1
|
Song C, Li Y, Yang M, Li T, Hou Y, Liu Y, Xu C, Liu J, Millar AH, Wang N, Li L. Protein aggregation in plant mitochondria lacking Lon1 inhibits translation and induces unfolded protein responses. PLANT, CELL & ENVIRONMENT 2024; 47:4383-4397. [PMID: 38988259 DOI: 10.1111/pce.15035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.
Collapse
Affiliation(s)
- Ce Song
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengmeng Yang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tiantian Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqi Hou
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yinyin Liu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Xu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ningning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Deng J, Wang D, Shi Y, Lin L, Gao W, Sun Y, Song X, Li Y, Li J. Mitochondrial unfolded protein response mechanism and its cardiovascular protective effects. Biomed Pharmacother 2024; 177:116989. [PMID: 38959609 DOI: 10.1016/j.biopha.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a cytoprotective response in response to cellular stress that is activated in response to mitochondrial stress to maintain intra-protein homeostasis, thereby protecting the cell from a variety of stimuli. The activation of this response has been linked to cardiovascular diseases. Here, we reviewed the current understanding of UPRmt and discussed its specific molecular mechanism, mainly in mammals, as well as addressing its protective role against cardiovascular diseases, so as to provide direction for further research on UPRmt and therapies targeting cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jinlan Deng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weihan Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiayinan Song
- Chinese University of Traditional Chinese Medicine,Beijing University of Chinese Medicine, Chaoyang, China
| | - Yunlun Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Su XL, Su ZR, Xu WH. The protease Lon prolongs insect lifespan by responding to reactive oxygen species and degrading mitochondrial transcription factor A. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119648. [PMID: 38092136 DOI: 10.1016/j.bbamcr.2023.119648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Diapause is a widespread adaptation of insects that enables them to survive during unfavorable seasons and is characterized by suppressed metabolism and increased lifespan. Previous works have demonstrated that high levels of reactive oxygen species (ROS) and hypoxia-inducible factor-1α (HIF-1α) in the pupal brain of the moth Helicoverpa armigera induce diapause and extend lifespan by downregulating mitochondrial transcription factor A (TFAM). However, the molecular mechanisms of ROS-HIF-1α regulating metabolic activity to extend lifespan are still poorly understood. Here, we show that the mitochondrial abundance in diapause-type pupal brains is markedly lower than that in their nondiapause-type pupae, suggesting that ROS-HIF-1α signaling negatively regulates the number of mitochondria. The protease Lon, a major mitochondrial matrix protease, can respond to ROS signals. It is activated by transcription factor HIF-1α, which specifically binds the LON promoter to promote its expression. A high level of LON mediates the degradation of TFAM, which is a crucial factor in regulating mitochondrial abundance and metabolic activity. We believe this is the first report that a previously unrecognized regulatory pathway, ROS-HIF-1α-LON-TFAM, reduces mitochondrial activity to induce diapause, extending insect lifespan.
Collapse
Affiliation(s)
- Xiao-Long Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi-Ren Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Wu J, Zhang HL, Guo S, Li X, Dong T, Zhu Y, Tsim KWK. Acori Tatarinowii Rhizoma prevents the fluoxetine-induced multiple-drug resistance of Escherichia coli against antibiotics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155232. [PMID: 38006809 DOI: 10.1016/j.phymed.2023.155232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/12/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND In treating depression, the residual anti-depressant in gut interacts with the microbiome, leading to the appearance of multiple drug resistant (MDR) mutants, which poses a challenge for the treatment of infectious complications. Strategy is needed to combat this issue. Acori Tatarinowii Rhizoma (ATR, rhizome of Acorus tatarinowii Schott, Araceae), a traditional Chinese medicine, has been widely used for treatment of neurological disorders and gastrointestinal digestive disease in China. Here, ATR was demonstrated an excellent MDR-preventing effect in fluoxetine-induced Escherichia coli (E. coli). AIM OF THE STUDY This study aimed to reveal the effective role of ATR and its signaling cascades involved in preventing fluoxetine-induced MDR. MATERIALS AND METHODS The water extract of ATR was co-applied with sub-minimum inhibitory concentration (100 mg/l) of fluoxetine in E. coli to evaluate its anti-MDR potential. Formation of reactive oxygen species (ROS) and expression of MDR-related genes in bacteria were measured by dichloro-dihydro-fluorescein diacetate assay and real-time PCR, respectively. Two fluorescent dyes, 1-N-phenylnapthylamine and 3,3'-dipropylthiadicarbocyanine were used to analyze the outer membrane permeability and inner membrane depolarization of E. coli. The accumulation of fluoxetine in the treated E. coli was determined via HPLC. The active fraction of ATR was identified. RESULTS The water extract of ATR significantly decreased the number of MDR mutants induced by fluoxetine and had half effective concentrations (EC50) of 55.5 μg/ml and 16.8 μg/ml for chloramphenicol and tetracycline, respectively. ATR robustly reversed the fluoxetine-induced superoxide response and membrane damage in E. coli. In addition, the inclusion of ATR significantly reduced the accumulation of fluoxetine in E. coli. After further fractionation, the polysaccharide of ATR was demonstrated as the fraction with the most significant anti-MDR activity. CONCLUSIONS This is the first report to investigate the MDR-preventing effect of ATR. The results of this study proposed ATR as an excellent herbal product to prevent MDR issues, as induced by fluoxetine, with the potential to reduce the side effects during the drug therapy of depression.
