1
|
Cao M, Yan J, Ding Y, Zhang Y, Sun Y, Jiang G, Zhang Y, Li B. The potential impact of RNA splicing abnormalities on immune regulation in endometrial cancer. Cell Death Dis 2025; 16:148. [PMID: 40032844 PMCID: PMC11876696 DOI: 10.1038/s41419-025-07458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
RNA splicing controls the post-transcriptional level of gene expression, allowing for the synthesis of many transcripts with various configurations and roles. Variations in RNA splicing regulatory factors, including splicing factors, signaling pathways, epigenetic modifications, and environmental factors, are typically the origin of tumor-associated splicing anomalies. Furthermore, thorough literature assessments on the intricate connection between tumor-related splicing dysregulation and tumor immunity are currently lacking. Therefore, we also thoroughly discuss putative targets associated with RNA splicing in endometrial cancer (EC) and the possible impacts of aberrant RNA splicing on the immune control of tumor cells and tumor microenvironment (TME), which contributes to enhancing the utilization of immunotherapy in the management of EC and offers an alternative viewpoint for the exploration of cancer therapies and plausible prognostic indicators.
Collapse
Affiliation(s)
- Minyue Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiayu Yan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Ding
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yiqin Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yihan Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Genyi Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yanli Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bilan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Lee TA, Tsai EY, Liu SH, Chou WC, Hsu Hung SD, Chang CY, Chao CH, Yamaguchi H, Lai YJ, Chen HL, Li CW. Regulation of PD-L1 glycosylation and advances in cancer immunotherapy. Cancer Lett 2025; 612:217498. [PMID: 39855377 DOI: 10.1016/j.canlet.2025.217498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells. Glycosylation of PD-L1 at N35, N192, N200, and N219 stabilizes PD-L1 on the cancer cell surface, which contributes to immune evasion by inhibiting T cell activity. To date, at least six glycosyltransferases and four associate proteins are known to regulate PD-L1 glycosylation. Terminal modifications such as poly-N-acetyl-lactosamine (poly-LacNAC), sulfation, and sialylation are commonly found on PD-L1, acting as an immune recognition ligand and regulating certain immune responses. Studies have identified many mechanisms and potential therapeutic targets within the glycosylation pathways of PD-L1, revealing their involvement in cancer pathology, immune evasion, and resistance to immunotherapy. In this review, we covered the glycoforms, terminal moiety, binding lectin, glycosyltransferase, as well as sugar analogs focusing on glycosylated PD-L1. We present a mechanism that originates from the endoplasmic reticulum (ER)-Golgi apparatus (Golgi) and its subsequent translocation to the cell membrane. This pathway determines the immune suppression function of PD-L1 and therefore regulates the immune response such as T cells, monocytes, and macrophages. This collection of findings underscores the significance of glycosylation in the role of PD-L1 in cancer and highlights multiple potential targets and strategies for improving therapeutic intervention and diagnostic techniques.
Collapse
Affiliation(s)
- Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - En-Yun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Hou Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Duo Hsu Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chen-Yu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hong Chao
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Graduate Institute of Cell Biology, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 113 Wilder Street, Lowell, MA, 01854, USA
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
3
|
Chen Z, Fu S, Shan Y, He Z, Gu J, Wu H, Lin J, Huang Y, Wang H, Lu Y, Ding M. Circ_0001047 inhibits prostate cancer progression and enhances abiraterone sensitivity via miR-122-5p/FKBP5/PHLPP1/AKT axis in vitro. Discov Oncol 2024; 15:569. [PMID: 39419900 PMCID: PMC11486870 DOI: 10.1007/s12672-024-01408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Prostate cancer (PCa), with high heterogeneity and poor prognosis, is one of the most common malignant tumors in men. Circular RNAs (circRNAs) have been identified in tumor progression and resistance to medication in numerous studies. However, the role of circ_0001047 in PCa is unclear. In this research, we found that circ_0001047 had low expression in PCa cells and tissues and was negatively correlated with testosterone secretion in vivo. Overexpression of circ_0001047 inhibited the proliferation, migration, invasion, and anti-apoptotic abilities of human PCa cells in vitro. Mechanistically, circ_0001047 promoted the expression of FKBP5 through sponge adsorption of miR-122-5p and then inhibited the proliferation, anti-apoptotic migration, and invasion abilities of PCa cells. In addition, overexpression of circ_0001047 enhanced the sensitivity of PCa cells to abiraterone by inhibiting AKT phosphorylation activation through upregulation of FKBP5/PHLPP1. This study revealed a novel mechanism by which circ_0001047 regulates PCa progression and treatment sensitivity via the miR-122-5p/FKBP5/PHLPP1/AKT axis. These findings deepen our comprehension of the molecular mechanisms in latent PCa progression and treatment resistance.
