1
|
Beesabathuni NS, Kenaston MW, Gangaraju R, Adia NAB, Peddamallu V, Shah PS. Let's talk about flux: the rising potential of autophagy rate measurements in disease. Autophagy 2024; 20:2574-2580. [PMID: 38984617 PMCID: PMC11572197 DOI: 10.1080/15548627.2024.2371708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Macroautophagy/autophagy is increasingly implicated in a variety of diseases, making it an attractive therapeutic target. However, many aspects of autophagy are not fully understood and its impact on many diseases remains debatable and context-specific. The lack of systematic and dynamic measurements in these cases is a key reason for this ambiguity. In recent years, Loos et al. 2014 and Beesabathuni et al. 2022 developed methods to quantitatively measure autophagy holistically. In this commentary, we pose some of the unresolved biological questions regarding autophagy and consider how quantitative measurements may address them. While the applications are ever-expanding, we provide specific use cases in cancer, virus infection, and mechanistic screening. We address how the rate measurements themselves are central to developing cancer therapies and present ways in which these tools can be leveraged to dissect the complexities of virus-autophagy interactions. Screening methods can be combined with rate measurements to mechanistically decipher the labyrinth of autophagy regulation in cancer and virus infection. Taken together, these approaches have the potential to illuminate the underlying mechanisms of various diseases.Abbreviation MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; R1: rate of autophagosome formation; R2: rate of autophagosome-lysosome fusion; R3: rate of autolysosome turnover.
Collapse
Affiliation(s)
| | - Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Ritika Gangaraju
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Neil Alvin B. Adia
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Vardhan Peddamallu
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Priya S. Shah
- Department of Chemical Engineering, University of California, Davis, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Archasappawat S, Al-Musawi F, Liu P, Lee E, Hwang CI. Familial Pancreatic Cancer Research: Bridging Gaps in Basic Research and Clinical Application. Biomolecules 2024; 14:1381. [PMID: 39595558 PMCID: PMC11592027 DOI: 10.3390/biom14111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Familial pancreatic cancer (FPC) represents a significant yet underexplored area in pancreatic cancer research. Basic research efforts are notably limited, and when present, they are predominantly centered on the BRCA1 and BRCA2 mutations due to the scarcity of other genetic variants associated with FPC, leading to a limited understanding of the broader genetic landscape of FPC. This review examines the current state of FPC research, focusing on the molecular mechanisms driving pancreatic ductal adenocarcinoma (PDAC) progression. It highlights the role of homologous recombination (HR) and its therapeutic exploitation via synthetic lethality with PARP inhibitors in BRCA1/2-deficient tumors. The review discusses various pre-clinical models of FPC, including conventional two-dimensional (2D) cell lines, patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and genetically engineered mouse models (GEMMs), as well as new advancements in FPC research.
Collapse
Affiliation(s)
- Suyakarn Archasappawat
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - Fatimah Al-Musawi
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Chang-il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Li J, Hong Y, Zhong Y, Yang S, Pei L, Huang Z, Long H, Chen X, Zhou C, Zheng G, Zeng C, Wu H, Wang T. Meteorin-like (METRNL) attenuates hypertensive induced cardiac hypertrophy by inhibiting autophagy via activating BRCA2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167113. [PMID: 38460862 DOI: 10.1016/j.bbadis.2024.167113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Hypertension, a prevalent cardiovascular ailment globally, can precipitate numerous complications, notably hypertensive cardiomyopathy. Meteorin-like (METRNL) is demonstrated to possess potential protective properties on cardiovascular diseases. However, its specific role and underlying mechanism in hypertensive myocardial hypertrophy remain elusive. Spontaneously hypertensive rats (SHRs) served as hypertensive models to explore the effects of METRNL on hypertension and its induced myocardial hypertrophy. The research results indicate that, in contrast to Wistar-Kyoto (WKY) rats, SHRs exhibit significant symptoms of hypertension and myocardial hypertrophy, but cardiac-specific overexpression (OE) of METRNL can partially ameliorate these symptoms. In H9c2 cardiomyocytes, METRNL suppresses Ang II-induced autophagy by controlling the BRCA2/Akt/mTOR signaling pathway. But when BRCA2 expression is knocked down, this effect will be suppressed. Collectively, METRNL emerges as a potential therapeutic target for hypertensive cardiomyopathy.
Collapse
Affiliation(s)
- Jun Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Yinghui Hong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Yinsheng Zhong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Shujun Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Liying Pei
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Zijie Huang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Huibao Long
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Changqing Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Guanghui Zheng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, PR China
| | - Chaotao Zeng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, PR China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, PR China.
| |
Collapse
|