Collapse
Affiliation(s)
- Jiahui Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hoi Lam Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Suisui Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xin Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, China
| | - Tingxia Dong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, China
| | - Karl Wah Keung Tsim
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
5
|
Taouktsi E, Kyriakou E, Voulgaraki E, Verganelakis D, Krokou S, Rigas S, Voutsinas GE, Syntichaki P. Mitochondrial p38 Mitogen-Activated Protein Kinase: Insights into Its Regulation of and Role in LONP1-Deficient Nematodes. Int J Mol Sci 2023; 24:17209. [PMID: 38139038 PMCID: PMC10743222 DOI: 10.3390/ijms242417209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
p38 Mitogen-Activated Protein Kinase (MAPK) cascades are central regulators of numerous physiological cellular processes, including stress response signaling. In C. elegans, mitochondrial dysfunction activates a PMK-3/p38 MAPK signaling pathway (MAPKmt), but its functional role still remains elusive. Here, we demonstrate the induction of MAPKmt in worms deficient in the lonp-1 gene, which encodes the worm ortholog of mammalian mitochondrial LonP1. This induction is subjected to negative regulation by the ATFS-1 transcription factor through the CREB-binding protein (CBP) ortholog CBP-3, indicating an interplay between both activated MAPKmt and mitochondrial Unfolded Protein Response (UPRmt) surveillance pathways. Our results also reveal a genetic interaction in lonp-1 mutants between PMK-3 kinase and the ZIP-2 transcription factor. ZIP-2 has an established role in innate immunity but can also modulate the lifespan by maintaining mitochondrial homeostasis during ageing. We show that in lonp-1 animals, ZIP-2 is activated in a PMK-3-dependent manner but does not confer increased survival to pathogenic bacteria. However, deletion of zip-2 or pmk-3 shortens the lifespan of lonp-1 mutants, suggesting a possible crosstalk under conditions of mitochondrial perturbation that influences the ageing process. Furthermore, loss of pmk-3 specifically diminished the extreme heat tolerance of lonp-1 worms, highlighting the crucial role of PMK-3 in the heat shock response upon mitochondrial LONP-1 inactivation.
Collapse
Affiliation(s)
- Eirini Taouktsi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Eleni Kyriakou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Evangelia Voulgaraki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Dimitris Verganelakis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biological Applications & Technology, University of Ioannina, 45500 Ioannina, Greece
| | - Stefania Krokou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Gerassimos E. Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 15341 Athens, Greece;
| | - Popi Syntichaki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| |
Collapse
|
6
|
Nozawa N, Noguchi M, Shinno K, Saito T, Asada A, Ishii T, Takahashi K, Ishizuka M, Ando K. 5-Aminolevulinic acid bypasses mitochondrial complex I deficiency and corrects physiological dysfunctions in Drosophila. Hum Mol Genet 2023; 32:2611-2622. [PMID: 37364055 PMCID: PMC10407699 DOI: 10.1093/hmg/ddad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/15/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Complex I (CI) deficiency in mitochondrial oxidative phosphorylation (OXPHOS) is the most common cause of mitochondrial diseases, and limited evidence-based treatment options exist. Although CI provides the most electrons to OXPHOS, complex II (CII) is another entry point of electrons. Enhancement of this pathway may compensate for a loss of CI; however, the effects of boosting CII activity on CI deficiency are unclear at the animal level. 5-Aminolevulinic acid (5-ALA) is a crucial precursor of heme, which is essential for CII, complex III, complex IV (CIV) and cytochrome c activities. Here, we show that feeding a combination of 5-ALA hydrochloride and sodium ferrous citrate (5-ALA-HCl + SFC) increases ATP production and suppresses defective phenotypes in Drosophila with CI deficiency. Knockdown of sicily, a Drosophila homolog of the critical CI assembly protein NDUFAF6, caused CI deficiency, accumulation of lactate and pyruvate and detrimental phenotypes such as abnormal neuromuscular junction development, locomotor dysfunctions and premature death. 5-ALA-HCl + SFC feeding increased ATP levels without recovery of CI activity. The activities of CII and CIV were upregulated, and accumulation of lactate and pyruvate was suppressed. 5-ALA-HCl + SFC feeding improved neuromuscular junction development and locomotor functions in sicily-knockdown flies. These results suggest that 5-ALA-HCl + SFC shifts metabolic programs to cope with CI deficiency. Bullet outline 5-Aminolevulinic acid (5-ALA-HCl + SFC) increases ATP production in flies with complex I deficiency.5-ALA-HCl + SFC increases the activities of complexes II and IV.5-ALA-HCl + SFC corrects metabolic abnormalities and suppresses the detrimental phenotypes caused by complex I deficiency.