Collapse
Affiliation(s)
- Zhenjie Chen
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
- Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Shi Fu
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yiqian Shan
- The Sixth People's Hospital of Nansha District, Guangzhou, 511458, China
| | - Zexi He
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Jun Gu
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Haichao Wu
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Jiawei Lin
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yinglong Huang
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Haifeng Wang
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yangbai Lu
- Zhongshan City People's Hospital, Zhongshan, 528403, China.
| | - Mingxia Ding
- Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| |
Collapse
|
4
|
Giordano C, Marrone L, Romano S, Della Pepa GM, Donzelli CM, Tufano M, Capasso M, Lasorsa VA, Quintavalle C, Guerri G, Martucci M, Auricchio A, Gessi M, Sala E, Olivi A, Romano MF, Gaudino S. The FKBP51s Splice Isoform Predicts Unfavorable Prognosis in Patients with Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1296-1306. [PMID: 38651817 PMCID: PMC11097923 DOI: 10.1158/2767-9764.crc-24-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The primary treatment for glioblastoma (GBM) is removing the tumor mass as defined by MRI. However, MRI has limited diagnostic and predictive value. Tumor-associated macrophages (TAM) are abundant in GBM tumor microenvironment (TME) and are found in peripheral blood (PB). FKBP51 expression, with its canonical and spliced isoforms, is constitutive in immune cells and aberrant in GBM. Spliced FKBP51s supports M2 polarization. To find an immunologic signature that combined with MRI could advance in diagnosis, we immunophenotyped the macrophages of TME and PB from 37 patients with GBM using FKBP51s and classical M1-M2 markers. We also determined the tumor levels of FKBP51s, PD-L1, and HLA-DR. Tumors expressing FKBP51s showed an increase in various M2 phenotypes and regulatory T cells in PB, indicating immunosuppression. Tumors expressing FKBP51s also activated STAT3 and were associated with reduced survival. Correlative studies with MRI and tumor/macrophages cocultures allowed to interpret TAMs. Tumor volume correlated with M1 infiltration of TME. Cocultures with spheroids produced M1 polarization, suggesting that M1 macrophages may infiltrate alongside cancer stem cells. Cocultures of adherent cells developed the M2 phenotype CD163/FKBP51s expressing pSTAT6, a transcription factor enabling migration and invasion. In patients with recurrences, increased counts of CD163/FKBP51s monocyte/macrophages in PB correlated with callosal infiltration and were accompanied by a concomitant decrease in TME-infiltrating M1 macrophages. PB PD-L1/FKBP51s connoted necrotic tumors. In conclusion, FKBP51s identifies a GBM subtype that significantly impairs the immune system. Moreover, FKBP51s marks PB macrophages associated with MRI features of glioma malignancy that can aid in patient monitoring. SIGNIFICANCE Our research suggests that by combining imaging with analysis of monocyte/macrophage subsets in patients with GBM, we can enhance our understanding of the disease and assist in its treatment. We discovered a similarity in the macrophage composition between the TME and PB, and through association with imaging, we could interpret macrophages. In addition, we identified a predictive biomarker that drew more attention to immune suppression of patients with GBM.
