1
|
Cai D, Liu C, Li H, Wang C, Bai L, Feng J, Hu M, Wang H, Song S, Xie Y, Chen Z, Zhong J, Lian H, Yang Z, Zhang Y, Nie Y. Foxk1 and Foxk2 promote cardiomyocyte proliferation and heart regeneration. Nat Commun 2025; 16:2877. [PMID: 40128196 PMCID: PMC11933303 DOI: 10.1038/s41467-025-57996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Promoting endogenous cardiomyocyte proliferation is a promising strategy for cardiac repair. Identifying key factors that regulate cardiomyocyte proliferation can advance the development of novel therapies for heart regeneration. Here, we identify Foxk1 and Foxk2 as key regulators of cardiomyocyte proliferation, whose expression declines during postnatal heart development. Cardiomyocyte-specific knockout of Foxk1 or Foxk2 impairs neonatal heart regeneration after myocardial infarction (MI) injury. AAV9-mediated Foxk1 or Foxk2 overexpression extends the postnatal cardiomyocyte proliferative window and enhances cardiac repair in adult mice after MI. Mechanistically, Foxk1 and Foxk2 drive cardiomyocyte cell cycle progression by directly activating CCNB1 and CDK1 expression, forming the CCNB1/CDK1 complex that facilitates G2/M transition. Moreover, Foxk1 and Foxk2 promote cardiomyocyte proliferation by upregulating HIF1α expression, which enhances glycolysis and the pentose phosphate pathway (PPP), which further favors cardiomyocyte proliferation. These findings establish Foxk1 and Foxk2 as promising therapeutic targets for cardiac injury.
Collapse
Affiliation(s)
- Dongcheng Cai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chungeng Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Spine Surgery and Institute for Orthopaedic Research, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, PR China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chiyin Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Miaoqing Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yifan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiajun Zhong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhiwei Yang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China.
| |
Collapse
|
2
|
Neitzel LR, Fuller DT, Cornell J, Rea S, de Aguiar Ferreira C, Williams CH, Hong CC. Inhibition of GPR68 induces ferroptosis and radiosensitivity in diverse cancer cell types. Sci Rep 2025; 15:4074. [PMID: 39900965 PMCID: PMC11791087 DOI: 10.1038/s41598-025-88357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Radioresistance is thought to be a major consequence of tumor milieu acidification resulting from the Warburg effect. Previously, using ogremorphin (OGM), a small molecule inhibitor of GPR68, an extracellular proton sensing receptor, we demonstrated that GPR68 is a key pro-survival pathway in glioblastoma cells. Here, we demonstrate that GPR68 inhibition also induces ferroptosis in lung cell carcinoma (A549) and pancreatic ductal adenocarcinoma (Panc02) cells. Moreover, OGM synergized with ionizing radiation to induce lipid peroxidation, a hallmark of ferroptosis, as well as reduce colony size in 2D and 3D cell culture. GPR68 inhibition is not acutely detrimental but increases intracellular free ferrous iron, which is known to trigger reactive oxygen species (ROS) generation. In summary, GPR68 inhibition induces lipid peroxidation in cancer cells and sensitizes them to ionizing radiation in part through the mobilization of intracellular free ferrous iron. Our results suggest that GPR68 is a key mediator of cancer cell radioresistance activated by acidic tumor microenvironment.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Daniela T Fuller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
3
|
Fan H, Wang L, Zeng X, Xiong C, Yu D, Zhang X, Chen J, Meng Z, Campbell A, Huang W, Mei H, Sun H. Redox-Inducible Radiomimetic Photosensitizers Selectively Suppress Cancer Cell Proliferation by Damaging DNA through Radical Cation Chemistry. Angew Chem Int Ed Engl 2025; 64:e202413352. [PMID: 39145675 DOI: 10.1002/anie.202413352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Radiotherapy leverages ionizing radiation to kill cancer cells through direct and indirect effects, and direct effects are considered to play an equal or greater role. Several photosensitizers have been developed to mimic the direct effects of radiotherapy, generating radical cations in DNA models, but none has been applied in cellular studies. Here, we design a radiomimetic photosensitizer, producing DNA radical cations in cells for the first time. To reduce adverse effects, several redox-inducible precursors are prepared as cancer cells have elevated levels of GSH and H2O2. These precursors respond to GSH or H2O2, releasing the active photosensitizer that captures DNA abasic (AP) sites and generates DNA radical cations upon photolysis, without disrupting the redox state of cells. DNA radical cations migrate freely and are eventually trapped by H2O and O2 to yield DNA lesions, thus triggering DNA damage response. Our study suggests that direct effects of radiotherapy suppress cancer cell proliferation mainly by inducing G2/M phase cell cycle arrest, rather than promoting apoptosis. Synergistic effects of the precursor and chemotherapeutic agents are also observed in combination phototherapy. Beyond highlighting an alternative strategy for phototherapy, this proof-of-concept study affords a facile cellular platform to study the direct effects of radiotherapy.
