1
|
Fang Z, Pan Y, Lu Z, Wang L, Hu X, Ma Y, Li S. LncRNA SNHG1: A novel biomarker and therapeutic target in hepatocellular carcinoma. Gene 2025; 958:149462. [PMID: 40187618 DOI: 10.1016/j.gene.2025.149462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Increasing evidence suggests that long non-coding RNAs play a critical role in cancer development, with the small nucleolar RNA host gene family being a key participant in multiple types of carcinogenesis, including HCC. Small nucleolar RNA host gene 1 (SNHG1) is a significant member of the SNHG family. SNHG1 expression consistently increases in various HCC-associated processes, such as cell proliferation, apoptosis, angiogenesis, migration, invasion, and treatment resistance. Higher SNHG1 expression levels predict worse prognosis by positively correlating with clinicopathological features, including larger tumour size, poor differentiation, and advanced stages in patients with HCC. Nevertheless, the precise role of SNHG1 in the initiation and progression of HCC remains unclear. Therefore, this review aims to summarise the current investigations on the pathogenesis of SNHG1 in HCC, highlighting its potential as a molecular marker for early prediction and prognostic assessment. As a multifunctional modulator, SNHG1 is extensively involved in molecular signalling pathways in HCC progression and is valuable for therapeutic targeting.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yong Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 31003, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Lingyun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yingqiu Ma
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China.
| |
Collapse
|
2
|
Zhang J, Luo X, Yang X, Wang B, Zheng L, Yan S. A positive FOXP3/lncRNA SNHG1 feedback axis ameliorates cardiomyocytes hypertrophy by negatively regulating Parkin-mediated mitophagy. Int Immunopharmacol 2024; 137:112526. [PMID: 38908088 DOI: 10.1016/j.intimp.2024.112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
In this study, we identified FOXP3 as a transcription factor for lncRNA SNHG1, which exerts a significant protective role against cardiomyocyte hypertrophy. Through DNA-pull down experiments and ChIP analysis, we confirmed that FOXP3 could bind to the promoter of SNHG1. Luciferase reporter and RT-qPCR experiments validated that FOXP3 overexpression promoted SNHG1 expression in cardiomyocytes. Furthermore, in a model of cardiomyocyte hypertrophy, FOXP3 expression was upregulated, particularly in cardiomyocytes. Functional assays demonstrated that FOXP3 overexpression inhibited cardiomyocyte hypertrophy, while FOXP3 knockdown held the opposite effect. Additionally, we revealed that lncRNA SNHG1 acted as a sponge for miR-182, miR-326, and miR-3918, thereby stabilizing FOXP3 mRNA in cardiomyocytes. The protective role of SNHG1 against cardiomyocyte hypertrophy was found to depend on the presence of FOXP3, forming a positive FOXP3/SNHG1 feedback axis. Moreover, we unveiled this positive FOXP3/SNHG1 feedback axis suppressed cardiomyocyte hypertrophy by negatively regulating Parkin-mediated mitophagy. These findings provide novel insights into the molecular mechanisms underlying cardiomyocyte hypertrophy and offer potential therapeutic targets for related interventions.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, Jiangsu, China
| | - Xuemei Luo
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Xian Yang
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China
| | - Baoyan Wang
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210008, Jiangsu, China.
