1
|
Shi D, Tao J, Man S, Zhang N, Ma L, Guo L, Huang L, Gao W. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189207. [PMID: 39500413 DOI: 10.1016/j.bbcan.2024.189207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024]
Abstract
Cancer remains one of the most difficult human diseases to overcome because of its complexity and diversity. Signal transducers and transcriptional activators 3 (STAT3) protein has been found to be overexpressed in a wide range of cancer types. Hyperactivation of STAT3 is particularly associated with low survival in cancer patients. This review summarizes the specific molecular mechanisms of STAT3 in cancer development. STAT3 is activated by extracellular signals in the cytoplasm, interacts with different enzymes in the nucleus, mitochondria or endoplasmic reticulum, and subsequently participates in cancer development. The phosphorylated STAT3 at tyrosine 705 site (YP-STAT3) enters the nucleus and regulates a number of tumor-related biological processes such as angiogenesis, migration invasion, cell proliferation and cancer cell stemness. In contrast, the phosphorylated STAT3 at serine 727 site (SP-STAT3) is found on the mitochondria, affects electron respiration transport chain activity and thereby prevents tumor cell apoptosis. SP-STAT3 also appears on the mitochondria-associated endoplasmic reticulum membrane, influences the flow of Ca2+, and affects tumor progression. In addition, we summarize the direct and indirect inhibitors of STAT3 which are currently undergoing clinical studies. Some of them such as TTI101 and BBI608 have been approved by the FDA for the treatment of certain cancers. All in all, STAT3 plays an important role in cancer progression and becomes a potential target for cancer treatment.
Collapse
Affiliation(s)
- Dandan Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiejing Tao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ning Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
2
|
Chen M, Wang T, Tian D, Hai C, Qiu Z. Induction, growth, drug resistance, and metastasis: A comprehensive summary of the relationship between STAT3 and gastric cancer. Heliyon 2024; 10:e37263. [PMID: 39309860 PMCID: PMC11416542 DOI: 10.1016/j.heliyon.2024.e37263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Gastric cancer is a prevalent and highly lethal malignancy that poses substantial challenges to healthcare systems globally. Owing to its often asymptomatic nature in early stages, diagnosis frequently occurs at advanced stages when surgical intervention is no longer a viable option, forcing most patients to rely on nonsurgical treatments such as chemotherapy, targeted therapies, and emerging immunotherapies. Unfortunately, the therapeutic response rates for these treatments are suboptimal, and even among responders, the eventual development of drug resistance remains a significant clinical hurdle. Signal transducer and activator of transcription 3 (STAT3) is a widely expressed cellular protein that plays crucial roles in regulating cellular processes such as growth, metabolism, and immune function. Aberrant activation of the STAT3 pathway has been implicated in the initiation, progression, and therapeutic resistance of several cancers, with gastric cancer being particularly affected. Dysregulated STAT3 signaling not only drives tumorigenesis but also facilitates the development of resistance to chemotherapy and targeted therapies, as well as promotes metastatic dissemination. In this study, we explored the critical role of the STAT3 signaling cascade in the pathogenesis of gastric cancer, its contribution to drug resistance, and its involvement in the metastatic process. Furthermore, we assess recent advances in the development of STAT3 inhibitors and their potential application as therapeutic agents in the treatment of gastric cancer. This work provides a comprehensive overview of the current understanding of STAT3 in gastric cancer and offers a foundation for future research aimed at improving therapeutic outcomes in this challenging disease.
Collapse
Affiliation(s)
- Muyang Chen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Tongshan Wang
- Gastric Cancer Center, Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianzhe Tian
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaorui Hai
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zixuan Qiu
- School of Public Health, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
3
|
Liu C, Zhao X, Wang Z, Zhang C, Zheng W, Zhu X, Zhang D, Gong T, Zhao H, Li F, Guan T, Guo X, Zhang H, Yu B. LncRNA CHROMR/miR-27b-3p/MET axis promotes the proliferation, invasion, and contributes to rituximab resistance in diffuse large B-cell lymphoma. J Biol Chem 2024; 300:105762. [PMID: 38367665 PMCID: PMC10940993 DOI: 10.1016/j.jbc.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.
