1
|
Maubach G, Kanthasamy AK, Gogia S, Naumann M. The enigma of maladaptation in gastric pathophysiology. Trends Cancer 2025; 11:448-461. [PMID: 39984410 DOI: 10.1016/j.trecan.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Despite a decline in global incidence, gastric cancer (GC) remains a major health concern. The development of GC is a sequential, multistage maladaptive process involving numerous different factors. Understanding the complexity of GC development is crucial for early detection, effective treatment, and, ultimately, prevention. In this respect, identifying the impact of risk factors contributing to the emergence or progression of GC, such as Helicobacter pylori infection, host and bacterial genetics, alcohol consumption, smoking, and preserved foods, will aid in combatting this disease. In this review, we focus on recent developments in understanding the role of the microbiome, dysfunctional molecular pathways, and immune evasion in gastric pathophysiology. We also highlight challenges and advances in treatment of GC.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Arun K Kanthasamy
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sandro Gogia
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Chen C, Li H, Zhang Z, Li H, Li H. F-box/WD Repeat-Containing Protein 5 Promotes Breast Cancer Progression by Regulating Ferroptosis via Enhancing Krüppel-like Factor 13 Ubiquitination Through Phosphoinositide 3-Kinase/Serine/Threonine Protein Kinase Pathway. Rejuvenation Res 2025. [PMID: 40228045 DOI: 10.1089/rej.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Breast cancer (BC) is a prevalent malignancy among women. Evidence has indicated that F-box/WD repeat-containing protein 5 (FBXW5) is crucial in oncogenesis and progression. However, the function of FBXW5 in BC remains elusive. This work aims to explore the regulatory mechanisms of FBXW5 in the development of BC. The expression of FBXW5 in pan-cancer and breast invasive carcinoma (BRCA) was analyzed using The Cancer Genome Atlas (TCGA) database. FBXW5 level was enhanced in BC tissues. Besides, FBXW5 inhibition significantly decreased cell viability by 49.05% in MDA-MB-231 cells and 62.30% in MCF-7 cells. FBXW5 inhibition significantly inhibited cell proliferation by 66% in MDA-MB-231 cells and 74% in MCF-7 cells. FBXW5 inhibition significantly suppressed cell migration by 77.2% in MDA-MB-231 cells and 82.15% in MCF-7 cells. FBXW5 inhibition significantly inhibited cell invasion by 64.14% in MDA-MB-231 cells and 71.33% in MCF-7 cells. In vivo, FBXW5 depletion reduced tumor weight by 63.39% and tumor volume by 65.17%. Moreover, FBXW5 silencing restrained lung metastases in vivo. Besides, the impact of FBXW5 on the malignant behavior of BC cells was mediated through the regulation of ferroptosis. Mechanically, FBXW5 facilitated Kruppel-like factor 13 (KLF13) degradation by enhancing its ubiquitination. The addition of FBXW5 facilitated cell proliferation, migration, and invasion and inhibited ferroptosis in MDA-MB-231 and MCF-7 cells, which were neutralized by KLF13 overexpression. Besides, the knockdown of KLF13 led to the activation of the PI3K/AKT pathway. KLF13 silencing counteracted the inhibitory effects of FBXW5 depletion on cell proliferation, migration, and invasion, as well as its promotion of ferroptosis, effects that were reversed by LY294002. In conclusion, targeting FBXW5 may serve as a potential therapeutic strategy for BC by modulating the KLF13/PI3K/AKT axis.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Hui Li
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Ziyi Zhang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Haipeng Li
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Hongtao Li
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
3
|
Huang C, Zeng Q, Chen J, Wen Q, Jin W, Dai X, Ruan R, Zhong H, Xia Y, Wu Z, Huang R, Zhang J, Yao Y, Li L, Lei W, Xiong J, Deng J. TMEM160 inhibits KEAP1 to suppress ferroptosis and induce chemoresistance in gastric cancer. Cell Death Dis 2025; 16:287. [PMID: 40223081 PMCID: PMC11994801 DOI: 10.1038/s41419-025-07621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Chemoresistance is the most significant challenge affecting the clinical efficacy of the treatment of patients with gastric cancer (GC). Here we reported that transmembrane protein 160 (TMEM160) suppressed ferroptosis and induced chemoresistance in GC cells. Mechanistically, TMEM160 recruited the E3 ligase TRIM37 to promote K48-linked ubiquitination and degradation of KEAP1, thereby activating NRF2 and transcriptionally upregulating the target genes GPX4 and SLC7A11 to inhibit ferroptosis. Further in vitro and in vivo experiments demonstrated that the combination of TMEM160 targeting and chemotherapy had a synergistic inhibitory effect on the growth of GC cells, which was partially NRF2-dependent. Moreover, TMEM160 and NRF2 protein levels were markedly overexpressed in GC tissues, and their co-overexpression was an independent factor for poor prognosis. Collectively, these findings indicate that TMEM160, as a pivotal negative regulator of ferroptosis, exerts a crucial influence on the chemoresistance of GC through the TRIM37-KEAP1/NRF2 axis, providing a potential new prognostic factor and combination therapy strategy for patients with GC.
