1
|
Jiaming Y, Haishen Z, Shi X, Yubing W, Jiaqing Z. Clinical difference between solitary and multiple pulmonary adenocarcinoma nodules. TUMORI JOURNAL 2025; 111:139-146. [PMID: 39851197 DOI: 10.1177/03008916241313313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
OBJECTIVE we compared and analyzed the imaging features, tumor markers, pathological immunohistochemistry, and lymph node metastasis rates of solitary and multiple lung adenocarcinoma to provide a valuable reference for clinical diagnosis and treatment. METHODS A retrospective analysis of 212 patients who underwent thoracic surgery in our hospital from 2022 to 2023, including 149 patients with a solitary lung adenocarcinoma nodule and 63 patients with multiple primary nodules. Via propensity score matching, the imaging features, tumor serological markers, pathological immunohistochemistry, and lymph node metastasis rates of the two groups were compared, and the differences in lymph node metastasis rates between solitary and multiple nodules were explored by binary logistic regression. RESULTS After propensity score matching, there were significant differences in the mean CT value (P = 0.001), Ki-67 expression (P < 0.001), PD-L1 expression (P = 0.002), and the lymph node metastasis rate (P = 0.030) between the two groups, but there were no significant differences in nodule type, imaging features, tumor serological marker levels, and the ALK-positive and SYN-positive rates. With lymph node metastasis as the dependent variable, solitary or multiple nodules as the categorical covariate, and the three variables were included as independent variables for binary logistic regression analysis. The probability of lymph node metastasis was 80.8% lower in patients with multiple primary lung adenocarcinoma nodules than in those with a solitary one (P = 0.042). CONCLUSION Multiple primary adenocarcinoma nodules exhibit milder biological behavior than solitary adenocarcinoma nodules and carry a lower risk of lymph node metastasis.
Collapse
Affiliation(s)
- Yang Jiaming
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Haishen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xie Shi
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Yubing
- Department of Thoracic Surgery, Eight People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhang Jiaqing
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Ukon K, Nojima S, Motooka D, Takashima T, Kohara M, Kiyokawa H, Kimura K, Fukui E, Tahara S, Kido K, Matsui T, Shintani Y, Okuzaki D, Morii E. Spatial transcriptome analysis of lung squamous cell carcinoma arising from interstitial pneumonia provides insights into tumor heterogeneity. Pathol Res Pract 2025; 266:155805. [PMID: 39756106 DOI: 10.1016/j.prp.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Interstitial pneumonia (IP) is a refractory disease that causes severe inflammation and fibrosis in the interstitium of the lungs, often resulting in the development of lung cancer (LC) during treatment. Previous studies have demonstrated that the prognosis of LC complicated by IP is inferior to that of LC without IP. It is therefore of the utmost importance to gain a deeper understanding of the heterogeneity of such tumors. In the present study, we conducted spatial transcriptome analysis of squamous cell carcinoma arising from IP. The results suggested involvement of the glucocorticoid receptor pathway in treatment resistance. Immunostaining of squamous cell carcinoma specimens from patients with IP demonstrated that the tumors expressed NR3C1 to varying degrees. Furthermore, higher NR3C1 expression levels were associated with a significantly increased risk of recurrence. Our results point to a novel subtype of lung squamous cell carcinoma. Further analysis of the molecular mechanisms associated with this subtype may facilitate the development of novel diagnostic criteria and therapeutic approaches.