Collapse
MESH Headings
- Humans
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Gene Expression Regulation, Neoplastic
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Rituximab/pharmacology
- Rituximab/therapeutic use
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Neoplasm Invasiveness
- Proto-Oncogene Proteins c-met/metabolism
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi, Shanxi, China; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinan Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zifeng Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Chan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China; Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenbin Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiaoxia Zhu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Dong Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Feng Li
- Central Laboratory, Shanxi Cancer Hospital, Taiyuan, China; Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Tao Guan
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China; Department of Hematology, Shanxi Cancer Hospital, Taiyuan, China
| | - Xiangyang Guo
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China; Department of Breast Surgery, Shanxi Province Cancer Hospital, Taiyuan, China.
| | - Hongwei Zhang
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China; Department of Hematology, Shanxi Cancer Hospital, Taiyuan, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
4
|
Jin X, Zhang W, Han Q, Li Q, Zong J, Li X, Wang C, Jiang H, Yu G, Li G. Serum-based Comprehensive N-Glycans Profiling Analysis in Different Gastric Disease Stages by Porous Graphitic Carbon Liquid Chromatography-Mass Spectrometry Associated With Potential Marker Discovery. In Vivo 2024; 38:147-159. [PMID: 38148046 PMCID: PMC10756461 DOI: 10.21873/invivo.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM N-glycans are potential serum biomarkers due to their aberrant structure and abundance alteration during disease progression. Few studies have been associated with relative quantitative N-glycans profiling during different gastric disease stages. In this study, we conducted an investigation on the profiling of N-glycans in patients with gastric disease, as well as in healthy controls. MATERIALS AND METHODS In this study, the porous graphitization carbon chromatography-high resolution Fourier transform mass spectrometry (PGC-FTMS) method was applied to assess comprehensive N-glycans profiling in patients at different stages of gastric disease, including gastritis, atrophic gastritis, gastric ulcer, gastric polyps, and gastric cancer. RESULTS A total of 45 N-glycans (relative abundance >0.1%) were detected, and 9 N-glycans were found to be potential biomarkers for gastric disease detection. Along with the progression of gastric disease, the abundance of sialylated N-glycans increased, while that of core-fucosylated N-glycans decreased. Multivariate statistical analysis demonstrated that N-glycans profiling between gastritis and healthy controls had significant differences. The characteristic N-glycans distinguished gastric cancer from healthy controls, which had strong clinical diagnostic value. CONCLUSION The relative quantitative profile of N-glycans in different gastric disease stages was revealed and serum N-glycans are proposed for distinguishing gastric disease stages in clinical application.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Weibin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Qing Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Qinying Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Jinbao Zong
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xiaoyu Li
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Chen Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China;
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, P.R. China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, P.R. China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China;
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, P.R. China
| |
Collapse
|
5
|
Kalajahi HG, Yari A, Amini M, Catal T, Ahmadpour Youshanlui M, Pourbagherian O, Zhmurov CS, Mokhtarzadeh A. Therapeutic effect of microRNA-21 on differentially expressed hub genes in gastric cancer based on systems biology. Sci Rep 2023; 13:21906. [PMID: 38081950 PMCID: PMC10713559 DOI: 10.1038/s41598-023-49225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a leading cause of mortality for many people. Cancer's initiating factors are poorly understood. miR-21 has a crucial function in several malignancies, particularly GC. Furthermore, it has been shown that miR-21 is critical for the emergence and advancement of GC. This work intends to identify new genes which expression is associated with the activity of mir-21 in GC and to investigate the effect of downregulation of mir-21 on these genes and gastric tumorigenesis. We utilized the gene expression profiles of GCs from an Array database (GSE13911) from the Gene Expression Omnibus (GEO) dataset to find differentially expressed genes (DEGs) between control and gastric cancer groups. Using weighted gene correlation network analysis (WGCNA) in R, the Gene co-expression network was reconstructed. The microRNA-mRNA network was then reconstructed using the miRWalk database, and by investigating the microRNA-mRNA network, the genes that have an association with mir-21 were found. To implement the functional investigation, MKN and AGS cell lines were transfected with anti-miR-21 next. Subsequently, MTT proliferation was utilized to assess the cell's vitality. qRT-PCR was then used to evaluate the anticipated levels of gene expression in both GC cell lines. This study discovered and predicted CCL28, NR3C2, and SNYPO2 as the targets of miR-21 (GC), which are downregulated through gastric tumorigenesis, showing great potential as therapeutic and diagnostic targets. The suppression of miR-21 in gastric GC cells led to the inhibition of cell proliferation and decreased expression of CCL28, NR3C2, and SNYPO2 genes. This study established that miR-21, via downregulating these genes, contributes significantly to the development of GC. In addition, systems biology techniques identified CCL28, NR3C2, and SNYPO2 genes as possible GC surveillance and therapy components.