Collapse
Affiliation(s)
- Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Jingyi Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Qin Wen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Weilun Jin
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Yang Xia
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Zhipeng Wu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Ruixuan Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Jianxi Zhang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lei
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Ding Y, Liu Z, Dai X, Ruan R, Zhong H, Wu Z, Yao Y, Chen J, Deng J, Xiong J. Ubiquitin-specific peptidase 49 promotes adenocarcinoma of the esophagogastric junction malignant progression via activating SHCBP1-β-catenin-GPX4 axis. Carcinogenesis 2025; 46:bgae060. [PMID: 39234990 DOI: 10.1093/carcin/bgae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) has received widespread attention because of its increasing incidence. However, the molecular mechanism underlying tumor progression remains unclear. Here, we report that the downregulation of ubiquitin-specific peptidase 49 (USP49) promotes ferroptosis in OE33 and OE19 cells, thereby inhibiting cell proliferation in vitro and in vivo, whereas the overexpression of USP49 had the opposite effect. In addition, USP49 downregulation promoted AEG cell radiotherapy sensitivity. Moreover, overexpression of Glutathione PeroXidase 4 reversed the ferroptosis and proliferation inhibition induced by USP49 knockdown. Mechanistically, USP49 deubiquitinates and stabilizes Shc SH2-domain-binding protein 1, subsequently facilitating the entry of β-catenin into the nucleus to enhance Glutathione PeroXidase 4 transcriptional expression. Finally, high USP49 expression was correlated with shorter overall survival in patients with AEG. In summary, our findings identify USP49 as a novel regulator of ferroptosis in AEG cells, indicating that USP49 may be a potential therapeutic target in AEG.
Collapse
Affiliation(s)
- Yun Ding
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Zhen Liu
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Xiaofeng Dai
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Ruiwen Ruan
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Hongguang Zhong
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Zhipeng Wu
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Yangyang Yao
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Jun Chen
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Jun Deng
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| |
Collapse
|
5
|
Yu Y, Gan W, Xiong J, Li J. A novel biomarker GATM suppresses proliferation and malignancy of cholangiocarcinoma cells by modulating the JNK/c-Jun signalling pathways. Heliyon 2024; 10:e37344. [PMID: 39296238 PMCID: PMC11408786 DOI: 10.1016/j.heliyon.2024.e37344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Cholangiocarcinoma (CCA) is the second most common primary malignancy of the liver and is associated with poor prognosis. Despite the emerging role of glycine amidinotransferase (GATM) in cancer development, its function in CCA remains elusive. This study investigated the biological significance and molecular mechanisms of GATM in CCA. Method GATM expression was measured using immunohistochemistry and western blotting. Cell proliferation, migration, and invasion were assessed through CCK-8, EdU, clone formation, wound healing, and Transwell assays. Rescue experiments were performed to determine whether the JNK/c-Jun pathway is involved in GATM-mediated CCA development. Immunoprecipitation and mass spectrometry were performed to screen for proteins that interact with GATM. The role of GATM in vivo was investigated according to the xenograft experiment. Result GATM expression was downregulated in CCA tissues and cells (p < 0.05) and had a significant suppressive effect on CCA cell proliferation, migration, and invasion in vitro as well as on tumour growth in vivo (p < 0.05); conversely, GATM knockdown promoted these phenotypes (p < 0.05). Notably, GATM inhibited the JNK/c-Jun pathway, and JNK activation abrogated GATM's antitumor effects (p < 0.05). Isocitrate dehydrogenase 1 (IDH1) interacts with GATM, and IDH1 knockdown significantly attenuated GATM protein degradation. Overexpression of IDH1 restored the biological function of CCA by reversing the inhibition of JNK/c-Jun pathway phosphorylation by GATM (p < 0.05). Conclusion GATM acts as a tumour suppressor in CCA by regulating the phosphorylation of the JNK/c-Jun pathway. IDH1 interacted with GATM to regulate CCA progression.