Collapse
MESH Headings
- Humans
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/etiology
- Male
- Female
- Middle Aged
- Lung Diseases, Interstitial/complications
- Lung Diseases, Interstitial/pathology
- Lung Diseases, Interstitial/genetics
- Aged
- Gene Expression Profiling
- Transcriptome
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
Collapse
Affiliation(s)
- Koto Ukon
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Kiyokawa
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kansuke Kido
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan; RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Xu M, Feng P, Yan J, Li L. Mitochondrial quality control: a pathophysiological mechanism and potential therapeutic target for chronic obstructive pulmonary disease. Front Pharmacol 2025; 15:1474310. [PMID: 39830343 PMCID: PMC11739169 DOI: 10.3389/fphar.2024.1474310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic respiratory disease worldwide. Mitochondrial quality control mechanisms encompass processes such as mitochondrial biogenesis, fusion, fission, and autophagy, which collectively maintain the quantity, morphology, and function of mitochondria, ensuring cellular energy supply and the progression of normal physiological activities. However, in COPD, due to the persistent stimulation of harmful factors such as smoking and air pollution, mitochondrial quality control mechanisms often become deregulated, leading to mitochondrial dysfunction. Mitochondrial dysfunction plays a pivotal role in the pathogenesis of COPD, contributing toinflammatory response, oxidative stress, cellular senescence. However, therapeutic strategies targeting mitochondria remain underexplored. This review highlights recent advances in mitochondrial dysfunction in COPD, focusing on the role of mitochondrial quality control mechanisms and their dysregulation in disease progression. We emphasize the significance of mitochondria in the pathophysiological processes of COPD and explore potential strategies to regulate mitochondrial quality and improve mitochondrial function through mitochondrial interventions, aiming to treat COPD effectively. Additionally, we analyze the limitations and challenges of existing therapeutic strategies, aiming to provide new insights and methods for COPD treatment.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Feng
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ferguson Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Yang C, Qu J, Wu J, Cai S, Liu W, Deng Y, Meng Y, Zheng L, Zhang L, Wang L, Guo X. Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers. Clin Transl Med 2024; 14:e70091. [PMID: 39601163 PMCID: PMC11600049 DOI: 10.1002/ctm2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The increasing prevalence of multiple primarylung cancers (MPLCs) presents challenges to current diagnostic and clinicalmanagement approaches. However, the molecular mechanisms driving MPLCdevelopment and distinguishing it from solitary primary lung cancers (SPLCs)remain largely unexplored. METHODS We performed a comparative single-cell RNAsequencing (scRNA-seq) analysis on tumour and adjacent para-tumour tissues fromMPLC and SPLC patients to comparatively evaluate their immunological landscapes.Additionally, multiplex immunofluorescence (mIF) staining and independentvalidation datasets were used to confirm findings. RESULTS MPLCs and SPLCs share significant similarities in genetic, transcriptomic and immune profiles, suggesting common therapeutic strategies such as EGFR-TKIs andICIs. Notably, an immunosuppressive macrophage subtype, F13A1+ Macrophage (Mϕ), is specifically enriched in MPLCs. This subtype overexpresses M2 macrophagemarkers and exhibits up-regulation of SPP1-CD44/CCL13-ACKR1 interactions, indicatingits role in shaping the immunosuppressive tumour microenvironment and promotingtumour growth in MPLCs. CONCLUSIONS This study unveils shared molecular mechanismsbetween MPLCs and SPLCs, while identifying MPLC-specific cellular and molecularfeatures, such as the role of F13A1+ macrophages. The findings provide novelinsights into MPLC pathogenesis, supporting the development of targetedtherapeutic strategies. KEY POINTS Comparative scRNA-seq analysis reveals significant similarities in genetic, transcriptomicand immune profiles between MPLCs and SPLCs. Identification of a unique immunosuppressive F13A1+ macrophage subtype, preferentially enriched in MPLCs, linked to immune evasion and tumourprogression. SPP1-CD44/CCL13-ACKR1 interactions are crucial in MPLC tumour microenvironment, indicating potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chenglin Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Jiahao Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
- Southern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Jingting Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Songhua Cai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Wenyi Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Youjun Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yiran Meng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Liuqing Zheng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Lishen Zhang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Li Wang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Xiaotong Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
5
|
Otkur W, Zhang Y, Li Y, Bao W, Feng T, Wu B, Ma Y, Shi J, Wang L, Pei S, Wang W, Wang J, Zhao Y, Liu Y, Li X, Xia T, Wang F, Chen D, Liang X, Piao HL. Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD. LIFE METABOLISM 2024; 3:loae021. [PMID: 39873004 PMCID: PMC11748505 DOI: 10.1093/lifemeta/loae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 01/30/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner. Here, we aimed to identify spatially distributed specific genes and metabolites in different liver zonation that are regulated by GPR35 in MASLD, by combining lipid metabolomics, spatial transcriptomics (ST), and spatial metabolomics (SM). We found that GPR35 influenced lipid accumulation, inflammatory and metabolism-related factors in specific regions, notably affecting the anti-inflammation factor ELF4 (E74 like E-twenty six (ETS) transcription factor 4), lipid homeostasis key factor CIDEA (cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector A), and the injury response-related genes SAA1/2/3 (serum amyloid A1/2/3), thereby impacting MASLD progression. Furthermore, SM elucidated specific metabolite distributions across different liver regions, such as C10H11N4O7P (3',5'-cyclic inosine monophosphate (3',5'-IMP)) for the central vein, and this metabolite significantly decreased in the liver zones of GPR35-deficient mice during MASLD progression. Taken together, GPR35 regulates hepatocyte damage repair, controls inflammation, and prevents MASLD progression by influencing phospholipid homeostasis and gene expression in a zonal manner.