Collapse
Affiliation(s)
- Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Marrone
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Simona Romano
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Giuseppe Maria Della Pepa
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Carlo Maria Donzelli
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Martina Tufano
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Mario Capasso
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Vito Alessandro Lasorsa
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Cristina Quintavalle
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore” (IEOS), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italia
| | - Giulia Guerri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Annamaria Auricchio
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Marco Gessi
- UOS di Neuropatologia, UOC Anatomia Patologica, Fondazione Policlinico “A. Gemelli” IRCCS, Rome, Italy
| | - Evis Sala
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Olivi
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Maria Fiammetta Romano
- Dipartmento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli, Federico II, Napoli, Italy
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, Universitaà Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Lu Q, Qin X, Chen C, Yu W, Lin J, Liu X, Guo R, Reiter RJ, Ashrafizadeh M, Yuan M, Ren J. Elevated levels of alcohol dehydrogenase aggravate ethanol-evoked cardiac remodeling and contractile anomalies through FKBP5-yap-mediated regulation of ferroptosis and ER stress. Life Sci 2024; 343:122508. [PMID: 38382873 DOI: 10.1016/j.lfs.2024.122508] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Alcohol intake provokes severe organ injuries including alcoholic cardiomyopathy with hallmarks of cardiac remodeling and contractile defects. This study examined the toxicity of facilitated ethanol metabolism in alcoholism-evoked changes in myocardial morphology and contractile function, insulin signaling and various cell death domains using cardiac-selective overexpression of alcohol dehydrogenase (ADH). WT and ADH mice were offered an alcohol liquid diet for 12 weeks prior to assessment of cardiac geometry, function, ER stress, apoptosis and ferroptosis. Alcohol intake provoked pronounced glucose intolerance, cardiac remodeling and contractile anomalies with apoptosis, ER stress, and ferroptosis, the effects were accentuated by ADH with the exception of global glucose intolerance. Hearts from alcohol ingesting mice displayed dampened insulin-stimulated phosphorylation of insulin receptor (tyr1146) and IRS-1 (tyrosine) along with elevated IRS-1 serine phosphorylation, the effect was augmented by ADH. Alcohol challenge dampened phosphorylation of Akt and GSK-3β, and increased phosphorylation of c-Jun and JNK, the effects were accentuated by ADH. Alcohol challenge promoted ER stress, FK506 binding protein 5 (FKBP5), YAP, apoptosis and ferroptosis, the effects were exaggerated by ADH. Using a short-term ethanol challenge model (3 g/kg, i.p., twice in three days), we found that inhibition of FKBP5-YAP signaling or facilitated ethanol detoxification by Alda-1 alleviated ethanol cardiotoxicity. In vitro study revealed that the ethanol metabolite acetaldehyde evoked cardiac contractile anomalies, lipid peroxidation, and apoptosis, the effects of which were mitigated by Alda-1, inhibition of ER stress, FKBP5 and YAP. These data suggest that facilitated ethanol metabolism via ADH exacerbates alcohol-evoked myocardial remodeling, functional defects, and insulin insensitivity possibly through a FKBP5-YAP-associated regulation of ER stress and ferroptosis.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China.
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Jie Lin
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaoyu Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Milad Ashrafizadeh
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Yuan
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
6
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
7
|
Dondi A, Lischetti U, Jacob F, Singer F, Borgsmüller N, Coelho R, Heinzelmann-Schwarz V, Beisel C, Beerenwinkel N. Detection of isoforms and genomic alterations by high-throughput full-length single-cell RNA sequencing in ovarian cancer. Nat Commun 2023; 14:7780. [PMID: 38012143 PMCID: PMC10682465 DOI: 10.1038/s41467-023-43387-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Understanding the complex background of cancer requires genotype-phenotype information in single-cell resolution. Here, we perform long-read single-cell RNA sequencing (scRNA-seq) on clinical samples from three ovarian cancer patients presenting with omental metastasis and increase the PacBio sequencing depth to 12,000 reads per cell. Our approach captures 152,000 isoforms, of which over 52,000 were not previously reported. Isoform-level analysis accounting for non-coding isoforms reveals 20% overestimation of protein-coding gene expression on average. We also detect cell type-specific isoform and poly-adenylation site usage in tumor and mesothelial cells, and find that mesothelial cells transition into cancer-associated fibroblasts in the metastasis, partly through the TGF-β/miR-29/Collagen axis. Furthermore, we identify gene fusions, including an experimentally validated IGF2BP2::TESPA1 fusion, which is misclassified as high TESPA1 expression in matched short-read data, and call mutations confirmed by targeted NGS cancer gene panel results. With these findings, we envision long-read scRNA-seq to become increasingly relevant in oncology and personalized medicine.
Collapse
Affiliation(s)
- Arthur Dondi
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ulrike Lischetti
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland.