Collapse
Affiliation(s)
- Yi Yu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Gan
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Centre, Guangzhou City, Guangdong Province, 510060, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
7
|
Yang Y, Xie Q, Hu C, Xu J, Chen L, Li Y, Luo C. F-box proteins and gastric cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Int J Med Sci 2024; 21:1575-1588. [PMID: 38903918 PMCID: PMC11186432 DOI: 10.7150/ijms.91584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy characterized by significant morbidity and mortality, yet its underlying pathogenesis remains elusive. The etiology of GC is multifaceted, involving the activation of oncogenes and the inactivation of antioncogenes. The ubiquitin-proteasome system (UPS), responsible for protein degradation and the regulation of physiological and pathological processes, emerges as a pivotal player in GC development. Specifically, the F-box protein (FBP), an integral component of the SKP1-Cullin1-F-box protein (SCF) E3 ligase complex within the UPS, has garnered attention for its prominent role in carcinogenesis, tumor progression, and drug resistance. Dysregulation of several FBPs has recently been observed in GC, underscoring their significance in disease progression. This comprehensive review aims to elucidate the distinctive characteristics of FBPs involved in GC, encompassing their impact on cell proliferation, apoptosis, invasive metastasis, and chemoresistance. Furthermore, we delve into the emerging role of FBPs as downstream target proteins of non-coding RNAs(ncRNAs) in the regulation of gastric carcinogenesis, outlining the potential utility of FBPs as direct therapeutic targets or advanced therapies for GC.
Collapse
Affiliation(s)
- Yanzhen Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Qu Xie
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Can Hu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Jingli Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Lei Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Yuan Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Cong Luo
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| |
Collapse
|
8
|
Suzuki A, Yabuta N, Shimada K, Mashiko D, Tokuhiro K, Oyama Y, Miyata H, Garcia TX, Matzuk MM, Ikawa M. Individual disruption of 12 testis-enriched genes via the CRISPR/Cas9 system does not affect the fertility of male mice. J Reprod Immunol 2024; 163:104252. [PMID: 38697008 PMCID: PMC11390273 DOI: 10.1016/j.jri.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
More than 1200 genes have been shown in the database to be expressed predominantly in the mouse testes. Advances in genome editing technologies such as the CRISPR/Cas9 system have made it possible to create genetically engineered mice more rapidly and efficiently than with conventional methods, which can be utilized to screen genes essential for male fertility by knocking out testis-enriched genes. Finding such genes related to male fertility would not only help us understand the etiology of human infertility but also lead to the development of male contraceptives. In this study, we generated knockout mice for 12 genes (Acrv1, Adgrf3, Atp8b5, Cfap90, Cfap276, Fbxw5, Gm17266, Lrrd1, Mroh7, Nemp1, Spata45, and Trim36) that are expressed predominantly in the testis and examined the appearance and histological morphology of testes, sperm motility, and male fertility. Mating tests revealed that none of these genes is essential for male fertility at least individually. Notably, knockout mice for Gm17266 showed smaller testis size than the wild-type but did not exhibit reduced male fertility. Since 12 genes were not individually essential for male fertilization, it is unlikely that these genes could be the cause of infertility or contraceptive targets. It is better to focus on other essential genes because complementary genes to these 12 genes may exist.
Collapse
Affiliation(s)
- Akira Suzuki
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Keisuke Shimada
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Mashiko
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| | - Yuki Oyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
9
|
Li X, Zhong H, Shi Q, Ruan R, Huang C, Wen Q, Zeng S, Xia Y, Zeng Q, Xiong J, Wang S, Chen J, Lei W, Deng J. YAP1-CPNE3 positive feedback pathway promotes gastric cancer cell progression. Cell Mol Life Sci 2024; 81:143. [PMID: 38493426 PMCID: PMC10944813 DOI: 10.1007/s00018-024-05178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Hippo-Yes-associated protein 1 (YAP1) plays an important role in gastric cancer (GC) progression; however, its regulatory network remains unclear. In this study, we identified Copine III (CPNE3) was identified as a novel direct target gene regulated by the YAP1/TEADs transcription factor complex. The downregulation of CPNE3 inhibited proliferation and invasion, and increased the chemosensitivity of GC cells, whereas the overexpression of CPNE3 had the opposite biological effects. Mechanistically, CPNE3 binds to the YAP1 protein in the cytoplasm, inhibiting YAP1 ubiquitination and degradation mediated by the E3 ubiquitination ligase β-transducin repeat-containing protein (β-TRCP). Thereby activating the transcription of YAP1 downstream target genes, which creates a positive feedback cycle to facilitate GC progression. Immunohistochemical analysis demonstrated significant upregulation of CPNE3 in GC tissues. Survival and Cox regression analyses indicated that high CPNE3 expression was an independent prognostic marker for GC. This study elucidated the pivotal involvement of an aberrantly activated CPNE3/YAP1 positive feedback loop in the malignant progression of GC, thereby uncovering novel prognostic factors and therapeutic targets in GC.