Collapse
Affiliation(s)
- Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xuanwei Zeng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Chenghe Xiong
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaofan Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jiayi Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Wanqiao Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
4
|
Wen JY, Fang YY, Li DM, Tang YL, Huang HQ, Liu LM, Zeng JH, Dang YW, Pan YF, Zeng DT, Huang WJ, Chen G, Li H. A Comprehensive Analysis of LYAR in Colorectal Cancer: Prognostic Marker and Therapeutic Target. Cancer Biother Radiopharm 2024; 39:673-689. [PMID: 39159060 DOI: 10.1089/cbr.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Background: Colorectal cancer (CRC) is a major global health challenge with a need for new biomarkers and therapeutic targets. This work investigated the biological mechanisms and clinical value of Ly1 antibody reactive (LYAR) in CRC. Methods: We analyzed LYAR mRNA expression across multiple public databases, including genotype-tissue expression, gene expression omnibus, Oncomine, and the cancer genome atlas, alongside in-house immunohistochemical data to evaluate LYAR protein expression in CRC and non-CRC colorectal tissues. Gene set enrichment analysis (GSEA) was used to elucidate LYAR's biological functions, and its impact on the tumor immune microenvironment was assessed using CIBERSORT, ESTIMATE, and single-cell RNA sequencing techniques. In addition, LYAR's association with clinicopathological features and patient prognosis was explored, and its influence on drug sensitivity was investigated using the Connectivity Map database. Results: LYAR was significantly upregulated in CRC tissues compared with non-CRC colorectal counterparts, associated with altered immune cell composition and enhanced RNA processing, splicing, and cell cycle regulation. High LYAR expression correlated with poor disease-free and overall survival, underscoring its prognostic value. GSEA revealed LYAR's involvement in critical cellular processes and pathways, including DNA repair, cell cycle, and mTORC1 signaling. Correlation analysis identified genes positively and negatively associated with LYAR, leading to the discovery of temsirolimus and WYE-354, mTOR inhibitors, as potential therapeutic agents for CRC. Furthermore, LYAR expression predicted increased sensitivity to cetuximab in RAS wild-type metastatic CRC, indicating its utility as a biomarker for treatment responsiveness. Conclusions: LYAR's upregulation in CRC highlights its potential as a biomarker for prognosis and therapeutic targeting, offering insights into CRC pathology and suggesting new avenues for treatment optimization.
