sequencing identified downstream effectors in JQ1-treated cells. Integrated analysis of The Cancer Genome Atlas data (TCGA) and immunohistochemistry (IHC) revealed the oncogenic role of ABCB5. Functional analyses of JQ1 and defective ABCB5 were conducted using flow cytometry, transmission electron microscopy (TEM), IHC and western blot. The effects of JQ1 were validated in a heterotopic tumor model derived from OCM-1 cells. JQ1 inhibited cell proliferation, migration and invasion, induced cell cycle arrest and promoted apoptosis. JQ1 also suppressed the survival of UM in heterotopic tumor model. RNA sequencing indicated that JQ1 down-regulated the expressions of ABCB5 and autophagy-related genes, which was confirmed in vitro and in vivo by western blot. ABCB5, a marker associated with cancer stem cells and chemo-resistance, exhibited heightened expression in UM tissues, linked to immune infiltration. Notably, disrupting ABCB5 expression impeded UM cell proliferation and interfered with autophagy. Moreover, the overexpression of ABCB5 promoted cell proliferation, migration and invasion, and rescued autophagy related gene expression. Of note, JQ1 enhanced the sensitivity of OCM-1 cells to chemotherapy. Thus JQ1 inhibits UM survival via ABCB5-mediated autophagy and enhances chemo-sensitivity, suggesting potential for BET-based approaches in UM clinical management.
Collapse
Affiliation(s)
- Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Minghao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Simin Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shuxia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Pathology Department, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
4
|
Liu B, Yao X, Huang Q, Fan Y, Yu B, Wang J, Wu W, Dai J. STAT6/LINC01637 axis regulates tumor growth via autophagy and pharmacological targeting STAT6 as a novel strategy for uveal melanoma. Cell Death Dis 2024; 15:713. [PMID: 39353898 PMCID: PMC11445459 DOI: 10.1038/s41419-024-07115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Compelling evidence has revealed a novel function of the STAT pathway in the pathophysiology of uveal melanoma (UM); however, its regulatory mechanisms remain unclear. Here, we analyzed the clinical prognostic value of STAT family genes in UM patients using bioinformatics approaches and found that high STAT6 expression is associated with poor prognosis. Furthermore, cellular experiments and a nude mouse model demonstrated that STAT6 promotes UM progression through the autophagy pathway both in vivo and in vitro. Next, RIP-PCR revealed that STAT6 protein binds to LINC01637 mRNA, which in turn regulates STAT6 expression to promote UM growth. Finally, molecular docking indicated that STAT6 is a target of Zoledronic Acid, which can delay UM tumorigenicity by inhibiting STAT6 expression. Taken together, our results indicate that the STAT6/LINC01637 axis promotes UM progression via autophagy and may serve as a potential therapeutic target for UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinying Huang
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yichao Fan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bo Yu
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jing Wang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
5
|
La Manna S, Cugudda A, Mercurio FA, Leone M, Fortuna S, Di Natale C, Lagreca E, Netti PA, Panzetta V, Marasco D. PEGylated SOCS3 Mimetics Encapsulated into PLGA-NPs as Selective Inhibitors of JAK/STAT Pathway in TNBC Cells. Int J Nanomedicine 2024; 19:7237-7251. [PMID: 39050870 PMCID: PMC11268778 DOI: 10.2147/ijn.s441205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction SOCS3 (suppressor of cytokine signaling 3) protein is a crucial regulator of cytokine-induced inflammation, and its administration has been shown to have therapeutic effects. Recently, we designed a chimeric proteomimetic of SOCS3, mimicking the interfacing regions of a ternary complex composed of SOCS3, JAK2 (Janus kinase 2) and gp130 (glycoprotein 130) proteins. The derived chimeric peptide, KIRCONG chim, demonstrated limited mimetic function owing to its poor water solubility. Methods We report investigations concerning a PEGylated variant of KIRCONG mimetic, named KIRCONG chim, bearing a PEG (Polyethylene glycol) moiety as a linker of noncontiguous SOCS3 regions. Its ability to bind to