Collapse
Affiliation(s)
- Xuan Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qianqian Shi
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qin Wen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yang Xia
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, People's Republic of China
| | - Shanshan Wang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Wan Lei
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, People's Republic of China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
10
|
Kasturirangan S, Nancarrow DJ, Shah A, Lagisetty KH, Lawrence TS, Beer DG, Ray D. Isoform alterations in the ubiquitination machinery impacting gastrointestinal malignancies. Cell Death Dis 2024; 15:194. [PMID: 38453895 PMCID: PMC10920915 DOI: 10.1038/s41419-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.
Collapse
Affiliation(s)
| | - Derek J Nancarrow
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayush Shah
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kiran H Lagisetty
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Beer
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipankar Ray
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Dai X, Wu Z, Ruan R, Chen J, Huang C, Lei W, Yao Y, Li L, Tang X, Xiong J, Feng M, Deng J. TMEM160 promotes tumor immune evasion and radiotherapy resistance via PD-L1 binding in colorectal cancer. Cell Commun Signal 2024; 22:168. [PMID: 38454413 PMCID: PMC10921666 DOI: 10.1186/s12964-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The effectiveness of anti-programmed cell death protein 1(PD-1)/programmed cell death 1 ligand 1(PD-L1) therapy in treating certain types of cancer is associated with the level of PD-L1. However, this relationship has not been observed in colorectal cancer (CRC), and the underlying regulatory mechanism of PD-L1 in CRC remains unclear. METHODS Binding of TMEM160 to PD-L1 was determined by co-immunoprecipitation (Co-IP) and GST pull-down assay.The ubiquitination levels of PD-L1 were verified using the ubiquitination assay. Phenotypic experiments were conducted to assess the role of TMEM160 in CRC cells. Animal models were employed to investigate how TMEM160 contributes to tumor growth.The expression and clinical significance of TMEM160 and PD-L1 in CRC tissues were evaluated by immunohistochemistry(IHC). RESULTS In our study, we made a discovery that TMEM160 interacts with PD-L1 and plays a role in stabilizing its expression within a CRC model. Furthermore, we demonstrated that TMEM160 hinders the ubiquitination-dependent degradation of PD-L1 by competing with SPOP for binding to PD-L1 in CRC cells. Regarding functionality, the absence of TMEM160 significantly inhibited the proliferation, invasion, metastasis, clonogenicity, and radioresistance of CRC cells, while simultaneously enhancing the cytotoxic effect of CD8 + T cells on tumor cells. Conversely, the upregulation of TMEM160 substantially increased these capabilities. In severely immunodeficient mice, tumor growth derived from lentiviral vector shTMEM160 cells was lower compared with that derived from shNC control cells. Furthermore, the downregulation of TMEM160 significantly restricted tumor growth in immune-competent BALB/c mice. In clinical samples from patients with CRC, we observed a strong positive correlation between TMEM160 expression and PD-L1 expression, as well as a negative correlation with CD8A expression. Importantly, patients with high TMEM160 expression exhibited a worse prognosis compared with those with low or no TMEM160 expression. CONCLUSIONS Our study reveals that TMEM160 inhibits the ubiquitination-dependent degradation of PD-L1 that is mediated by SPOP, thereby stabilizing PD-L1 expression to foster the malignant progress, radioresistance, and immune evasion of CRC cells. These findings suggest that TMEM160 holds potential as a target for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Zhipeng Wu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Jingyi Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Wan Lei
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Provincial Chest Hospital, Nanchang, Jiangxi Province, 330006, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
12
|
Ghaffari MH, Sadri H, Trakooljul N, Koch C, Sauerwein H. Liver transcriptome profiles of dairy cows with different serum metabotypes. J Dairy Sci 2024; 107:1751-1765. [PMID: 37806621 DOI: 10.3168/jds.2023-23572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