Collapse
Affiliation(s)
- Wuxiyar Otkur
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shengyang, Liaoning 110016, China
| | - Yiran Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Li
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Bao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingze Feng
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yaolu Ma
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Shi
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Li Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shaojun Pei
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yaopeng Zhao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xiuling Li
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Tian Xia
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Fangjun Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-long Piao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
6
|
Gong D, Arbesfeld-Qiu JM, Perrault E, Bae JW, Hwang WL. Spatial oncology: Translating contextual biology to the clinic. Cancer Cell 2024; 42:1653-1675. [PMID: 39366372 PMCID: PMC12051486 DOI: 10.1016/j.ccell.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Microscopic examination of cells in their tissue context has been the driving force behind diagnostic histopathology over the past two centuries. Recently, the rise of advanced molecular biomarkers identified through single cell profiling has increased our understanding of cellular heterogeneity in cancer but have yet to significantly impact clinical care. Spatial technologies integrating molecular profiling with microenvironmental features are poised to bridge this translational gap by providing critical in situ context for understanding cellular interactions and organization. Here, we review how spatial tools have been used to study tumor ecosystems and their clinical applications. We detail findings in cell-cell interactions, microenvironment composition, and tissue remodeling for immune evasion and therapeutic resistance. Additionally, we highlight the emerging role of multi-omic spatial profiling for characterizing clinically relevant features including perineural invasion, tertiary lymphoid structures, and the tumor-stroma interface. Finally, we explore strategies for clinical integration and their augmentation of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Dennis Gong
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeanna M Arbesfeld-Qiu
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ella Perrault
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jung Woo Bae
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William L Hwang
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
8
|
Zhu Y, Wu X, Zhang Y, Gu J, Zhou R, Guo Z. Single cell transcriptomic analysis reveals tumor immune infiltration by NK cells gene signature in lung adenocarcinoma. Heliyon 2024; 10:e33928. [PMID: 39071697 PMCID: PMC11283104 DOI: 10.1016/j.heliyon.2024.e33928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
Background Natural Killer (NK) cells are vital components of the innate immune system, crucial for combating infections and tumor growth, making them pivotal in cancer prognosis and immunotherapy. We sought to understand the diverse characteristics of NK cells within lung adenocarcinoma (LUAD) by conducting single-cell RNA sequencing analyses. Methods Using the scRNA-seq dataset for multiple primary lung cancers (MPLCs), we examined two major NK cell groups, NK1 and NK2, comparing the expression profiles of 422 differentially expressed NK signature genes. We identified eight genes (SPON2, PLEKHG3, CAMK2N1, RAB27B, CTBP2, EFHD2, GOLM1, and PLOD1) that distinguish NK1 from NK2 cells. A prognostic signature, the NK gene signature (NKGS) score, was established through LASSO Cox regression. High NKGS scores were linked to poorer overall survival in TCGA-LUAD patients and consistently validated in other datasets (GSE31210 and GSE14814). Results Functional analysis revealed an enrichment of genes related to the TGF-β signaling pathway in the high NKGS score group. Moreover, a high NKGS score correlated with an immunosuppressive tumor microenvironment (TME) driven by immune evasion mechanisms. We also observed reduced T-cell receptor (TCR) repertoire diversity in the high-risk NKGS group, indicating a negative association between inflammation and risk score. Conclusion This study introduced the innovative NKGS score, differentiating NK1 from NK2 cells. High NKGS scores were associated with the TGF-β pathway and provided insights into LUAD prognosis and immune activities.