Collapse
Affiliation(s)
- Jia-Ying Wen
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Ye-Ying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Dong-Ming Li
- Department of Pathology, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu-Lu Tang
- Department of Pathology, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - He-Qing Huang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Li-Min Liu
- Department of Toxicology, College of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, Nanning, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yan-Fang Pan
- Department of Pathology, Hospital of Guangxi Liugang Medical Co., LTD./Guangxi Liuzhou Dingshun Forensic Expert Institute, Liuzhou, P.R. China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin city, Yulin, P.R. China
| | - Wei-Jian Huang
- Department of Pathology, Redcross Hospital of Yulin city, Yulin, P.R. China
| | - Gang Chen
- Department of Pathology, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Hui Li
- Department of Colorectal & Anal Surgery, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
5
|
Zhang C, Liu J, Wu J, Ranjan K, Cui X, Wang X, Zhang D, Zhu S. Key molecular DNA damage responses of human cells to radiation. Front Cell Dev Biol 2024; 12:1422520. [PMID: 39050891 PMCID: PMC11266142 DOI: 10.3389/fcell.2024.1422520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
Collapse
Affiliation(s)
- Chencheng Zhang
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jibin Liu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jun Wu
- Nantong Tumor Hospital, Nantong, China
| | - Kamakshi Ranjan
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Xiaopeng Cui
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xingdan Wang
- Department of Radiotherapy, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shudong Zhu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
- Argus Pharmaceuticals, Changsha, China
| |
Collapse
|
6
|
Ren Y, Yang P, Li C, Wang WA, Zhang T, Li J, Li H, Dong C, Meng W, Zhou H. Ionizing radiation triggers mitophagy to enhance DNA damage in cancer cells. Cell Death Discov 2023; 9:267. [PMID: 37507394 PMCID: PMC10382586 DOI: 10.1038/s41420-023-01573-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment strategy that causes DNA damage in tumor cells either directly or indirectly. Autophagy is a physiological process linked to DNA damage. Mitophagy is a form of autophagy, which specifically targets and eliminates impaired mitochondria, thereby upholding cellular homeostasis. However, the connection between DNA damage and mitophagy has yet to be fully elucidated. We found that mitophagy, as an upstream signal, increases ionizing radiation-induced DNA damage by downregulating or overexpressing key mitophagy proteins Parkin and BNIP3. Enhancing the basal level of mitophagy in conjunction with X-ray irradiation can potentially diminish cell cycle arrest at the G2/M phase, substantially elevate the accumulation of γ-H2AX, 53BP1, and PARP1 foci within the nucleus, augment DNA damage, and facilitate the demise of tumor cells. Consequently, this approach prolongs the survival of melanoma-bearing mice. The findings of this study are anticipated to offer a therapeutic approach for enhancing the therapeutic effectiveness of radiotherapy.
Collapse
Affiliation(s)
- Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Pengfei Yang
- School of Public Health, Yangzhou University, Yangzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Chenghao Li
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Wen-An Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tianyi Zhang
- School of Public Health, Yangzhou University, Yangzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jin Li
- Renmin Hospital of Wuhan Economic and Technological Development Zone, Wuhan, China
| | - Haining Li
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Heng Zhou
- School of Public Health, Yangzhou University, Yangzhou, China.
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
| |
Collapse
|
7
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
8
|
Ju Z, Xiang J, Xiao L, He Y, Zhang L, Wang Y, Lei R, Nie Y, Yang L, Miszczyk J, Zhou P, Huang R. TXNL4B regulates radioresistance by controlling the PRP3-mediated alternative splicing of FANCI. MedComm (Beijing) 2023; 4:e258. [PMID: 37168687 PMCID: PMC10165318 DOI: 10.1002/mco2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023] Open
Abstract
Ionizing radiation (IR) has been extensively used for cancer therapy, but the radioresistance hinders and undermines the radiotherapy efficacy in clinics greatly. Here, we reported that the spliceosomal protein thioredoxin-like 4B (TXNL4B) is highly expressed in lung tissues from lung cancer patients with radiotherapy. Lung cancer cells with TXNL4B knockdown illustrate increased sensitivity to IR. Mechanistically, TXNL4B interacts with RNA processing factor 3 (PRP3) and co-localizes in the nucleus post-IR. Nuclear localization of PRP3 promotes the alternative splicing of the Fanconi anemia group I protein (FANCI) transcript variants, FANCI-12 and FANCI-13. PRP3 regulates alternative splicing of FANCI toward the two variants, FANCI-12 and FANCI-13. Radioresistance was greatly enhanced through the combination of PRP31 and PRP8, the critical components of core spliceosome promoted by PRP3. Notably, the inhibition of PRP3 to suppress the production of FANCI-12 would deprive PRP31 and PRP8 of such interaction. As a result, cell cycle G2/M arrest was induced, DNA damage repair was delayed, and radiosensitivity was improved. Collectively, our study highlights potential novel underlying mechanisms of the involvement of TXNL4B and alternative splicing in radioresistance. The results would benefit potential cancer radiotherapy.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Liang Xiao