In a previously established animal model, 38 multiparous Holstein cows were assigned to 2 groups fed different diets to achieve either a normal (NBCS) or high (HBCS) body condition score (BCS) and backfat thickness (BFT) until dry-off at -49 d before calving (NBCS: BCS <3.5 [3.02 ± 0.24) and BFT <1.2 cm [0.92 ± 0.21]; HBCS: BCS >3.75 [3.82 ± 0.33] and BFT >1.4 cm [2.36 ± 0.35], mean ± SD). The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg; mean ± SD). The cows were then fed the same diet during the dry period and subsequent lactation, maintaining the differences in BFT and BCS throughout the study. Using the serum metabolomics data, we created a classification model that identified different metabotypes. Machine learning classifiers revealed a distinct cluster labeled HBCS-PN (HBCS predicted normal BCS) among over-conditioned cows. These cows showed higher feed intake and better energy balance than the HBCS-PH (high BCS predicted high BCS) group, while milk yield was similar. The aim of this study was to investigate the changes in the hepatic transcriptome of cows differing in serum-metabotype postpartum. We performed hepatic transcriptome analysis in cows from 3 metabolic clusters: HBCS-PH (n = 8), HBCS-PN (n = 6), and normal BCS predicted normal BCS (NBCS-PN, n = 8) on d 21 (±2) postpartum. Liver tissue from cows expressed a total of 13,118 genes aligned with the bovine genome. A total of 48 differentially expressed genes (DEG; false discovery rate ≤0.1 and fold-change >1.5) were found between NBCS-PN and HBCS-PH cows, whereas 24 DEG (14 downregulated and 10 upregulated) were found between HBCS-PN and HBCS-PH cows. The downregulated DEG (n = 31) in NBCS-PN cows compared with HBCS-PH cows are involved in biosynthetic processes such as lipid, lipoprotein, and cholesterol synthesis (e.g., APOA1, MKX, RPL3L, CANT1, CHPF, FUT1, ZNF696), cell organization, biogenesis, and localization (e.g., SLC12A8, APOA1, BRME1, RPL3L, STAG3, FBXW5, TMEM120A, SLC16A5, FGF21), catabolic processes (e.g., BREH1, MIOX, APOBEC2, FBXW5, NUDT16), and response to external stimuli (e.g., APOA1, FGF21, TMEM120A, FNDC4), whereas upregulated DEG (n = 17) are related to signal transduction and cell motility (e.g., RASSF2, ASPN, SGK1, KIF7, ZEB2, MAOA, ACKR4, TCAF1), suggesting altered metabolic adaptations during lactation. Our results showed 24 DEG between HBCS-PN and HBCS-PH in the liver. The expression of SLC12A8, SLC16A5, FBXW5, OSGIN1, LAMA3, KDELR3, OR4X17, and INHBE, which are responsible for regulating cellular processes was downregulated in HBCS-PN cows compared with HBCS-PH cows. In particular, the downregulation of SLC12A8 and SLC16A5 expression in HBCS-PN cows indicates lower metabolic load and reduced need for NAD+ biosynthesis to support mitochondrial respiratory processes. The upregulation of MAOA, ACKR4, KIF27, SFRP1, and CAV2 in the liver of HBCS-PN cows may indicate adaptive mechanisms to maintain normal liver function in response to increased metabolic demands from over-conditioning. These molecular differences underscore the existence of distinct metabolic types in cows and provide evidence for the role of the liver in shaping different metabolic patterns.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - N Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
13
|
Li L, Tang J, Cao B, Xu Q, Xu S, Lin C, Tang C. GPR137 inactivates Hippo signaling to promote gastric cancer cell malignancy. Biol Direct 2024; 19:3. [PMID: 38163861 PMCID: PMC10759669 DOI: 10.1186/s13062-023-00449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
As the fifth most common cancer in the world, gastric cancer (GC) ranks as the third major cause of cancer-related death globally. Although surgical resection and chemotherapy still remains the mainstay of potentially curative treatment for GC, chemotherapy resistance and adverse side effects limit their clinical applications. Thus, further investigation of the mechanisms of carcinogenesis in GC and discovery of novel biomarkers is of great concern. We herein report that the elevated expression of GPR137 is correlated with GC. Overexpression of GPR137 potentiates human gastric cancer AGS cell malignancy, including proliferation, migration, invasion, colony formation and xenograft growth in nude mice in vivo, whereas knockout of GPR137 by CRISPR/Cas9 gene editing exerts the opposite effects. Mechanistically, GPR137 could bind to MST, the upstream kinases in Hippo pathway, which disrupts the association of MST with LATS, subsequently activating the transcriptional co-activators, YAP and TAZ, and thereby triggering the target transcription and the alterations in GC cell biological actions consequently. Therefore, our findings may provide with the evidence of developing a potentially novel treatment method with specific target for GC.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, People's Republic of China
| | - Jinlong Tang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, People's Republic of China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Qiang Xu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, People's Republic of China
| | - Shouying Xu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, People's Republic of China
| | - Chao Lin
- Department of Neurosurgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
14
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
15
|
