1
|
Li D, Zhang X, Song Z, Zhao S, Huang Y, Qian W, Cai X. Advances in common in vitro cellular models of pulmonary fibrosis. Immunol Cell Biol 2024; 102:557-569. [PMID: 38714318 DOI: 10.1111/imcb.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/24/2023] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
The development of in vitro models is essential for a comprehensive understanding and investigation of pulmonary fibrosis (PF) at both cellular and molecular levels. This study presents a literature review and an analysis of various cellular models used in scientific studies, specifically focusing on their applications in elucidating the pathogenesis of PF. Our study highlights the importance of taking a comprehensive approach to studing PF, emphasizing the necessity of considering multiple cell types and organs and integrating diverse analytical perspectives. Notably, primary cells demonstrate remarkable cell growth characteristics and gene expression profiles; however, their limited availability, maintenance challenges, inability for continuous propagation and susceptibility to phenotypic changes over time significantly limit their utility in scientific investigation. By contrast, immortalized cell lines are easily accessible, cultured and continuously propagated, although they may have some phenotypic differences from primary cells. Furthermore, in vitro coculture models offer a more practical and precise method to explore complex interactions among cells, tissues and organs. Consequently, when developing models of PF, researchers should thoroughly assess the advantages, limitations and relevant mechanisms of different cell models to ensure their selection is consistent with the research objectives.
Collapse
Affiliation(s)
- Die Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ziqiong Song
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Shan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Kobayashi H, Tachi A, Hagita S. Time course of histopathology of bleomycin-induced pulmonary fibrosis using an intratracheal sprayer in mice. Exp Anim 2024; 73:41-49. [PMID: 37518267 PMCID: PMC10877150 DOI: 10.1538/expanim.23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a poor prognosis disease that affects approximately 5 million people worldwide, and the detailed mechanisms underlying the pathogenesis of IPF remain unclear. Bleomycin-induced pulmonary fibrosis has been widely used as a representative animal model of IPF that induces fibrosis in lung tissue. The lungs of rodent consist of five lobes and each bronchus enters each lobe of the lung at a different bifurcation angle, path length, and diameter. The method of administration of bleomycin is considered as important thing to establish appropriate animal models. We conducted a time-dependent histopathological study to examine how pulmonary fibrosis develops in each lung lobe when bleomycin was intratracheally sprayed in ICR mice. And we then explored the suitable points for evaluation of anti-fibrotic agents in this model. As a result, we found that homogeneous fibrosis was induced in the 5 lobes of the lungs following initial inflammation. The expression of transforming growth factor (TGF)-β1 and phospho-Smad2 (pSmad2) was observed from Day 1, and their positivity increased until Day 21. In conclusion, we have observed a detailed time course of histological changes in bleomycin-induced pulmonary fibrosis in ICR mice using the aerosolization technique. We found that our protocol can induce a highly homogeneous lesion in the lung and that the most suitable time point to assess anti-fibrotic agents is 14 days after treatment in this model.
Collapse
Affiliation(s)
- Hideyuki Kobayashi
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Ayami Tachi
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Sumihiko Hagita
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| |
Collapse
|
3
|
Yuzawa S, Nakashio M, Ichimura S, Shimoda M, Nakashima A, Marukawa-Hashimoto Y, Kawano Y, Suzuki K, Yoshitomi K, Kawahara M, Tanaka KI. Ergothioneine Prevents Neuronal Cell Death Caused by the Neurotoxin 6-Hydroxydopamine. Cells 2024; 13:230. [PMID: 38334622 PMCID: PMC10854700 DOI: 10.3390/cells13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.
Collapse
Affiliation(s)
- Saho Yuzawa
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Motonari Nakashio
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Suzuna Ichimura
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ayaka Nakashima
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yuka Marukawa-Hashimoto
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yusuke Kawano
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kengo Suzuki
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kenichi Yoshitomi
- Sakichi, Co., Ltd., 5-531 Kuromaru-Machi, Omura, Nagasaki 856-0808, Japan;
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ken-ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| |
Collapse
|
4
|
Guo H, Sun J, Zhang S, Nie Y, Zhou S, Zeng Y. Progress in understanding and treating idiopathic pulmonary fibrosis: recent insights and emerging therapies. Front Pharmacol 2023; 14:1205948. [PMID: 37608885 PMCID: PMC10440605 DOI: 10.3389/fphar.2023.1205948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a long-lasting, continuously advancing, and irrevocable interstitial lung disorder with an obscure origin and inadequately comprehended pathological mechanisms. Despite the intricate and uncharted causes and pathways of IPF, the scholarly consensus upholds that the transformation of fibroblasts into myofibroblasts-instigated by injury to the alveolar epithelial cells-and the disproportionate accumulation of extracellular matrix (ECM) components, such as collagen, are integral to IPF's progression. The introduction of two novel anti-fibrotic medications, pirfenidone and nintedanib, have exhibited efficacy in decelerating the ongoing degradation of lung function, lessening hospitalization risk, and postponing exacerbations among IPF patients. Nonetheless, these pharmacological interventions do not present a definitive solution to IPF, positioning lung transplantation as the solitary potential curative measure in contemporary medical practice. A host of innovative therapeutic strategies are presently under rigorous scrutiny. This comprehensive review encapsulates the recent advancements in IPF research, spanning from diagnosis and etiology to pathological mechanisms, and introduces a discussion on nascent therapeutic methodologies currently in the pipeline.
Collapse
Affiliation(s)
| | | | | | | | | | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Sakakibara O, Shimoda M, Yamamoto G, Higashi Y, Ikeda-Imafuku M, Ishima Y, Kawahara M, Tanaka KI. Effectiveness of Albumin-Fused Thioredoxin against 6-Hydroxydopamine-Induced Neurotoxicity In Vitro. Int J Mol Sci 2023; 24:ijms24119758. [PMID: 37298708 DOI: 10.3390/ijms24119758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by oxidative stress-dependent loss of dopaminergic neurons in the substantia nigra and elevated microglial inflammatory responses. Recent studies show that cell loss also occurs in the hypothalamus in PD. However, effective treatments for the disorder are lacking. Thioredoxin is the major protein disulfide reductase in vivo. We previously synthesized an albumin-thioredoxin fusion protein (Alb-Trx), which has a longer plasma half-life than thioredoxin, and reported its effectiveness in the treatment of respiratory and renal diseases. Moreover, we reported that the fusion protein inhibits trace metal-dependent cell death in cerebrovascular dementia. Here, we investigated the effectiveness of Alb-Trx against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro. Alb-Trx significantly inhibited 6-OHDA-induced neuronal cell death and the integrated stress response. Alb-Trx also markedly inhibited 6-OHDA-induced reactive oxygen species (ROS) production, at a concentration similar to that inhibiting cell death. Exposure to 6-OHDA perturbed the mitogen-activated protein kinase pathway, with increased phosphorylated Jun N-terminal kinase and decreased phosphorylated extracellular signal-regulated kinase levels. Alb-Trx pretreatment ameliorated these changes. Furthermore, Alb-Trx suppressed 6-OHDA-induced neuroinflammatory responses by inhibiting NF-κB activation. These findings suggest that Alb-Trx reduces neuronal cell death and neuroinflammatory responses by ameliorating ROS-mediated disruptions in intracellular signaling pathways. Thus, Alb-Trx may have potential as a novel therapeutic agent for PD.
Collapse
Affiliation(s)
- Okina Sakakibara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Gaku Yamamoto
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| |
Collapse
|