Collapse
Affiliation(s)
- Naoko Nozawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
| | - Marie Noguchi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kanako Shinno
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Akiko Asada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takuya Ishii
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
- Medical- Engineering Collaboration and Innovation Office, National Cancer Center Hospital East, 6-5-1 Kashinoha, Kashiwa, Chiba 277-8577, Japan
| | - Kiwamu Takahashi
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
| | - Masahiro Ishizuka
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd, Tokyo 106-6020, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
7
|
Zhang J, She M, Dai Y, Nie X, Tang M, Zeng Q. Lmpt regulates the function of Drosophila muscle by acting as a repressor of Wnt signaling. Gene 2023; 876:147514. [PMID: 37245676 DOI: 10.1016/j.gene.2023.147514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND LIM domain is considered to be important in mediating protein-protein interactions, and members of the LIM protein family can co-regulate tissue-specific gene expression by interacting with different transcription factors. However, its exact function in vivo remains unclear. Our study demonstrates that the LIM protein family member Lmpt may act as a cofactor that interacts with other transcription factors to regulate cellular functions. METHODS In this study, we generated Lmpt knockdown Drosophila (Lmpt-KD) using the UAS-Gal4 system. We assessed the lifespan and motility of Lmpt-KD Drosophila and analyzed the expression of muscle-related and metabolism-related genes using qRT-PCR. Additionally, we utilized Western blot and Top-Flash luciferase reporter assay to evaluate the level of the Wnt signaling pathway. RESULTS Our study revealed that knockdown of the Lmpt gene in Drosophila resulted in a shortened lifespan and reduced motility. We also observed a significant increase in oxidative free radicals in the fly gut. Furthermore, qRT-PCR analysis indicated that knockdown of Lmpt led to decreased expression of muscle-related and metabolism-related genes in Drosophila, suggesting that Lmpt plays a crucial role in maintaining muscle and metabolic functions. Finally, we found that reduction of Lmpt significantly upregulated the expression of Wnt signaling pathway proteins. CONCLUSION Our results demonstrate that Lmpt is essential for motility and survival in Drosophila and acts as a repressor in Wnt signaling.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Meihua She
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Yongkang Dai
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Xiao Nie
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Min Tang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, 421001 Hengyang, China.
| |
Collapse
|
8
|
Sun CL, Van Gilst M, Crowder CM. Hypoxia-induced mitochondrial stress granules. Cell Death Dis 2023; 14:448. [PMID: 37468471 PMCID: PMC10356818 DOI: 10.1038/s41419-023-05988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Perturbations of mitochondrial proteostasis have been associated with aging, neurodegenerative diseases, and recently with hypoxic injury. While examining hypoxia-induced mitochondrial protein aggregation in C. elegans, we found that sublethal hypoxia, sodium azide, or heat shock-induced abundant ethidium bromide staining mitochondrial granules that preceded evidence of protein aggregation. Genetic manipulations that reduce cellular and organismal hypoxic death block the formation of these mitochondrial stress granules (mitoSG). Knockdown of mitochondrial nucleoid proteins also blocked the formation of mitoSG by a mechanism distinct from the mitochondrial unfolded protein response. Lack of the major mitochondrial matrix protease LONP-1 resulted in the constitutive formation of mitoSG without external stress. Ethidium bromide-staining RNA-containing mitochondrial granules were also observed in rat cardiomyocytes treated with sodium azide, a hypoxia mimetic. Mitochondrial stress granules are an early mitochondrial pathology controlled by LONP and the nucleoid, preceding hypoxia-induced protein aggregation.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Department of Genome Science, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
| |
Collapse
|
9
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
10
|
Pareek G. AAA+ proteases: the first line of defense against mitochondrial damage. PeerJ 2022; 10:e14350. [PMID: 36389399 PMCID: PMC9648348 DOI: 10.7717/peerj.14350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondria play essential cellular roles in Adenosine triphosphate (ATP) synthesis, calcium homeostasis, and metabolism, but these vital processes have potentially deadly side effects. The production of the reactive oxygen species (ROS) and the aggregation of misfolded mitochondrial proteins can lead to severe mitochondrial damage and even cell death. The accumulation of mitochondrial damage is strongly implicated in aging and several incurable diseases, including neurodegenerative disorders and cancer. To oppose this, metazoans utilize a variety of quality control strategies, including the degradation of the damaged mitochondrial proteins by the mitochondrial-resident proteases of the ATPase Associated with the diverse cellular Activities (AAA+) family. This mini-review focuses on the quality control mediated by the mitochondrial-resident proteases of the AAA+ family used to combat the accumulation of damaged mitochondria and on how the failure of this mitochondrial quality control contributes to diseases.