Shang Z, Lai Y, Cheng H. DPP2/7 is a Potential Predictor of Prognosis and Target in Immunotherapy in Colorectal Cancer: An Integrative Multi-omics Analysis. Comb Chem High Throughput Screen 2024; 27:1642-1660. [PMID: 38454764 DOI: 10.2174/0113862073290831240229060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the leading causes of cancerrelated deaths. OBJECTIVE This study aimed to illuminate the relationship between DPP7 (also known as DPP2) and CRC through a combination of bioinformatics and experimental methodologies. METHODS A multi-dimensional bioinformatic analysis on DPP7 was executed, covering its expression, survival implications, clinical associations, functional roles, immune interactions, and drug sensitivities. Experimental validations involved siRNA-mediated DPP7 knockdown and various cellular assays. RESULTS Data from the Cancer Genome Atlas (TCGA) identified high DPP7 expression in solid CRC tumors, with elevated levels adversely affecting patient prognosis. A shift from the N0 to the N2 stage in CRC was associated with increased DPP7 expression. Functional insights indicated the involvement of DPP7 in cancer progression, particularly in extracellular matrix disassembly. Immunological analyses showed its association with immunosuppressive entities, and in vitro experiments in CRC cell lines underscored its oncogenic attributes. CONCLUSION DPP7 could serve as a CRC prognosis marker, functioning as an oncogene and representing a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Zhihao Shang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
16
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
17
|
Deng C, Ye C, Liao X, Zhou F, Shi Y, Zhong H, Huang J. KMT2A maintains stemness of gastric cancer cells through regulating Wnt/β-catenin signaling-activated transcriptional factor KLF11. Open Med (Wars) 2023; 18:20230764. [PMID: 38025523 PMCID: PMC10655684 DOI: 10.1515/med-2023-0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
The molecular mechanisms of epigenetic regulation in gastric cancer development are not yet well established. In this study, we demonstrated that KMT2A was highly expressed in gastric cancer and associated with poor outcomes of patients and revealed that KMT2A was significantly associated with stemness and increased nuclear β-catenin in gastric cancer. Mechanistically, KMT2A activated the translocation of β-catenin into the nucleus of gastric cancer cells, and then, β-catenin served as a coactivator of KLF11, which promoted the expression of specific gastric cancer stemness-related molecules, including SOX2 and FOXM1. Together, KMT2A is an important epigenetic regulator of gastric cancer stemness, which provides a novel insight to the potential application of targeting against KMT2A in treating gastric cancer.
Collapse
Affiliation(s)
- Chongwen Deng
- Department of General Surgery, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People’s Republic of China
| | - Chunhua Ye
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Xiwang Liao
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Fuyin Zhou
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Youxiong Shi
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Hong Zhong
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Junbiao Huang
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| |
Collapse
|
18
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
19
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Wang H, Teng X, Lin Y, Jiang C, Chen X, Zhang Y. Targeting XPO6 inhibits prostate cancer progression and enhances the suppressive efficacy of docetaxel. Discov Oncol 2023; 14:82. [PMID: 37243787 DOI: 10.1007/s12672-023-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Although XPO6, one of the Exportin family members, functions in malignant progression of certain types of cancer, its role in prostate cancer (PCa) has not been elucidated. Herein, we investigated the oncogenic effect and clarified the downstream mechanism of XPO6 in PCa cells. METHODS We detected the expression level of XPO6 in PCa tissues by immunohistochemistry (IHC) and analyzed the correlation between clinicopathological characteristics and XPO6 level based on TCGA database. The effects of XPO6 in the proliferation and migration or resistance to docetaxel (DTX) in PCa cells were assessed using CCK8, colony formation, wound-healing and Transwell assays. Mice experiments were performed to investigate the role of XPO6 in tumor progression and DTX effect in vivo. Further, functional analysis of DEGs revealed the correlation of XPO6 with Hippo pathway and XPO6 could promote the expression and nuclear translocation of YAP1 protein. Furthermore, blocking Hippo pathway with YAP1 inhibitor leads to the loss of XPO6-mediated regulation of biological functions. RESULTS XPO6 was highly expressed and positively correlated with the clinicopathological characteristics of PCa. Functional experiments indicated that XPO6 could promote tumor development and DTX resistance in PCa. Mechanistically, we further confirmed that XPO6 could regulate Hippo pathway via mediating YAP1 protein expression and nuclear translocation thereby promoting PCa progression and chemotherapeutic resistance. CONCLUSION In conclusion, our research reveals that XPO6 potentially function as an oncogene and promotes DTX resistance of PCa, suggesting that XPO6 could be both a potential prognostic marker as well as a therapeutic target to effectively overcome DTX resistance.