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Francis Jacob
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
| | - Nico Borgsmüller
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ricardo Coelho
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland
- University Hospital Basel, Gynecological Cancer Center, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Christian Beisel
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland.
| | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
8
|
Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. ACS Pharmacol Transl Sci 2023; 6:361-371. [PMID: 36926456 PMCID: PMC10012253 DOI: 10.1021/acsptsci.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Collapse
Affiliation(s)
- Vanessa Buffa
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Fabian H. Knaup
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Margherita Springer
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V. Schmidt
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
9
|
Luo X, Du G, Chen B, Yan G, Zhu L, Cui P, Dai H, Qi Z, Lan T. Novel immunosuppressive effect of FK506 by upregulation of PD-L1 via FKBP51 in heart transplantation. Scand J Immunol 2022; 96:e13203. [PMID: 35801698 DOI: 10.1111/sji.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The calcineurin inhibitor-FK506-is a first-line immunosuppressant that regulates T-cell secretion of IL-2 and other cytokines. However, the mechanism of its protective effect on target cells and its role on tumor recurrence and interaction with anti-tumor immune checkpoint inhibitors, such as PD-L1 blocking, are still unclear. Here, in a murine heart transplantation model, we observed the upregulation of programmed death-ligand 1 (PD-L1) expression by FK506 in both dendritic cells (DCs) and allografts. Blocking PD-L1 during FK506 treatment increased IFN-γ and TNF-α expression, enhanced CD4+ and CD8+ T-cell proliferation, and suppressed Treg differentiation. Moreover, PD-L1 decreased T-cell infiltration and induced T cell apoptosis in both the spleen and graft. PD-L1 was not only required in FK506-mediated immunosuppression but also upregulated by FK506. Treatment with SAFit2, a FKBP51 selective inhibitor, reduced the expression of PD-L1 on DCs and the grafts and interfered with the immunosuppressive effect of FK506, suggesting that the mechanism depends on FK506-binding protein (FKBP) 51 expression. Overall, our results add new insights into the role of FK506, not only on T-cell cytokine secretion but also on co-inhibitory molecular regulation and target cell immune privilege.
Collapse
Affiliation(s)
- Xuewei Luo
- Medical College of Guangxi University, Nanning, China.,Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Guicheng Du
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Bingye Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Luyao Zhu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Pengcheng Cui
- Medical College of Guangxi University, Nanning, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, China.,Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Tianshu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.,Institute of Respiratory diseases,Xiamen medical college
| |
Collapse
|
10
|
Wu Y, Wang H, Wei D. Oncogenic magnesium transporter 1 upregulates programmed death-1-ligand 1 expression and contributes to growth and radioresistance of glioma cells through the ERK/MAPK signaling pathway. Bioengineered 2022; 13:9575-9587. [PMID: 35416125 PMCID: PMC9161830 DOI: 10.1080/21655979.2022.2037214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy has been established as a major therapeutic modality for glioma, whereas new therapeutic targets are needed to prevent tumor recurrence. This study intends to explore the regulatory role of magnesium transporter 1 (MAGT1) in radiotherapy resistance of glioma through modulating ERK and programmed death-1-ligand 1 (PD-L1). Our bioinformatics analysis identified differentially expressed MAGT1 in glioma, expression of which was subsequently determined in cohort data of TCGA database and microarray dataset as well as glioma cell lines. Artificial modulation of MAGT1, ERK, and PD-L1 expression was performed to examine their effects on glioma cell proliferation and radioresistance, as reflected by MTT and colony formation assays under irradiation. Mouse glioma cells with manipulated MAGT1 and ERK inhibitors were further injected into mice to assess the in vivo tumor formation ability of glioma cells. It was noted that MAGT1 expression was highly expressed in glioma tissues of TCGA data and microarray dataset, which was then validated in glioma cell lines. Ectopic expression of MAGT1 was revealed to promote the proliferation and radioresistance of glioma cells, which was attributed to the MAGT1-mediated activation of the ERK/MAPK signaling pathway. It was illuminated that MAGT1 stimulated PD-L1 expression through the ERK/MAPK pathway and thus facilitated glioma cell growth. Additionally, MAGT1 overexpression accelerated the in vivo tumor formation of glioma cells, while the ERK inhibitor negated its effect. In conclusion, MAGT1 enhances the growth and radioresistance of glioma cells through the ERK/MAPK signaling pathway-mediated upregulation of PD-L1 expression.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Hongbing Wang