- Faculty of Naval MedicineNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Yan He
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Le Zhang
- Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Yunfeng Nie
- Hunan Prevention and Treatment Institute for Occupational Diseases ChangshaChangshaHunanChina
| | - Long Yang
- Hunan Prevention and Treatment Institute for Occupational Diseases ChangshaChangshaHunanChina
| | - Justyna Miszczyk
- Department of Experimental Physics of Complex SystemsThe H. Niewodniczański Institute of Nuclear Physics, Polish Academy of SciencesKrakówPoland
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Ju Z, Pan H, Qu C, Xiao L, Zhou M, Wang Y, Luo J, Shen L, Zhou P, Huang R. Lactobacillus rhamnosus GG ameliorates radiation-induced lung fibrosis via lncRNASNHG17/PTBP1/NICD axis modulation. Biol Direct 2023; 18:2. [PMID: 36635762 PMCID: PMC9835385 DOI: 10.1186/s13062-023-00357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a major side effect experienced for patients with thoracic cancers after radiotherapy. RIPF is poor prognosis and limited therapeutic options available in clinic. Lactobacillus rhamnosus GG (LGG) is advantaged and widely used for health promotion. However. Whether LGG is applicable for prevention of RIPF and relative underlying mechanism is poorly understood. Here, we reported a unique comprehensive analysis of the impact of LGG and its' derived lncRNA SNHG17 on radiation-induced epithelial-mesenchymal transition (EMT) in vitro and RIPF in vivo. As revealed by high-throughput sequencing, SNHG17 expression was decreased by LGG treatment in A549 cells post radiation and markedly attenuated the radiation-induced EMT progression (p < 0.01). SNHG17 overexpression correlated with poor overall survival in patients with lung cancer. Mechanistically, SNHG17 can stabilize PTBP1 expression through binding to its 3'UTR, whereas the activated PTBP1 can bind with the NICD part of Notch1 to upregulate Notch1 expression and aggravated EMT and lung fibrosis post radiation. However, SNHG17 knockdown inhibited PTBP1 and Notch1 expression and produced the opposite results. Notably, A549 cells treated with LGG also promoted cell apoptosis and increased cell G2/M arrest post radiation. Mice of RIPF treated with LGG decreased SNHG17 expression and attenuated lung fibrosis. Altogether, these data reveal that modulation of radiation-induced EMT and lung fibrosis by treatment with LGG associates with a decrease in SNHG17 expression and the inhibition of SNHG17/PTBP1/Nothch1 axis. Collectively, our results indicate that LGG exerts protective effects in RIPF and SNHG17 holds a potential marker of RIPF recovery in patients with thoracic cancers.
Collapse
Affiliation(s)
- Zhao Ju
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China ,grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Huiji Pan
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Can Qu
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Liang Xiao
- grid.73113.370000 0004 0369 1660Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433 China
| | - Meiling Zhou
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China ,grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Yin Wang
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Jinhua Luo
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Liangfang Shen
- grid.216417.70000 0001 0379 7164Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Pingkun Zhou
- grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China.
| |
Collapse
|
10
|
Guo P, Lei M, Hu S, Xu Z, Zhou Y, Zhou P, Huang R. Long-term LDR exposure may induce cognitive impairments: A possible association through targeting gut microbiota-gut-brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114351. [PMID: 36508818 DOI: 10.1016/j.ecoenv.2022.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Environmental and occupational low-dose radiation (LDR) exposure may be harmful for health but the previous reports regarding effect of LDR on cognition are contradictory. Here we investigated the effect of long-term LDR exposure on cognition. In this study, male Balb/c mice' cognitive functions were tested at 15 weeks after being exposed to 0.5 Gy LDR in 10 fractions at each dose of 0.05 Gy. The results demonstrated that long-term LDR exposure increases escape latency and the time spent in finding exits in mice compared with non LDR exposure. Meanwhile, the inflammation-related proteins including NFκB and p38 also increased. Lipopolysaccharide (LPS) increased and short-chain fatty acid (SCFA) levels decreased following long term LDR exposure. Treatment with microbiota-derived LPS and SCFAs reversed these effects in mice. Furthermore, the gut barrier integrity was damaged in a time-dependent manner with the decreased expression of intestinal epithelial-related biomarkers such as ZO-1 and occludin. Mechanistically, long after exposure to LDR, increased LPS levels may cause cognitive impairment through the regulation of Akt/mTOR signaling in the mouse hippocampus. These findings provide new insight into the clinical applications of LDR and suggest that the gut microbiota-plasma LPS and SCFAs-brain axis may underlie long-term LDR-induced cognition effects.