the catalytic domain of JAK2 was evaluated through MST (MicroScale Thermophoresis), as well as its stability in biological serum assays. The structural features of the cyclic compounds were investigated by CD (circular dichroism), nuclear magnetic resonance (NMR), and molecular dynamic (MD) studies. To evaluate the cellular effects, we employed a PLGA-nanoparticle as a delivery system after characterization using DLS and SEM techniques. Results KIRCONG chim PEG-revealed selective penetration into triple-negative breast cancer (TNBC) MDA-MB-231 cells with respect to the human breast epithelial cell line (MCF10A), acting as a potent inhibitor of STAT3 phosphorylation. Discussion Overall, the data indicated that miniaturization of the SOCS3 protein is a promising therapeutic approach for aberrant dysregulation of JAK/STAT during cancer progression.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | - Alessia Cugudda
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), Naples, 80131, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, 16152, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Elena Lagreca
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Valeria Panzetta
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
6
|
Liu B, Yao X, Shang Y, Dai J. The multiple roles of autophagy in uveal melanoma and the microenvironment. J Cancer Res Clin Oncol 2024; 150:121. [PMID: 38467935 PMCID: PMC10927889 DOI: 10.1007/s00432-023-05576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults, and effective clinical treatment strategies are still lacking. Autophagy is a lysosome-dependent degradation system that can encapsulate abnormal proteins, damaged organelles. However, dysfunctional autophagy has multiple types and plays a complex role in tumorigenicity depending on many factors, such as tumor stage, microenvironment, signaling pathway activation, and application of autophagic drugs. METHODS A systematic review of the literature was conducted to analyze the role of autophagy in UM, as well as describing the development of autophagic drugs and the link between autophagy and the tumor microenvironment. RESULTS In this review, we summarize current research advances regarding the types of autophagy, the mechanisms of autophagy, the application of autophagy inhibitors or agonists, autophagy and the tumor microenvironment. Finally, we also discuss the relationship between autophagy and UM. CONCLUSION Understanding the molecular mechanisms of how autophagy differentially affects tumor progression may help to design better therapeutic regimens to prevent and treat UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Wang JZ, Paulus P, Niu Y, Zhu L, Morisseau C, Rawling T, Murray M, Hammock BD, Zhou F. The Role of Autophagy in Human Uveal Melanoma and the Development of Potential Disease Biomarkers and Novel Therapeutic Paradigms. Biomedicines 2024; 12:462. [PMID: 38398064 PMCID: PMC10886749 DOI: 10.3390/biomedicines12020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Autophagy is a form of programmed cell degradation that enables the maintenance of homeostasis in response to extracellular stress stimuli. Autophagy is primarily activated by starvation and mediates the degradation, removal, or recycling of cell cytoplasm, organelles, and intracellular components in eukaryotic cells. Autophagy is also involved in the pathogenesis of human diseases, including several cancers. Human uveal melanoma (UM) is the primary intraocular malignancy in adults and has an extremely poor prognosis; at present there are no effective therapies. Several studies have suggested that autophagy is important in UM. By understanding the mechanisms of activation of autophagy in UM it may be possible to develop biomarkers to provide more definitive disease prognoses and to identify potential drug targets for the development of new therapeutic strategies. This article reviews the current information regarding autophagy in UM that could facilitate biomarker and drug development.
Collapse
Affiliation(s)
- Janney Z. Wang
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paus Paulus
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yihe Niu
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA (B.D.H.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Michael Murray
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA (B.D.H.)