| | - Simin Yan
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
3
|
Fonseca TS, Martins RM, Rolo AP, Palmeira CM. SNHG1: Redefining the Landscape of Hepatocellular Carcinoma through Long Noncoding RNAs. Biomedicines 2024; 12:1696. [PMID: 39200161 PMCID: PMC11351223 DOI: 10.3390/biomedicines12081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health concern, ranking as the sixth most common malignancy worldwide and the third leading cause of cancer-related mortality. Despite advances in research, the diagnosis and prognosis of such malignancy remain challenging. Alpha-fetoprotein, the current serum biomarker used in the management of HCC, has limited sensitivity and specificity, making early detection and effective management more difficult. Thus, new management approaches in diagnosis and prognosis are needed to improve the outcome and survival of HCC patients. SNHG1 is a long noncoding RNA mainly expressed in the cell and cytoplasm of cells and is consistently upregulated in tissues and cell lines of HCC, where it acts as an important regulator of various processes: modulation of p53 activity, sponging of microRNAs with consequent upregulation of their target mRNAs, regulation of fatty acid, iron and glucose metabolism, and interaction with immune cells. The deregulation of these processes results in abnormal cell division, angiogenesis, and apoptosis, thus promoting various aspects of tumorigenesis, including proliferation, invasion, and migration of cells. Clinically, a higher expression of SNHG1 predicts poorer clinical outcomes by significantly correlating with bigger, less differentiated, and more aggressive tumors, more advanced disease stages, and lower overall survival in HCC patients. This article comprehensively summarizes the current understanding of the multifaceted roles of SNHG1 in the pathogenesis of HCC, while also highlighting its clinicopathological correlations, therefore concluding that it has potential as a biomarker in HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Tiago S. Fonseca
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Rui Miguel Martins
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Department of Surgery, Portuguese Oncology Institute, 3000-075 Coimbra, Portugal
| | - Anabela P. Rolo
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
Tong M, Luo S, Gu L, Wang X, Zhang Z, Liang C, Huang H, Lin Y, Huang J. SIMarker: Cellular similarity detection and its application to diagnosis and prognosis of liver cancer. Comput Biol Med 2024; 171:108113. [PMID: 38368754 DOI: 10.1016/j.compbiomed.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The emergence of single-cell technology offers a unique opportunity to explore cellular similarity and heterogeneity between precancerous diseases and solid tumors. However, there is lacking a systematic study for identifying and characterizing similarities at single-cell resolution. METHODS We developed SIMarker, a computational framework to detect cellular similarities between precancerous diseases and solid tumors based on gene expression at single-cell resolution. Taking hepatocellular carcinoma (HCC) as a case study, we quantified the cellular and molecular connections between HCC and cirrhosis. Core analysis modules of SIMarker is publicly available at https://github.com/xmuhuanglab/SIMarker ("SIM" means "similarity" and "Marker" means "biomarkers). RESULTS We found PGA5+ hepatocytes in HCC showed cirrhosis-like characteristics, including similar transcriptional programs and gene regulatory networks. Consequently, the genes constituting the gene expression program of these cirrhosis-like subpopulations were designated as cirrhosis-like signatures (CLS). Strikingly, our utilization of CLS enabled the development of diagnosis and prognosis biomarkers based on within-sample relative expression orderings of gene pairs. These biomarkers achieved high precision and concordance compared with previous studies. CONCLUSIONS Our work provides a systematic method to investigate the clinical translational significance of cellular similarities between HCC and cirrhosis, which opens avenues for identifying similar paradigms in other categories of cancers and diseases.
Collapse
Affiliation(s)
- Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 316005, China.
| | - Shijie Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 316005, China
| | - Lin Gu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinkang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 316005, China
| | - Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 316005, China
| | - Chenyu Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 316005, China
| | - Huaqiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuxiang Lin
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 316005, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 316005, China.
| |
Collapse
|
5
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
6
|
HPF Modulates the Differentiation of BMSCs into HLCs and Promotes the Recovery of Acute Liver Injury in Mice. Int J Mol Sci 2023; 24:ijms24065686. [PMID: 36982757 PMCID: PMC10058346 DOI: 10.3390/ijms24065686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into hepatocyte-like cells (HLCs) to alleviate acute liver injury (ALI). Herpetfluorenone (HPF), as an active ingredient in the dried, mature seeds Herpetospermum caudigerum Wall, used in Tibetan medicine, has been proven to effectively alleviate ALI. Therefore, the purpose of this study was to determine whether HPF can promote the differentiation of BMSCs into HLCs and promote ALI recovery. Mouse BMSCs were isolated, and the BMSCs’ differentiation into HLCs was induced by HPF and hepatocyte growth factor (HGF). Under the induction of HPF and HGF, the expression of hepatocellular specific markers and the accumulation of glycogen and lipids in the BMSCs increased, indicating that BMSCs successfully differentiated into HLCs. Then, the ALI mouse model was established, using carbon tetrachloride, followed by an intravenous injection of BMSCs. Then, only HPF was injected intraperitoneally, in order to verify the effect of HPF in vivo. In vivo imaging was used to detect the homing ability of HPF–BMSCs, and it was detected that HPF–BMSCs significantly increased the levels of serum AST, ALT and ALP in the liver of ALI mice, and alleviated liver cell necrosis, oxidative stress and liver pathology. In conclusion, HPF can promote the differentiation of BMSCs into HLCs and promote the recovery of ALI in mice.