Collapse
|
11
|
Evidence for mitochondrial Lonp1 expression in the nucleus. Sci Rep 2022; 12:10877. [PMID: 35760833 PMCID: PMC9237102 DOI: 10.1038/s41598-022-14860-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
The coordinated communication between the mitochondria and nucleus is essential for cellular activities. Nonetheless, the pathways involved in this crosstalk are scarcely understood. The protease Lonp1 was previously believed to be exclusively located in the mitochondria, with an important role in mitochondrial morphology, mtDNA maintenance, and cellular metabolism, in both normal and neoplastic cells. However, we recently detected Lonp1 in the nuclear, where as much as 22% of all cellular Lonp1 can be found. Nuclear localization is detectable under all conditions, but the amount is dependent on a response to heat shock (HS). Lonp1 in the nucleus interacts with heat shock factor 1 (HSF1) and modulates the HS response. These findings reveal a novel extramitochondrial function for Lonp1 in response to stress.
Collapse
|
12
|
Murari A, Goparaju NSV, Rhooms SK, Hossain KFB, Liang FG, Garcia CJ, Osei C, Liu T, Li H, Kitsis RN, Patel R, Owusu-Ansah E. IDH2-mediated regulation of the biogenesis of the oxidative phosphorylation system. SCIENCE ADVANCES 2022; 8:eabl8716. [PMID: 35544578 PMCID: PMC9094667 DOI: 10.1126/sciadv.abl8716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/16/2022] [Indexed: 06/04/2023]
Abstract
Several subunits in the matrix domain of mitochondrial complex I (CI) have been posited to be redox sensors for CI, but how elevated levels of reactive oxygen species (ROS) impinge on CI assembly is unknown. We report that genetic disruption of the mitochondrial NADPH-generating enzyme, isocitrate dehydrogenase 2 (IDH2), in Drosophila flight muscles results in elevated ROS levels and impairment of assembly of the oxidative phosphorylation system (OXPHOS). Mechanistically, this begins with an inhibition of biosynthesis of the matrix domain of CI and progresses to involve multiple OXPHOS complexes. Despite activation of multiple compensatory mechanisms, including enhanced coenzyme Q biosynthesis and the mitochondrial unfolded protein response, ferroptotic cell death ensues. Disruption of enzymes that eliminate hydrogen peroxide, but not those that eliminate the superoxide radical, recapitulates the phenotype, thereby implicating hydrogen peroxide as the signaling molecule involved. Thus, IDH2 modulates the assembly of the matrix domain of CI and ultimately that of the entire OXPHOS.