| | - Fanfan Zhou
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Hiramatsu H, Yokomori R, Shengyi L, Tanaka N, Mori S, Kiyotani K, Gotoh O, Kusumoto S, Nakano N, Suehiro Y, Ito A, Choi I, Ohtsuka E, Hidaka M, Nosaka K, Yoshimitsu M, Imaizumi Y, Iida S, Utsunomiya A, Noda T, Nishikawa H, Ueda R, Sanda T, Ishida T. Clinical landscape of TP73 structural variants in ATL patients. Leukemia 2023; 37:2502-2506. [PMID: 37864123 PMCID: PMC10681890 DOI: 10.1038/s41375-023-02059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Hiroaki Hiramatsu
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Liu Shengyi
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Tanaka
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Youko Suehiro
- Department of Hematology, National Hospital Organization Kyushu Cancer Centre, Fukuoka, Japan
- Department of Cell Therapy, National Hospital Organization Kyushu Cancer Centre, Fukuoka, Japan
| | - Asahi Ito
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ilseung Choi
- Department of Hematology, National Hospital Organization Kyushu Cancer Centre, Fukuoka, Japan
| | - Eiichi Ohtsuka
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| | - Michihiro Hidaka
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Nagasaki University Hospital, Nagasakin, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Tetsuo Noda
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Ryuzo Ueda
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Takashi Ishida
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
9
|
Jin W, Wu L, Hu L, Fu Y, Fan Z, Mou Y, Ma K. Multi-omics approaches identify novel prognostic biomarkers of autophagy in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:16691-16703. [PMID: 37725244 DOI: 10.1007/s00432-023-05401-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Uveal melanoma (UVM) is a rare yet malignant ocular tumor that metastases in approximately half of all patients, with the majority of those developing metastasis typically succumbing to the disease within a year. Hitherto, no effective treatment for UVM has been identified. Autophagy is a cellular mechanism that has been suggested as an emerging regulatory process for cancer-targeted therapy. Thus, identifying novel prognostic biomarkers of autophagy may help improve future treatment. METHODS Consensus clustering and similarity network fusion approaches were performed for classifying UVM patient subgroups. Weighted correlation network analysis was performed for gene module screening and network construction. Gene set variation analysis was used to evaluate the autophagy activity of the UVM subgroups. Kaplan-Meier survival curves (Log-rank test) were performed to analyze patient prognosis. Gene set cancer analysis was used to estimate the level of immune cell infiltration. RESULTS In this study, we employed multi-omics approaches to classify UVM patient subgroups by molecular and clinical characteristics, ultimately identifying HTR2B, EEF1A2, FEZ1, GRID1, HAP1, and SPHK1 as potential prognostic biomarkers of autophagy in UVM. High expression levels of these markers were associated with poorer patient prognosis and led to reshaping the tumor microenvironment (TME) that promotes tumor progression. CONCLUSION We identified six novel potential prognostic biomarkers in UVM, all of which are associated with autophagy and TME. These findings will shed new light on UVM therapy with inhibitors targeting these biomarkers expected to regulate autophagy and reshape the TME, significantly improving UVM treatment outcomes.
Collapse
Affiliation(s)
- Wenke Jin
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lifeng Wu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Hu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuqi Fu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhichao Fan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Mou
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ke Ma
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Adir O, Sagi-Assif O, Meshel T, Ben-Menachem S, Pasmanik-Chor M, Hoon DSB, Witz IP, Izraely S. Heterogeneity in the Metastatic Microenvironment: JunB-Expressing Microglia Cells as Potential Drivers of Melanoma Brain Metastasis Progression. Cancers (Basel) 2023; 15:4979. [PMID: 37894348 PMCID: PMC10605008 DOI: 10.3390/cancers15204979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.
Collapse
Affiliation(s)
- Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| |
Collapse
|
11
|
Jerin S, Harvey AJ, Lewis A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers (Basel) 2023; 15:3703. [PMID: 37509364 PMCID: PMC10377740 DOI: 10.3390/cancers15143703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
PTK6, a non-receptor tyrosine kinase, modulates the pathogenesis of breast and prostate cancers and is recognized as a biomarker of breast cancer prognosis. There are over 30 known substrates of PTK6, including signal transducers, transcription factors, and RNA-binding proteins. Many of these substrates are known drivers of other cancer types, such as colorectal cancer. Colon and rectal tumors also express higher levels of PTK6 than the normal intestine suggesting a potential role in tumorigenesis. However, the importance of PTK6 in colorectal cancer remains unclear. PTK6 inhibitors such as XMU-MP-2 and Tilfrinib have demonstrated potency and selectivity in breast cancer cells when used in combination with chemotherapy, indicating the potential for PTK6 targeted therapy in cancer. However, most of these inhibitors are yet to be tested in other cancer types. Here, we discuss the current understanding of the function of PTK6 in normal intestinal cells compared with colorectal cancer cells. We review existing PTK6 targeting therapeutics and explore the possibility of PTK6 inhibitory therapy for colorectal cancer.
Collapse
Affiliation(s)
- Samanta Jerin
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amanda J Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK
| | - Annabelle Lewis
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|