Collapse
Affiliation(s)
- Huming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Xiangyu Teng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Chao Jiang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China.
| |
Collapse
|
21
|
Yang H, Ai H, Zhang J, Ma J, Liu K, Li Z. UPS: Opportunities and challenges for gastric cancer treatment. Front Oncol 2023; 13:1140452. [PMID: 37077823 PMCID: PMC10106573 DOI: 10.3389/fonc.2023.1140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer remains the fourth most frequently diagnosed malignancy and the fifth leading cause of cancer-related mortality worldwide owning to the lack of efficient drugs and targets for therapy. Accumulating evidence indicates that UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an important role in the GC tumorigenesis. The imbalance of UPS impairs the protein homeostasis network during development of GC. Therefore, modulating these enzymes and proteasome may be a promising strategy for GC target therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is an emerging tool for drug development. Thus far, more and more PROTAC drugs enter clinical trials for cancer therapy. Here, we will analyze the abnormal expression enzymes in UPS and summarize the E3 enzymes which can be developed in PROTAC so that it can contribute to the development of UPS modulator and PROTAC technology for GC therapy.
Collapse
Affiliation(s)
- Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huihan Ai
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jie Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| | - Zhi Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| |
Collapse
|
22
|
Cao Z, An L, Han Y, Jiao S, Zhou Z. The Hippo signaling pathway in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36924251 DOI: 10.3724/abbs.2023038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) is an aggressive malignant disease which still lacks effective early diagnosis markers and targeted therapies, representing the fourth-leading cause of cancer-associated death worldwide. The Hippo signaling pathway plays crucial roles in organ size control and tissue homeostasis under physiological conditions, yet its aberrations have been closely associated with several hallmarks of cancer. The last decade witnessed a burst of investigations dissecting how Hippo dysregulation contributes to tumorigenesis, highlighting the therapeutic potential of targeting this pathway for tumor intervention. In this review, we systemically document studies on the Hippo pathway in the contexts of gastric tumor initiation, progression, metastasis, acquired drug resistance, and the emerging development of Hippo-targeting strategies. By summarizing major open questions in this field, we aim to inspire further in-depth understanding of Hippo signaling in GC development, as well as the translational implications of targeting Hippo for GC treatment.
Collapse
Affiliation(s)
- Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China.,CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
23
|
Sonnemann HM, Pazdrak B, Antunes DA, Roszik J, Lizée G. Vestigial-like 1 (VGLL1): An ancient co-transcriptional activator linking wing, placenta, and tumor development. Biochim Biophys Acta Rev Cancer 2023; 1878:188892. [PMID: 37004960 DOI: 10.1016/j.bbcan.2023.188892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Vestigial-like 1 (VGLL1) is a recently discovered driver of proliferation and invasion that is expressed in many aggressive human malignancies and is strongly associated with poor prognosis. The VGLL1 gene encodes for a co-transcriptional activator that shows intriguing structural similarity to key activators in the hippo pathway, providing important clues to its functional role. VGLL1 binds to TEADs in an analogous fashion to YAP1 but appears to activate a distinct set of downstream gene targets. In mammals, VGLL1 expression is found almost exclusively in placental trophoblasts, cells that share many hallmarks of cancer. Due to its role as a driver of tumor progression, VGLL1 has become a target of interest for potential anticancer therapies. In this review, we discuss VGLL1 from an evolutionary perspective, contrast its role in placental and tumor development, summarize the current knowledge of how signaling pathways can modulate VGLL1 function, and discuss potential approaches for targeting VGLL1 therapeutically.