Collapse
Affiliation(s)
- Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - MingJun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
| | - Sai Hu
- Department of Radiology, Xiangya Hospital, CSU, Changsha 410008, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Zi Xu
- Central South University, China.
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| |
Collapse
|
11
|
Ju Z, Guo P, Xiang J, Lei R, Ren G, Zhou M, Yang X, Zhou P, Huang R. Low-dose radiation exaggerates HFD-induced metabolic dysfunction by gut microbiota through PA-PYCR1 axis. Commun Biol 2022; 5:945. [PMID: 36088469 PMCID: PMC9464247 DOI: 10.1038/s42003-022-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCo-exposure of High-fat-diet (HFD) behavior and environmental low-dose radiation (LDR) is common among majority occupational workers, but the synergism of this co-exposure in metabolic health is poorly understood. This study aimed to investigate the impact of gut microbiota and its metabolites on the regulation of HFD accompanied by LDR-associated with metabolic dysfunction and insulin resistance. Here, we reported that Parasutterella was markedly elevated in the gut microbiota of mice in co-exposure of HFD and LDR, accompanied by increased pyrrolidinecarboxylic acid (PA) level in both intestine and plasma. Transplantation of fecal microbiota from mice with co-exposure HFD and LDR with metabolic dysfunction resulted in increased disruption of metabolic dysfunction, insulin resistance and increased PYCR1 (Pyrroline-5-carboxylate reductase 1) expression. Mechanistically, intestinal barrier was damaged more serious in mice with co-exposure of HFD and LDR, leading high PA level in plasma, activating PYCR1 expression to inhibit insulin Akt/mTOR (AKT kinase-transforming protein/Serine threonine-protein kinase) signaling pathway to aggravate HFD-induced metabolic impairments. This study suggests a new avenue for interventions against western diet companied with low dose radiation exposure-driven metabolic impairments.
Collapse
|
12
|
Pan H, Zhou M, Ju Z, Luo J, Jin J, Shen L, Zhou P, Huang R. Potential role of gut microbiota-LCA-INSR axis in high fat-diet-induced non-alcoholic fatty liver dysfunction: From perspective of radiation variation. Curr Res Food Sci 2022; 5:1685-1700. [PMID: 36204709 PMCID: PMC9530674 DOI: 10.1016/j.crfs.2022.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease of the liver covering a range of conditions from hepatic steatosis to liver fibrosis. NAFLD could be induced by High-fat-diet(HFD). Ionizing radiation is widely used in medical diagnosis and therapy as well as is a common risk factor in occupational environment. Whether the exposure of various dose of radiation has effects on HFD-induced NAFLD remains unclear. Here, we reported that radiation exposure promoted HFD-induced NAFLD in a dose-response manner. Furthermore, the gut microbiota composition had significant difference among mice with or without radiation treatment. Specifically, the Bacteroidetes/Firmicutes ratio, the abundance of A. muciniphila, Butyricococcus, and Clostridiaceae decreased significantly in the mice with co-exposure of high dose of radiation and HFD treatment. A fecal transplantation trial (FMT) further verified the role of gut microbiota in the regulation of the liver response to co-exposure of high dose of radiation and HFD treatment. Notably, the gut microbiome analysis showed plasma lithocholic acid (LCA) level increased in the mice with co-exposure of high dose of radiation and HFD treatment. Following antibiotic and probiotic treatments there was a significantly decreased LCA bile acid concentration and subsequent promotion of INSR/PI3K/Akt insulin signaling in the liver tissues. Our results demonstrate that the co-exposure of radiation and HFD aggravates the HFD-induced NAFLD through gut microbiota-LCA-INSR axis. Probiotics supplementation is a potential way to protect against co-exposure of radiation and HFD-induced liver damage. Meanwhile, our study provide a new insight that population with potential HFD-induced damage should pay more attention on preventing from liver damage while exposing radiation. Gut microbiota-lithocholic acid-insulin receptor (LCA-INSR) axis involves the promotion effects of radiation on HFD-induced NAFLD. Probiotics improve the liver damage induced by co-exposure of radiation and HFD.