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Dongdong Wei
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| |
Collapse
|
11
|
Fierro J, DiPasquale J, Perez J, Chin B, Chokpapone Y, Tran AM, Holden A, Factoriza C, Sivagnanakumar N, Aguilar R, Mazal S, Lopez M, Dou H. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Sci Rep 2022; 12:2417. [PMID: 35165339 PMCID: PMC8844083 DOI: 10.1038/s41598-022-06430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a key role in glioblastoma multiforme (GBM) immunosuppression, vitality, proliferation, and migration, and is therefore a promising target for treating GBM. CRISPR/Cas9-mediated genomic editing can delete both cell surface and intracellular PD-L1. This systemic deliverable genomic PD-L1 deletion system can be used as an effective anti-GBM therapy by inhibiting tumor growth and migration, and overcoming immunosuppression. To target PD-L1 for CRISPR/Cas9 gene editing, we first identified two single guide RNA (sgRNA) sequences located on PD-L1 exon 3. The first sgRNA recognizes the forward strand of human PD-L1 near the beginning of exon 3 that allows editing by Cas9 at approximately base pair 82 (g82). The second sgRNA recognizes the forward strand of exon 3 that directs cutting at base pair 165 (g165). A homology-directed repair template (HDR) combined with the dual-sgRNAs was used to improve PD-L1 knockout specificity and efficiency. sgRNAs g82 and g165 were cloned into the multiplex CRISPR/Cas9 assembly system and co-transfected with the HDR template in human U87 GBM cells (g82/165 + HDR). T7E1 analysis suggests that the dual-sgRNA CRISPR/Cas9 strategy with a repair template was capable of editing the genomic level of PD-L1. This was further confirmed by examining PD-L1 protein levels by western blot and immunofluorescence assays. Western blot analysis showed that the dual-sgRNAs with the repair template caused a 64% reduction of PD-L1 protein levels in U87 cells, while immunostaining showed a significant reduction of intracellular PD-L1. PD-L1 deletion inhibited proliferation, growth, invasion and migration of U87 cells, indicating intracellular PD-L1 is necessary for tumor progression. Importantly, U87 cells treated with g82/165 + HDR polarized tumor-associated macrophages (TAM) toward an M1 phenotype, as indicated by an increase in TNF-α and a decrease in IL-4 secretions. This was further confirmed with flow cytometry that showed an increase in the M1 markers Ly6C + and CD80 +, and a decrease in the M2 marker CD206 + both in vitro and in vivo. Utilizing dual-sgRNAs and an HDR template with the CRISPR/Cas9 gene-editing system is a promising avenue for the treatment of GBM.
Collapse
Affiliation(s)
- Javier Fierro
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Jake DiPasquale
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Joshua Perez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Brandon Chin
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Yathip Chokpapone
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - An M Tran
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Arabella Holden
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Chris Factoriza
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Nikhi Sivagnanakumar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Rocio Aguilar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sarah Mazal
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Melissa Lopez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Huanyu Dou
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA.
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA.
| |
Collapse
|
12
|
Bauder M, Meyners C, Purder PL, Merz S, Sugiarto WO, Voll AM, Heymann T, Hausch F. Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors. J Med Chem 2021; 64:3320-3349. [PMID: 33666419 DOI: 10.1021/acs.jmedchem.0c02195] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The FK506-binding protein 51 (FKBP51) emerged as a key player in several diseases like stress-related disorders, chronic pain, and obesity. Linear analogues of FK506 called SAFit were shown to be highly selective for FKBP51 over its closest homologue FKBP52, allowing the proof-of-concept studies in animal models. Here, we designed and synthesized the first macrocyclic FKBP51-selective ligands to stabilize the active conformation. All macrocycles retained full FKBP51 affinity and selectivity over FKBP52 and the incorporation of polar functionalities further enhanced affinity. Six high-resolution crystal structures of macrocyclic inhibitors in complex with FKBP51 confirmed the desired selectivity-enabling binding mode. Our results show that macrocyclization is a viable strategy to target the shallow FKBP51 binding site selectively.