Collapse
Affiliation(s)
- Hesam Ghafouri Kalajahi
- Department of Molecular Biology and Genetics, Uskudar University, Uskudar, 34662, Istanbul, Turkey
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tunc Catal
- Department of Molecular Biology and Genetics, Uskudar University, Uskudar, 34662, Istanbul, Turkey
| | | | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigdem Sezer Zhmurov
- Department of Molecular Biology and Genetics, Uskudar University, Uskudar, 34662, Istanbul, Turkey.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
7
|
Changizian M, Nourisanami F, Hajpoor V, Parvaresh M, Bahri Z, Motovali-Bashi M. LINC00467: A key oncogenic long non-coding RNA. Clin Chim Acta 2022; 536:112-125. [PMID: 36122666 DOI: 10.1016/j.cca.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
The significance of long non-coding RNAs (lncRNAs) in the development and progression of human cancers has attracted increasing attention in recent years of investigations. Having versatile interactions and diverse functions, lncRNAs can act as oncogenes or tumor-suppressors to actively regulate cell proliferation, survival, stemness, drug resistance, invasion and metastasis. LINC00467, an oncogenic member of long intergenic non-coding RNAs, is upregulated in numerous malignancies and its high expression is often related to poor clinicopathological features. LINC00467 facilitates the progression of cancer via sponging tumor-suppressive microRNAs, inhibiting cell death cascade, modulating cell cycle controllers, and regulating signalling pathways including AKT, STAT3, NF-κB and Wnt/β-catenin. A growing number of studies have revealed that LINC00467 may serve as a novel prognostic biomarker and its inhibitory targeting has a valuable therapeutic potential to suppress the malignant phenotypes of cancer cells. In the present review, we discuss the importance of LINC00467 and provide a comprehensive collection of its functions and molecular mechanisms in a variety of cancer types.
Collapse
Affiliation(s)
- Mohammad Changizian
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Farahdokht Nourisanami
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Vida Hajpoor
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, km 15, Tehran - Karaj Highway, Tehran 14965/161, Iran
| | - Maryam Parvaresh
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Zahra Bahri
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Majid Motovali-Bashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| |
Collapse
|
8
|
Chang L, Yang P, Zhang C, Zhu J, Zhang Y, Wang Y, Ding J, Wang K. Long intergenic non-protein-coding RNA 467 promotes tumor progression and angiogenesis via the microRNA-128-3p/vascular endothelial growth factor C axis in colorectal cancer. Bioengineered 2022; 13:12392-12408. [PMID: 35587748 PMCID: PMC9275949 DOI: 10.1080/21655979.2022.2074666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators and biomarkers of tumorigenesis and tumor metastasis. Long intergenic non-protein-coding RNA 467 (LINC00467) is associated with various cancers. However, the role and mechanism of LINC00467 in colorectal cancer (CRC) promotion are poorly understood. This study aimed to present new details of LINC00467 in the progression of CRC. Reverse transcription–polymerase chain reaction demonstrated that the expression level of LINC00467 in CRC tissues and cell lines was significantly upregulated, which was closely related to the clinical features of CRC. Cell and animal studies showed that the downregulation of LINC00467 expression in CRC cells significantly inhibited cell proliferation, metastasis, and angiogenesis. Moreover, the overexpression of LINC00467 accelerated CRC promotion. Bioinformatics analysis and luciferase reporter assay confirmed that LINC00467 binds to miR-128-3p. Rescue experiments manifested that decreased miR-128-3p level reversed CRC cell inhibition by silencing LINC00467. Furthermore, vascular endothelial growth factor C (VEGFC) was identified as a target of miR-128-3p that could reverse the inhibition of cell growth that is mediated by miR-128-3p. Altogether, our results showed that LINC00467 contributes to CRC progression and angiogenesis via the miR-128-3p/VEGFC axis. Our findings expand the understanding of the mechanisms underlying CRC and suggest potential targets for clinical strategies against CRC.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peipei Yang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yirao Zhang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|