Collapse
Affiliation(s)
- Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Jing Jin
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Corresponding author.
| |
Collapse
|
13
|
Design, synthesis and mechanism of action of novel 1,9-disubstituted β-carboline derivatives as antitumor agents. Biomed Pharmacother 2022; 153:113494. [DOI: 10.1016/j.biopha.2022.113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
|
14
|
Effects of photon radiation on DNA damage, cell proliferation, cell survival and apoptosis of murine and human mesothelioma cell lines. Adv Radiat Oncol 2022; 7:101013. [DOI: 10.1016/j.adro.2022.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
|
15
|
Gschwind A, Marx C, Just MD, Severin P, Behring H, Marx-Blümel L, Becker S, Rothenburger L, Förster M, Beck JF, Sonnemann J. Tight association of autophagy and cell cycle in leukemia cells. Cell Mol Biol Lett 2022; 27:32. [PMID: 35382734 PMCID: PMC8981689 DOI: 10.1186/s11658-022-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Background Autophagy plays an essential role in maintaining cellular homeostasis and in the response to cellular stress. Autophagy is also involved in cell cycle progression, yet the relationship between these processes is not clearly defined. Results In exploring this relationship, we observed that the inhibition of autophagy impaired the G2/M phase-arresting activity of etoposide but enhanced the G1 phase-arresting activity of palbociclib. We further investigated the connection of basal autophagy and cell cycle by utilizing the autophagosome tracer dye Cyto-ID in two ways. First, we established a double-labeling flow-cytometric procedure with Cyto-ID and the DNA probe DRAQ5, permitting the cell cycle phase-specific determination of autophagy in live cells. This approach demonstrated that different cell cycle phases were associated with different autophagy levels: G1-phase cells had the lowest level, and G2/M-phase cells had the highest one. Second, we developed a flow-cytometric cell-sorting procedure based on Cyto-ID that separates cell populations into fractions with low, medium, and high autophagy. Cell cycle analysis of Cyto-ID-sorted cells confirmed that the high-autophagy fraction contained a much higher percentage of G2/M-phase cells than the low-autophagy fraction. In addition, Cyto-ID-based cell sorting also proved to be useful for assessing other autophagy-related processes: extracellular flux analysis revealed metabolic differences between the cell populations, with higher autophagy being associated with higher respiration, higher mitochondrial ATP production, and higher glycolysis. Conclusion This work provides clear evidence of high autophagy in G2/M-phase cells by establishing a novel cell sorting technique based on Cyto-ID. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00334-8.
Collapse
Affiliation(s)
- Alena Gschwind
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Christian Marx
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07747, Jena, Germany
| | - Marie D Just
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Paula Severin
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Hannah Behring
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Lisa Marx-Blümel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Sabine Becker
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Linda Rothenburger
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07747, Jena, Germany
| | - Martin Förster
- Clinic of Internal Medicine I, Jena University Hospital, 07747, Jena, Germany
| | - James F Beck
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany. .,Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany. .,Klinik für Kinder und Jugendmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
16
|
Lei R, Zhou M, Zhang S, Luo J, Qu C, Wang Y, Guo P, Huang R. Potential role of PRKCSH in lung cancer: bioinformatics analysis and a case study of Nano ZnO. NANOSCALE 2022; 14:4495-4510. [PMID: 35254362 DOI: 10.1039/d1nr08133k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PRKCSH, also known as glucosidase II beta, functions as a contributor to lung tumorigenesis by regulating the cell cycle in a p53-dependent manner under severe environmental stress. However, the prognostic value and molecular mechanisms by which the level of PRKCSH is significantly increased in cancer cells are not clearly understood. Here, we first generated a biological profile of PRKCSH expression changes in cancers by analysing bioinformatic data from cancer databases. We found that higher PRKCSH expression was correlated with a poorer prognosis and greater infiltration of most immune cell types in patients with lung cancer. In particular, PRKCSH expression showed significant negative correlations with the level of STAT6 (r = -0.31, p < 0.001) in lung cancer tissues. We further found that PRKCSH deficiency promoted G2/M arrest in response to zinc oxide nanoparticle (Nano ZnO) treatment in A549 cells. With regard to the mechanism, PRKCSH deficiency may induce STAT6 translocation to the nucleus to activate p53 expression through binding to the p53 promoter region from -365 bp to +126 bp. Eventually, activated p53 contributed to Nano-ZnO-induced G2/M arrest in lung cancer cells. Taken together, our data provide new insights into immunotherapy target choices and the prognostic value of PRKCSH. Since the G2/M cell cycle checkpoint is crucial for lung cancer prognosis, targeting PRKCSH expression to suppress the activation of the STAT6/p53 pathway is a potential therapeutic strategy for managing lung cancer.