Collapse
Affiliation(s)
- Michael Bauder
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Meyners
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Patrick L Purder
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Stephanie Merz
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Andreas M Voll
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Felix Hausch
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
13
|
Romano S, Cesaro E, Tufano M, Romano MF. Eradication of CSCs: the roadmap for curing cancer. Oncoscience 2020; 7:70-72. [PMID: 33195737 PMCID: PMC7640900 DOI: 10.18632/oncoscience.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
15
|
Yamaguchi I, Nakajima K, Shono K, Mizobuchi Y, Fujihara T, Shikata E, Yamaguchi T, Kitazato K, Sampetrean O, Saya H, Takagi Y. Downregulation of PD-L1 via FKBP5 by celecoxib augments antitumor effects of PD-1 blockade in a malignant glioma model. Neurooncol Adv 2019; 2:vdz058. [PMID: 32642723 PMCID: PMC7212915 DOI: 10.1093/noajnl/vdz058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Antitumor therapies targeting programmed cell death-1 (PD-1) or its ligand-1 (PD-L1) are used in various cancers. However, in glioblastoma (GBM), the expression of PD-L1 varies between patients, and the relationship between this variation and the efficacy of anti-PD-1 antibody therapy remains unclear. High expression levels of PD-L1 affect the proliferation and invasiveness of GBM cells. As COX-2 modulates PD-L1 expression in cancer cells, we tested the hypothesis that the COX-2 inhibitor celecoxib potentiates anti-PD-1 antibody treatment via the downregulation of PD-L1. Methods Six-week-old male C57BL/6 mice injected with murine glioma stem cells (GSCs) were randomly divided into four groups treated with vehicle, celecoxib, anti-PD-1 antibody, or celecoxib plus anti-PD-1 antibody and the antitumor effects of these treatments were assessed. To verify the mechanisms underlying these effects, murine GSCs and human GBM cells were studied in vitro. Results Compared with that with each single treatment, the combination of celecoxib and anti-PD-1 antibody treatment significantly decreased tumor volume and prolonged survival. The high expression of PD-L1 was decreased by celecoxib in the glioma model injected with murine GSCs, cultured murine GSCs, and cultured human GBM cells. This reduction was associated with post-transcriptional regulation of the co-chaperone FK506-binding protein 5 (FKBP5). Conclusions Combination therapy with anti-PD-1 antibody plus celecoxib might be a promising therapeutic strategy to target PD-L1 in glioblastoma. The downregulation of highly-expressed PD-L1 via FKBP5, induced by celecoxib, could play a role in its antitumor effects.
Collapse
Affiliation(s)
- Izumi Yamaguchi
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kohei Nakajima
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenji Shono
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshifumi Mizobuchi
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Toshitaka Fujihara
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Eiji Shikata
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tadashi Yamaguchi
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiko Kitazato
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
16
|
Feng X, Sippel C, Knaup FH, Bracher A, Staibano S, Romano MF, Hausch F. A Novel Decalin-Based Bicyclic Scaffold for FKBP51-Selective Ligands. J Med Chem 2019; 63:231-240. [PMID: 31800244 DOI: 10.1021/acs.jmedchem.9b01157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective inhibition of FKBP51 has emerged as possible novel treatment for diseases like major depressive disorder, obesity, chronic pain, and certain cancers. The current FKBP51 inhibitors are rather large, flexible, and have to be further optimized. By using a structure-based rigidification strategy, we hereby report the design and synthesis of a novel promising bicyclic scaffold for FKBP51 ligands. The structure-activity analysis revealed the decalin scaffold as the best moiety for the selectivity-enabling subpocket of FBKP51. The resulting compounds retain high potency for FKBP51 and excellent selectivity over the close homologue FKBP52. With the cocrystal structure of an advanced ligand in this novel series, we show how the decalin locks the key selectivity-inducing cyclohexyl moiety of the ligand in a conformation typical for FKBP51-selective binding. The best compound 29 produces cell death in a HeLa-derived KB cell line, a cellular model of cervical adenocarcinoma, where FKBP51 is highly overexpressed. Our results show how FKBP51 inhibitors can be rigidified and extended while preserving FKBP51 selectivity. Such inhibitors might be novel tools in the treatment of human cancers with deregulated FKBP51.
Collapse
Affiliation(s)
- Xixi Feng
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstrasse 2 , 80804 Munich , Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstrasse 2 , 80804 Munich , Germany
| | - Fabian H Knaup
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| | - Andreas Bracher
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences , Federico II University of Naples , 80131 Naples , Italy
| | - Maria F Romano
- Department of Molecular Medicine and Medical Biotechnologies , Federico II University , 80131 Naples , Italy
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| |
Collapse
|