Collapse
Affiliation(s)
- Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Naga S. V. Goparaju
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kaniz F. B. Hossain
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Felix G. Liang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christian J. Garcia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cindy Osei
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University—New Jersey Medical School, Newark, NJ 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University—New Jersey Medical School, Newark, NJ 07103, USA
| | - Richard N. Kitsis
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rajesh Patel
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Robert N. Butler Columbia Aging Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Nozawa N, Noguchi M, Shinno K, Tajima M, Aizawa S, Saito T, Asada A, Ishii T, Ishizuka M, Iijima KM, Ando K. 5-Aminolevulinic acid and sodium ferrous citrate ameliorate muscle aging and extend healthspan in Drosophila. FEBS Open Bio 2021; 12:295-305. [PMID: 34854258 PMCID: PMC8727951 DOI: 10.1002/2211-5463.13338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Declines in mitochondrial functions are associated with aging. The combination of 5‐aminolevulinic acid (5‐ALA) and sodium ferrous citrate (SFC) improves mitochondrial functions in cultured cells. In this study, we investigated the effects of dietary supplementation with 5‐ALA and SFC (5‐ALA/SFC) on the healthspan and life span of Drosophila
melanogaster. Adult Drosophila fruit flies were fed cornmeal food containing various concentrations of 5‐ALA/SFC. Locomotor functions, life span, muscle architecture, and age‐associated changes in mitochondrial function were analyzed. We found that feeding 5‐ALA/SFC mitigated age‐associated declines in locomotor functions and extended organismal life span. Moreover, 5‐ALA/SFC preserved muscle architecture and maintained the mitochondrial membrane potential in aged animals. Since 5‐ALA phosphate/SFC is used as a human dietary supplement, our results suggest that it could be used to slow the age‐related declines in muscle functions, prevent age‐associated clinical conditions such as frailty, and extend healthspan and life span.
Collapse
Affiliation(s)
- Naoko Nozawa
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Marie Noguchi
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Kanako Shinno
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Maki Tajima
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Shingo Aizawa
- Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Taro Saito
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| | - Akiko Asada
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| | - Takuya Ishii
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Masahiro Ishizuka
- Division of Pharmaceutical Research, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Kanae Ando
- Graduate School of Science, Tokyo Metropolitan University, Japan.,Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| |
Collapse
|
14
|
Xanthohumol-Induced Rat Glioma C6 Cells Death by Triggering Mitochondrial Stress. Int J Mol Sci 2021; 22:ijms22094506. [PMID: 33925918 PMCID: PMC8123451 DOI: 10.3390/ijms22094506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the underlying mechanisms of xanthohumol (XN) on the proliferation inhibition and death of C6 glioma cells. METHODS: To determine the effects of XN on C6 cells, cell proliferation and mortality after XN treatment were assessed by SRB assay and trypan blue assay respectively. Apoptotic rates were evaluated by flowcytometry after Annexin V-FITC/PI double staining. The influence of XN on the activity of caspase-3 was determined by Western blot (WB); and nuclear transposition of apoptosis-inducing factor (AIF) was tested by immunocytochemistry and WB. By MitoSOXTM staining, the mitochondrial ROS were detected. Mitochondrial function was also tested by MTT assay (content of succinic dehydrogenase), flow cytometry (mitochondrial membrane potential (MMP)—JC-1 staining; mitochondrial abundance—mito-Tracker green), immunofluorescence (MMP—JC-1 staining; mitochondrial morphology—mito-Tracker green), WB (mitochondrial fusion-fission protein—OPA1, mfn2, and DRP1; mitophagy-related proteins—Pink1, Parkin, LC3B, and P62), and high-performance liquid chromatography (HPLC) (energy charge). Finally, mitochondrial protein homeostasis of C6 cells after XN treatment with and without LONP1 inhibitor bortezomib was investigated by trypan blue assay (proliferative activity and mortality) and WB (mitochondrial protease LONP1). All cell morphology images were taken by a Leica Microsystems microscope. RESULTS: XN could lead to proliferation inhibition and death of C6 cells in a time- and dose-dependent manner and induce apoptosis of C6 cells through the AIF pathway. After long incubation of XN, mitochondria of C6 cells were seriously impaired, and mitochondria had a diffuse morphology and mitochondrial ROS were increased. The content of succinic dehydrogenase per cell was significantly decreased after XN insults of 24, 48, and 72 h. The energy charge was weakened after XN insult of 24 h. Furthermore, the MMP and mitochondrial abundance were significantly decreased; the protein expression levels of OPA1, mfn2, and DRP1 were down-regulated; and the protein expression levels of Pink1, Parkin, LC3B-II/LC3B-I, and p62 were up-regulated in long XN incubation times (24, 48, and 72 h). XN incubation with bortezomib for 48 h resulted in lower proliferative activity and higher mortality of C6 cells and caused the cell to have visible vacuoles. Moreover, the protein expression levels of LONP1 was up-regulated gradually as XN treatment time increased. CONCLUSION: These data supported that XN could induce AIF pathway apoptosis of the rat glioma C6 cells by affecting the mitochondria.