Collapse
Affiliation(s)
- Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Shusheng Zhang
- Changsha Stomatological Hospital, Changsha, Hunan Province, China.
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
17
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
18
|
Suzuki M, Anko M, Ohara M, Matsumoto KI, Hasegawa S. Radiation-Induced Autophagy in Human Pancreatic Cancer Cells is Critically Dependent on G2 Checkpoint Activation: A Mechanism of Radioresistance in Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2021; 111:260-271. [PMID: 34112559 DOI: 10.1016/j.ijrobp.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Autophagy and cell-cycle checkpoints act in concert to confer cellular radioresistance. We investigated the functional interaction between radiation-induced autophagy and G2 checkpoint activation in highly radioresistant human pancreatic ductal adenocarcinoma (PDAC) cells. METHODS AND MATERIALS Four human PDAC cell lines (MIA PaCa-2, KP-4, Panc-1, and SUIT-2) were analyzed. These cells were first irradiated using x-rays, and their cell cycle status, autophagy, and cell cycle checkpoint marker expression and ATP production levels were evaluated. Autophagic flux assays and siRNA knockdown were used to evaluate autophagy activity. Double thymidine block experiments were performed to synchronize the cells. Two inhibitors (MK-1775 and SCH 900776) were used to attenuate G2 checkpoint activation. Cell survival assays and animal experiments were performed to evaluate the radiosensitizing effects of the G2 checkpoint inhibitors. RESULTS Autophagy and G2/M accumulation were synchronously induced in human PDAC cells with an activated G2 checkpoint at 12 hours after x-ray irradiation of 6 Gy. Radiation-induced autophagy produced the ATP levels required for cell survival. Double thymidine block experiments revealed that no autophagy occurred in cells that were solely in G2 phase. MK-1775 or SCH 900776 exposure attenuated not only G2 checkpoint activation but also postirradiation autophagy, indicating the dependence of radiation-induced autophagy on an activated G2 checkpoint. The inhibitors demonstrated a higher radiosensitizing effect in the PDAC cells than the autophagy inhibitor chloroquine. MK-1775 in combination with x-rays significantly suppressed the tumor growth of MIA PaCa-2 xenografts compared with other treatment groups, including radiation or drug exposure alone, to enhance the radiosensitivity of PDAC cells in vivo. CONCLUSIONS Biological crosstalk exists between the G2 checkpoint activation and radiation-induced autophagy processes that are believed to independently contribute to the radioresistance of human PDAC cells. These findings have important implications for the development of future radiation therapy strategies for PDAC.
Collapse
Affiliation(s)
- Motofumi Suzuki
- Radiation and Cancer Biology Group; Quantitative RedOx Sensing Group, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayuka Anko
- Radiation and Cancer Biology Group; Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Maki Ohara
- Radiation and Cancer Biology Group; Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | |
Collapse
|
19
|
Proshkina E, Yushkova E, Koval L, Zemskaya N, Shchegoleva E, Solovev I, Yakovleva D, Pakshina N, Ulyasheva N, Shaposhnikov M, Moskalev A. Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila Melanogaster. Int J Mol Sci 2021; 22:2396. [PMID: 33673647 PMCID: PMC7957547 DOI: 10.3390/ijms22052396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Small RNAs are essential to coordinate many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of the mutagenic transposon activity. These processes determine the aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in regulating lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters are reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system causes a lifespan increase. But changes in radioresistance depend on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allow us to determine associated molecular mechanisms.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Nadezhda Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Evgeniya Shchegoleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Daria Yakovleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Natalya Pakshina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|