Collapse
Affiliation(s)
- Yimin Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjiao Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongwei Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Guo
- Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, Fu X, Yao X, Peng Y. Advances in spatial transcriptomics and its applications in cancer research. Mol Cancer 2024; 23:129. [PMID: 38902727 PMCID: PMC11188176 DOI: 10.1186/s12943-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Malignant tumors have increasing morbidity and high mortality, and their occurrence and development is a complicate process. The development of sequencing technologies enabled us to gain a better understanding of the underlying genetic and molecular mechanisms in tumors. In recent years, the spatial transcriptomics sequencing technologies have been developed rapidly and allow the quantification and illustration of gene expression in the spatial context of tissues. Compared with the traditional transcriptomics technologies, spatial transcriptomics technologies not only detect gene expression levels in cells, but also inform the spatial location of genes within tissues, cell composition of biological tissues, and interaction between cells. Here we summarize the development of spatial transcriptomics technologies, spatial transcriptomics tools and its application in cancer research. We also discuss the limitations and challenges of current spatial transcriptomics approaches, as well as future development and prospects.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojun Yao
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
10
|
Cilento MA, Sweeney CJ, Butler LM. Spatial transcriptomics in cancer research and potential clinical impact: a narrative review. J Cancer Res Clin Oncol 2024; 150:296. [PMID: 38850363 PMCID: PMC11162383 DOI: 10.1007/s00432-024-05816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Spatial transcriptomics (ST) provides novel insights into the tumor microenvironment (TME). ST allows the quantification and illustration of gene expression profiles in the spatial context of tissues, including both the cancer cells and the microenvironment in which they are found. In cancer research, ST has already provided novel insights into cancer metastasis, prognosis, and immunotherapy responsiveness. The clinical precision oncology application of next-generation sequencing (NGS) and RNA profiling of tumors relies on bulk methods that lack spatial context. The ability to preserve spatial information is now possible, as it allows us to capture tumor heterogeneity and multifocality. In this narrative review, we summarize precision oncology, discuss tumor sequencing in the clinic, and review the available ST research methods, including seqFISH, MERFISH (Vizgen), CosMx SMI (NanoString), Xenium (10x), Visium (10x), Stereo-seq (STOmics), and GeoMx DSP (NanoString). We then review the current ST literature with a focus on solid tumors organized by tumor type. Finally, we conclude by addressing an important question: how will spatial transcriptomics ultimately help patients with cancer?
Collapse
Affiliation(s)
- Michael A Cilento
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- The Queen Elizabeth Hospital, Woodville South, SA, Australia.
| | - Christopher J Sweeney
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
11
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Li J, Yin B, Liu Y, Huang H. Bilateral synchronous double primary lung cancer: A case report. Clin Case Rep 2024; 12:e8635. [PMID: 38566979 PMCID: PMC10985937 DOI: 10.1002/ccr3.8635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Key Clinical Message Bilateral synchronous double primary lung cancer (sDPLC) is a rare disease in clinics. This study analyzed the clinical data of a patient with bilateral sDPLC, aiming to improve medical workers' understanding of the disease and avoid missed diagnosis and misdiagnosis. Abstract A 68-year-old male was admitted to the hospital with "intermittent cough and expectoration for two months." Enhanced chest computed tomography (CT) showed that the upper lobe of the left lung had a mass of high-density shadow, bronchial opening of the left lobe was thickened, lumen was narrow, and middle lobe of the right lung had a mass of high-density shadow. Bronchoscopy was performed to observe the microscopic characteristics of the lesions in the upper lobe of the left lung, and abnormal mucosa was biopsied. The pathological and immunohistochemical results confirmed that it was small cell lung cancer (SCLC) in the upper lobe of the left lung. Considering the occupation of the middle lobe of the right lung, CT-guided lung biopsy was performed, and the pathological and immunohistochemical results confirmed that it was moderately differentiated squamous cell carcinoma (SCC) in the middle lobe of the right lung. Clinicians should strengthen their understanding of sDPLC and focus on the imaging characteristics of chest CT and performance under bronchoscopy. Additionally, it is necessary to perform both CT-guided lung biopsy and bronchoscopy to obtain histopathological findings for the diagnosis.
Collapse
Affiliation(s)
- Jun Li
- The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi CityHuBeiChina
| | - Bo Yin
- The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi CityHuBeiChina
| | - Yong Liu
- The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi CityHuBeiChina
| | - Hai Huang
- The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi CityHuBeiChina
| |
Collapse
|