Collapse
|
24
|
Fang W, Yu X, Deng J, Yu B, Xiong J, Ma M. Upregulated GPRC5A disrupting the Hippo pathway promotes the proliferation and migration of pancreatic cancer cells via the cAMP-CREB axis. Discov Oncol 2023; 14:17. [PMID: 36735162 PMCID: PMC9898488 DOI: 10.1007/s12672-023-00626-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a high mortality rate worldwide, and is predicted to be third leading cause of death in the near future. However, the regulatory mechanisms that inhibit the progression of pancreatic cancer remain elusive. Currently, exploring the function and mechanisms of GPCRs (G-protein coupled receptors) is an important way to discover promising therapeutic targets for cancer. METHODS GPRC5A expression was measured using real-time quantitative PCR, immunohistochemistry and western blot assays. Cell proliferation and migration were assessed using CCK-8, clone formation, wound-healing and transwell assays. A cytosolic/nuclear distribution experiment was used to detect the protein location transfer. A xenograft model of pancreatic cancer was established to explore the role of GPRC5A in vivo. RESULTS GPRC5A expression was increased in pancreatic cancer, and disruption of GPRC5A expression inhibited tumor growth in vivo. Mechanistically, GPRC5A positively regulated the transcription of YAP1 through cAMP-CREB signaling. Moreover, we show that the proliferation and migration induced by GPRC5A in pancreatic cancer could be rescued by inhibiting YAP1 expression. CONCLUSIONS GPRC5A interacts with the Hippo pathway to promote the progression of pancreatic cancer. These findings reveal an important crosstalk model and provide potential targets for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Weidan Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China
| | - Xin Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China.
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, China.
| |
Collapse
|
25
|
Huang T, OuYang XI, Li J, Shi B, Shan Z, Shi Z, Yang Z. Pan-cancer analysis of FBXW family with potential implications in prognosis and immune infiltration. Front Immunol 2022; 13:1084339. [PMID: 36591289 PMCID: PMC9795248 DOI: 10.3389/fimmu.2022.1084339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background The F-box and WD repeat domain containing (FBXW) family of SCF E3 complexes has 10 members that are responsible for ubiquitination and degradation of substrate proteins involved in cell cycle regulation and tumorigenesis. Among them, FBXW1 (also called b-TrCP1/BTRC) and FBXW7 are the central proteins in this category. However, there is still a lack of elaborate exploration of the contribution of FBXW family members, especially FBXW1 and FBXW7, in various tumor types. Methods In this present study, we preliminarily analyzed the genetic structure characteristics of the FBXW family, and systematically investigated their expression patterns and clinical correlations based on the TCGA pan-cancer data. Survival analysis of FBXWs was also conducted through the Kaplan-Meier method. In addition, we assessed their immune infiltration level through immune-related algorithms like Timer and xCell. Results There were obvious genetic heterogeneity and different clinical traits in FBXW family members. Moreover, we found that FBXW family genes may be useful in predicting prognosis and therapeutic efficacy using survival analysis. In addition, the immune infiltration of FBXW family was also clearly illustrated in this study. The results showed these genes were closely involved in immune components such as immune score, immune subtypes, tumor-infiltrating lymphocytes and immune checkpoints. Notedly, FBXW1 as an oncogene and FBXW7 as a tumor suppressor gene also show opposite relationships on immune cells. Conclusion Our results provided valuable strategies to guide the therapeutic orientation concerning the role of FBXW family genes in cancer.
Collapse
Affiliation(s)
| | - XIaoxiao OuYang
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Jiwei Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Bingbing Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Zhengda Shan
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Zhiyuan Shi, ; Zhangru Yang,
| | - Zhangru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zhiyuan Shi, ; Zhangru Yang,
| |
Collapse
|
26
|
Targeting the Hippo Pathway in Gastric Cancer and Other Malignancies in the Digestive System: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10102512. [PMID: 36289774 PMCID: PMC9599207 DOI: 10.3390/biomedicines10102512] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The Hippo pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration under physiological conditions, and its aberrations have been well studied to promote tumor initiation and progression. Dysregulation of the Hippo tumor suppressor signaling frequently occurs in gastric cancer (GC) and other solid tumors and contributes to cancer development through modulating multiple aspects, including cell proliferation, survival, metastasis, and oncotherapy resistance. In the clinic, Hippo components also possess diagnostic and prognostic values for cancer patients. Considering its crucial role in driving tumorigenesis, targeting the Hippo pathway may greatly benefit developing novel cancer therapies. This review summarizes the current research progress regarding the core components and regulation of the Hippo pathway, as well as the mechanism and functional roles of their dysregulation in gastrointestinal malignancies, especially in GC, and discusses the therapeutic potential of targeting the Hippo pathway against cancers.
Collapse
|