Collapse
|
15
|
Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPR mt in the hypothalamus of mice. Sci Rep 2021; 11:3813. [PMID: 33589652 PMCID: PMC7884690 DOI: 10.1038/s41598-021-82352-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/14/2021] [Indexed: 01/20/2023] Open
Abstract
The maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPRmt) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPRmt in hypothalamic cells are unclear. Combining the transcriptomic analyses from BXD mice database and in vivo experiments, we demonstrated that physical training alters the mitochondrial proteostasis in the hypothalamus of C57BL/6J mice. This physical training elicited the mitonuclear protein imbalance, increasing the mtCO-1/Atp5a ratio, which was accompanied by high levels of UPRmt markers in the hypothalamus. Also, physical training increased the maximum mitochondrial respiratory capacity in the brain. Interestingly, the transcriptomic analysis across several strains of the isogenic BXD mice revealed that hypothalamic mitochondrial DNA-encoded genes were negatively correlated with body weight and several genes related to the orexigenic response. As expected, physical training reduced body weight and food intake. Interestingly, we found an abundance of mt-CO1, a mitochondrial DNA-encoded protein, in NPY-producing neurons in the lateral hypothalamus nucleus of exercised mice. Collectively, our data demonstrated that physical training altered the mitochondrial proteostasis and induced the mitonuclear protein imbalance and UPRmt in hypothalamic cells.
Collapse
|
16
|
Pareek G, Pallanck LJ. Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression. PLoS Genet 2020; 16:e1009118. [PMID: 33075064 PMCID: PMC7595625 DOI: 10.1371/journal.pgen.1009118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/29/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The m-AAA proteases play a critical role in the proteostasis of inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a critical component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi allowed survival to the late pupal and adult stages of development. Flies with partial inactivation of AFG3L2 exhibited behavioral defects, neurodegeneration, accumulation of unfolded mitochondrial proteins, and diminished respiratory chain (RC) activity. Further work revealed that the reduced RC activity was primarily a consequence of severely diminished mitochondrial transcription and translation. These defects were accompanied by activation of the mitochondrial unfolded protein response (mito-UPR) and autophagy. Overexpression of mito-UPR components partially rescued the AFG3L2-deficient phenotypes, indicating that protein aggregation partly accounts for the defects of AFG3L2-deficient animals. Our work suggests that strategies designed to activate mitochondrial stress pathways and mitochondrial gene expression could be therapeutic in the diseases caused by mutations in AFG3L2.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, United States of America
- * E-mail:
| |
Collapse
|
17
|
Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules 2020; 25:molecules25204758. [PMID: 33081296 PMCID: PMC7587607 DOI: 10.3390/molecules25204758] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a polymer that is extensively used to prepare nanoparticles (NPs) with tailored properties for applications in many fields of human activities. Among them, targeted drug delivery, especially when cancer therapy is the main interest, is a major application of chitosan-based NPs. Due to its positive charges, chitosan is used to produce the core of the NPs or to cover NPs made from other types of polymers, both strategies aiming to protect the carried drug until NPs reach the target sites and to facilitate the uptake and drug delivery into these cells. A major challenge in the design of these chitosan-based NPs is the formation of a protein corona (PC) upon contact with biological fluids. The composition of the PC can, to some extent, be modulated depending on the size, shape, electrical charge and hydrophobic / hydrophilic characteristics of the NPs. According to the composition of the biological fluids that have to be crossed during the journey of the drug-loaded NPs towards the target cells, the surface of these particles can be changed by covering their core with various types of polymers or with functionalized polymers carrying some special molecules, that will preferentially adsorb some proteins in their PC. The PC's composition may change by continuous processes of adsorption and desorption, depending on the affinity of these proteins for the chemical structure of the surface of NPs. Beside these, in designing the targeted drug delivery NPs one can take into account their toxicity, initiation of an immune response, participation (enhancement or inhibition) in certain metabolic pathways or chemical processes like reactive oxygen species, type of endocytosis of target cells, and many others. There are cases in which these processes seem to require antagonistic properties of nanoparticles. Products that show good behavior in cell cultures may lead to poor in vivo results, when the composition of the formed PC is totally different. This paper reviews the physico-chemical properties, cellular uptake and drug delivery applications of chitosan-based nanoparticles, specifying the factors that contribute to the success of the targeted drug delivery. Furthermore, we highlight the role of the protein corona formed around the NP in its intercellular fate.