Collapse
|
7
|
Li QY, Gong T, Huang YK, Kang L, Warner CA, Xie H, Chen LM, Duan XQ. Role of noncoding RNAs in liver fibrosis. World J Gastroenterol 2023; 29:1446-1459. [PMID: 36998425 PMCID: PMC10044853 DOI: 10.3748/wjg.v29.i9.1446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection, obesity, or excessive alcohol. It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix. Advanced fibrosis could lead to cirrhosis and even liver cancer, which has become a significant health burden worldwide. Many studies have revealed that noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-β pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, and Wnt/β-catenin pathway. NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis. NcRNAs mimics, ncRNAs in mesenchymal stem cell-derived exosomes, and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis. In this review, we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis, and discuss the potentials and challenges to use these ncRNAs for diagnosis, staging and treatment of liver fibrosis. All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Qing-Yuan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Tao Gong
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi-Ke Huang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Lan Kang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - He Xie
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Li-Min Chen
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Xiao-Qiong Duan
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| |
Collapse
|
8
|
Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L, Ruiz-Manriquez LM, De Donato M, Sharma A, Pathak S, Banerjee A, Paul S. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 2022; 12:270. [PMID: 36101546 PMCID: PMC9464284 DOI: 10.1007/s13205-022-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luisa Loreti González-Melgoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| |
Collapse
|
9
|
Zhang W, Liu Z, Wang J, Geng B, Hou W, Zhao E, Li X. The clinical significance, immune infiltration, and tumor mutational burden of angiogenesis-associated lncRNAs in kidney renal clear cell carcinoma. Front Immunol 2022; 13:934387. [PMID: 35958561 PMCID: PMC9360495 DOI: 10.3389/fimmu.2022.934387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Poor prognosis of kidney renal clear cell carcinoma (KIRC) is often related to angiogenesis. The lncRNAs that regulate angiogenesis could also affect the prognosis of KIRC. It is meaningful for us to use lncRNAs related to angiogenesis to construct a generic, individualized prognostic signature for patients with KIRC. Methods We identified eight angiogenesis-associated genes (AAGs) by differential expression analysis and univariate Cox regression from The Cancer Genome Atlas dataset, including 537 KIRC samples and 72 normal samples. In total, 23 prognostic lncRNAs were screened out after Pearson correlation analysis and univariate Cox regression analysis. Then, we performed least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression to establish a four-AAG-related lncRNA prognostic signature. Results The risk score was calculated for each KIRC patients by using a four-AAG-related lncRNA prognostic signature. We divided the KIRC patients into high- and low-risk groups by the median of the risk score. It was confirmed that the AAG-related lncRNA prognostic signature has good prognostic value for KIRC patients by time-dependent receiver operating characteristic and Kaplan–Meier survival analysis. We identified 3,399 differentially expressed genes between the high- and low-risk groups and performed their functional enrichment analyses. The AAG-related lncRNA prognostic signature was an independent prognostic predictor for KIRC patients and was used to perform a combined nomogram. We reevaluated them in terms of survival, clinic characteristics, tumor-infiltrating immune cells and tumor mutation burden. Conclusion Our research indicates that the AAG-related lncRNA prognostic signature is a promising and potential independent prognostic indicator for KIRC patients. Then, it could offer new insights into the prognosis assessment and potential treatment strategies of KIRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuedong Li
- *Correspondence: Enyang Zhao, ; Xuedong Li,
| |
Collapse
|
10
|
Li X, Guo Z, Luo G, Miao P. Fluorescence DNA Switch for Highly Sensitive Detection of miRNA Amplified by Duplex-Specific Nuclease. SENSORS 2022; 22:s22093252. [PMID: 35590941 PMCID: PMC9104181 DOI: 10.3390/s22093252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
DNA is a type of promising material for the construction of sensors owing to its sequence programmability to control the formation of certain structures. MicroRNA (miRNA) can be applied as promising biomarkers for the diagnosis of a range of diseases. Herein, a novel fluorescent sensing strategy for miRNA is proposed combining duplex-specific nuclease (DSN)-mediated amplification and dumbbell DNA structural switch. Gold nanoparticles (AuNPs) are employed, which provide a 3D reaction interface. They also act as effective fluorescence quenchers. The proposed sensor exhibits high sensitivity (sub-femtomolar level) with a wide dynamic range. In addition, excellent selectivity to distinguish homology sequences is achieved. It also performs satisfactorily in biological samples. Overall, this fluorescent sensor provides a powerful tool for the analysis of miRNA levels and can be applied for related biological studies and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoqiang Li
- School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, China;
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
- Ji Hua Laboratory, Foshan 528200, China
| | - Gangyin Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
| | - Peng Miao
- School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, China;
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
- Correspondence:
| |
Collapse
|