Collapse
|
18
|
Pridie C, Ueda K, Simmonds AJ. Rosy Beginnings: Studying Peroxisomes in Drosophila. Front Cell Dev Biol 2020; 8:835. [PMID: 32984330 PMCID: PMC7477296 DOI: 10.3389/fcell.2020.00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Research using the fruit fly Drosophila melanogaster has traditionally focused on understanding how mutations affecting gene regulation or function affect processes linked to animal development. Accordingly, flies have become an essential foundation of modern medical research through repeated contributions to our fundamental understanding of how their homologs of human genes function. Peroxisomes are organelles that metabolize lipids and reactive oxygen species like peroxides. However, despite clear linkage of mutations in human genes affecting peroxisomes to developmental defects, for many years fly models were conspicuously absent from the study of peroxisomes. Now, the few early studies linking the Rosy eye color phenotype to peroxisomes in flies have been joined by a growing body of research establishing novel roles for peroxisomes during the development or function of specific tissues or cell types. Similarly, unique properties of cultured fly Schneider 2 cells have advanced our understanding of how peroxisomes move on the cytoskeleton. Here, we profile how those past and more recent Drosophila studies started to link specific effects of peroxisome dysfunction to organ development and highlight the utility of flies as a model for human peroxisomal diseases. We also identify key differences in the function and proliferation of fly peroxisomes compared to yeast or mammals. Finally, we discuss the future of the fly model system for peroxisome research including new techniques that should support identification of additional tissue specific regulation of and roles for peroxisomes.
Collapse
Affiliation(s)
- C Pridie
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
James J, Valuparampil Varghese M, Vasilyev M, Langlais PR, Tofovic SP, Rafikova O, Rafikov R. Complex III Inhibition-Induced Pulmonary Hypertension Affects the Mitochondrial Proteomic Landscape. Int J Mol Sci 2020; 21:ijms21165683. [PMID: 32784406 PMCID: PMC7461049 DOI: 10.3390/ijms21165683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondria play a vital role in controlling cell metabolism and regulating crucial cellular outcomes. We previously demonstrated that chronic inhibition of the mitochondrial complex III in rats by Antimycin A (AA) induced sustained pulmonary vasoconstriction. On the metabolic level, AA-induced mitochondrial dysfunction resulted in a glycolytic shift that was reported as the primary contributor to pulmonary hypertension pathogenesis. However, the regulatory proteins driving this metabolic shift with complex III inhibition are yet to be explored. Therefore, to delineate the mechanisms, we followed changes in the rat lung mitochondrial proteome throughout AA treatment. Rats treated with AA for up to 24 days showed a disturbed mitochondrial proteome with significant changes in 28 proteins (p < 0.05). We observed a time-dependent decrease in the expression of key proteins that regulate fatty acid oxidation, the tricarboxylic acid cycle, the electron transport chain, and amino acid metabolism, indicating a correlation with diminished mitochondrial function. We also found a significant dysregulation in proteins that controls the protein import machinery and the clearance and detoxification of oxidatively damaged peptides via proteolysis and mitophagy. This could potentially lead to the onset of mitochondrial toxicity due to misfolded protein stress. We propose that chronic inhibition of mitochondrial complex III attenuates mitochondrial function by disruption of the global mitochondrial metabolism. This potentially aggravates cellular proliferation by initiating a glycolytic switch and thereby leads to pulmonary hypertension.
Collapse
Affiliation(s)
- Joel James
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Mathews Valuparampil Varghese
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Mikhail Vasilyev
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Stevan P. Tofovic
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213; USA;
| | - Olga Rafikova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Ruslan Rafikov
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
- Correspondence:
| |
Collapse
|
20
|
The Mitochondrial Lon Protease: Novel Functions off the Beaten Track? Biomolecules 2020; 10:biom10020253. [PMID: 32046155 PMCID: PMC7072132 DOI: 10.3390/biom10020253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
To maintain organellar function, mitochondria contain an elaborate endogenous protein quality control system. As one of the two soluble energy-dependent proteolytic enzymes in the matrix compartment, the protease Lon is a major component of this system, responsible for the degradation of misfolded proteins, in particular under oxidative stress conditions. Lon defects have been shown to negatively affect energy production by oxidative phosphorylation but also mitochondrial gene expression. In this review, recent studies on the role of Lon in mammalian cells, in particular on its protective action under diverse stress conditions and its relationship to important human diseases are summarized and commented.
Collapse
|
21
|
Rhooms SK, Murari A, Goparaju NSV, Vilanueva M, Owusu-Ansah E. Insights from Drosophila on mitochondrial complex I. Cell Mol Life Sci 2020; 77:607-618. [PMID: 31485716 PMCID: PMC7289077 DOI: 10.1007/s00018-019-03293-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022]
Abstract
NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD+, in a series of redox reactions that culminates in the reduction of ubiquinone, and the transport of protons from the matrix across the inner membrane to the intermembrane space. The resulting proton-motive force is consumed by ATP synthase to generate ATP, or harnessed to transport ions, metabolites and proteins into the mitochondrion. CI is also a major source of reactive oxygen species. Accordingly, impaired CI function has been associated with a host of chronic metabolic and degenerative disorders such as diabetes, cardiomyopathy, Parkinson's disease (PD) and Leigh syndrome. Studies on Drosophila have contributed to our understanding of the multiple roles of CI in bioenergetics and organismal physiology. Here, we explore and discuss some of the studies on Drosophila that have informed our understanding of this complex and conclude with some of the open questions about CI that can be resolved by studies on Drosophila.
Collapse
Affiliation(s)
- Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Naga Sri Vidya Goparaju
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Maximino Vilanueva
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA.
- The Robert N. Butler Columbia Aging Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Ferreira N, Perks KL, Rossetti G, Rudler DL, Hughes LA, Ermer JA, Scott LH, Kuznetsova I, Richman TR, Narayana VK, Abudulai LN, Shearwood AJ, Cserne Szappanos H, Tull D, Yeoh GC, Hool LC, Filipovska A, Rackham O. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J 2019; 38:e102155. [PMID: 31721250 PMCID: PMC6912024 DOI: 10.15252/embj.2019102155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.
Collapse
Affiliation(s)
- Nicola Ferreira
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Kara L Perks
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Judith A Ermer
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Louis H Scott
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Tara R Richman
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Vinod K Narayana
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Laila N Abudulai
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthWAAustralia
- School of Molecular SciencesThe University of Western Australia, CrawleyWAAustralia
- The School of Biomedical SciencesThe University of Western AustraliaNedlandsWAAustralia
| | - Anne‐Marie J Shearwood
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | | | - Dedreia Tull
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - George C Yeoh
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
| | - Livia C Hool
- School of Human Sciences (Physiology)The University of Western AustraliaCrawleyWAAustralia
- Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
- School of Molecular SciencesThe University of Western Australia, CrawleyWAAustralia
| | - Oliver Rackham
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- School of Pharmacy and Biomedical SciencesCurtin UniversityBentleyWAAustralia
- Curtin Health Innovation Research InstituteCurtin UniversityBentleyWAAustralia
| |
Collapse
|
23
|
Pomatto LCD, Sun PY, Yu K, Gullapalli S, Bwiza CP, Sisliyan C, Wong S, Zhang H, Forman HJ, Oliver PL, Davies KE, Davies KJA. Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biol 2019; 24:101194. [PMID: 31022673 PMCID: PMC6479762 DOI: 10.1016/j.redox.2019.101194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2 signal transduction pathway plays a major role in adaptive responses to oxidative stress and in maintaining adaptive homeostasis, yet Nrf2 signaling undergoes a significant age-dependent decline that is still poorly understood. We used mouse embryonic fibroblasts (MEFs) cultured under hyperoxic conditions of 40% O2, as a model of accelerated ageing. Hyperoxia increased baseline levels of Nrf2 and multiple transcriptional targets (20S Proteasome, Immunoproteasome, Lon protease, NQO1, and HO-1), but resulted in loss of cellular ability to adapt to signaling levels (1.0 μM) of H2O2. In contrast, MEFs cultured at physiologically relevant conditions of 5% O2 exhibited a transient induction of Nrf2 Phase II target genes and stress-protective enzymes (the Lon protease and OXR1) following H2O2 treatment. Importantly, all of these effects have been seen in older cells and organisms. Levels of Two major Nrf2 inhibitors, Bach1 and c-Myc, were strongly elevated by hyperoxia and appeared to exert a ceiling on Nrf2 signaling. Bach1 and c-Myc also increase during ageing and may thus be the mechanism by which adaptive homeostasis is compromised with age.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelsi Yu
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sandhyarani Gullapalli
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Christina Sisliyan
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Peter L Oliver
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK; MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Kay E Davies
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
24
|
Inactivation of Lon protease reveals a link between mitochondrial unfolded protein stress and mitochondrial translation inhibition. Cell Death Dis 2018; 9:1168. [PMID: 30518747 PMCID: PMC6281655 DOI: 10.1038/s41419-018-1213-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
The mitochondrial Unfolded Protein Response (UPRmt) pathway confers protection from misfolded and aggregated proteins by activating factors that promote protein folding and degradation. Our recent work on Lon protease, a member of the mitochondrial ATPase Associated with diverse cellular Activities (AAA+) family of mitochondrial resident proteases, suggests that mitochondrial translational inhibition may also be a feature of the UPRmt pathway.
Collapse
|