1
|
Hong Q, Lin W, Yan Y, Chen S, Li J, Yu J, Zhu Y, Qiu S. Huashi Jiedu Decoction Enhances 5-Fluorouracil Efficacy in Gastric Cancer via miRNA-21-3p/p53 Pathway. Drug Des Devel Ther 2025; 19:3883-3906. [PMID: 40391175 PMCID: PMC12087606 DOI: 10.2147/dddt.s513371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
Purpose To explore the mechanism of Huashi Jiedu Decoction (HJD) synergizing with 5-fluorouracil (5-Fu) in gastric cancer (GC) therapy. Methods MicroRNAs (miRNAs) and genes involved in HJD-mediated GC treatment were identified using ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry, network pharmacology, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and molecular docking. The effects of HJD on 5-Fu sensitivity in BGC-823 cells were evaluated with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and Western blotting. Synergistic effects in vector-transfected and miRNA-21-3p knockdown cells were assessed by colony formation, wound healing, transwell assays, and flow cytometry (FCM). An in vivo study evaluated the impact of HJD on 5-Fu sensitivity, measuring miRNA-21-3p, tumor protein p53 (p53), N-cadherin, vimentin, and E-cadherin in tumors, along with tumor volume and weight. Results miRNA-21-3p and p53 were key targets in HJD's therapeutic effect on GC. RT-qPCR showed that HJD combined with 5-Fu reduced miRNA-21-3p and upregulated p53 in vector cells and increased p53 mRNA (p < 0.01) and protein (p < 0.05) compared to 5-Fu alone. These effects were abolished in miRNA-21-3p knockdown cells. The combination reduced colony formation by 48.92% (p < 0.01), suppressed transwell migration by 28.5% (p < 0.01), and inhibited wound healing by 81.9% compared to 5-Fu monotherapy (p < 0.001), with no effects in knockdown cells. FCM showed a 15.1% increase in G0/G1 phase arrest (p < 0.05). In vivo, the combination significantly reduced tumor volume (p < 0.05) and weight by 18.7%, with concomitant miRNA-21-3p downregulation (p < 0.0001), EMT marker suppression (N-cadherin, vimentin), and tumor suppressor activation (p53, E-cadherin) versus 5-Fu alone. Conclusion HJD enhances 5-Fu's effects on GC by regulating the miRNA-21-3p/p53 pathway and modulating cadherin expression, supporting its potential as an adjunctive treatment in GC.
Collapse
MESH Headings
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/pathology
- Stomach Neoplasms/metabolism
- MicroRNAs/metabolism
- MicroRNAs/genetics
- MicroRNAs/antagonists & inhibitors
- Fluorouracil/pharmacology
- Fluorouracil/administration & dosage
- Humans
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/administration & dosage
- Cell Proliferation/drug effects
- Animals
- Drug Screening Assays, Antitumor
- Mice
- Mice, Nude
- Dose-Response Relationship, Drug
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Inbred BALB C
- Cell Line, Tumor
- Antimetabolites, Antineoplastic/pharmacology
- Tumor Cells, Cultured
- Male
Collapse
Affiliation(s)
- Qianran Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Weiye Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Yici Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Shuangyu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Jiayang Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Shengliang Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| |
Collapse
|
2
|
McCubrey JA, Follo MY, Ratti S, Martelli AM, Manzoli L, Augello G, Cervello M, Cocco L. TP53 gene status can promote sensitivity and resistance to chemotherapeutic drugs and small molecule signal transduction inhibitors. Adv Biol Regul 2025; 95:101073. [PMID: 39809662 DOI: 10.1016/j.jbior.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost. This type of mutations is often dominant-negative (DN) mutations as they can interfere with the normal functions of WT-TP53 which acts as a tetramer. These mutations can result in altered gene expression patterns. There are some TP53 mutations which may lack some of the normal functions of TP53 but have additional functions; these types of mutations are called gain of function (GOF) mutations. There is another class of TP53 mutations, they are TP53 null mutations as the cells have deleted the TP53 gene (TP53-null). Although TP53 mutations were initially considered undruggable, other approaches have been developed to increase TP53 activity. One approach was to develop mouse double minute 2 homolog (MDM2) inhibitors as MDM2 suppresses TP53 activity. In addition, there have been mutant TP53 reactivators created, which will at least partially restore some of the critical growth suppressing effects of TP53. Some of these mutant TP53 reactivators have shown promise in clinical trial in certain types of cancer patients, especially myelodysplastic syndrome (MDS). In this review, we summarize the development of novel TP53 reactivators and MDM2 inhibitors. Both approaches are aimed at increasing or restoring TP53 activity. Attempts to increase TP53 activity in various TP53 mutant tumors could increase therapy of multiple deadly diseases.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Yu S, Si Y, Yu J, Jiang C, Cheng F, Xu M, Fan Z, Liu F, Liu C, Wang Y, Wang N, Liu C, Bi C, Sun H. SNRPB2 promotes triple-negative breast cancer progression by controlling alternative splicing of MDM4 pre-mRNA. Cancer Sci 2024; 115:3915-3927. [PMID: 39329452 PMCID: PMC11611762 DOI: 10.1111/cas.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Alternative splicing generates cancer-specific transcripts and is now recognized as a hallmark of cancer. However, the critical oncogenic spliceosome-related proteins involved in triple-negative breast cancer (TNBC) remain elusive. Here, we explored the expression pattern of spliceosome-related proteins in TNBC, non-TNBC, and normal breast tissues from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort, revealing higher expression of nearly half of spliceosome-related proteins in TNBC than their counterparts. Among these TNBC-specific spliceosome-related proteins, the expression of SNRPB2 was associated with poor prognosis in patients with TNBC. In TNBC cells, the knockdown of SNRPB2 strongly suppressed cell proliferation and invasion and induced cell cycle arrest. Mechanistically, transcriptome data showed that SNRPB2 knockdown inactivated E2F1 signaling, which regulated the cell cycle. We further validated the downregulation of several cell cycle genes in SNRPB2 knockdown cells. Moreover, the analysis showed that SNRPB2 knockdown triggered the alteration of many alternative splicing events, most of which were skipping of exon. In TNBC cells, it was found that SNRPB2 knockdown led to the skipping of exon 6 in MDM4 pre-mRNA, generating MDM4-S transcript and downregulating MDM4 protein expression. More importantly, downregulation of MDM4 decreased retinoblastoma 1 (Rb1) protein expression, which is a target of MDM4 and a regulator of E2F1 signaling. In summary, the current study revealed an SNRPB2/MDM4/Rb axis in promoting the progression of TNBC, providing novel insights and novel targets for combating TNBC.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Yue Si
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Jianzhong Yu
- Department of Internal MedicineHaian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNantongChina
| | - Chengyang Jiang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fei Cheng
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Miao Xu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Zhehao Fan
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fangchen Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chang Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Ying Wang
- Department of Thyroid and Breast SurgeryThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Ning Wang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chenxu Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Caili Bi
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Haibo Sun
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| |
Collapse
|
4
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
5
|
Li Y, Wan L, Li H, Tang X, Xu S, Sun G, Huang W, Tang M. Small molecule NMD and MDM2 inhibitors synergistically trigger apoptosis in HeLa cells. Mol Cells 2024; 47:100079. [PMID: 38871298 PMCID: PMC11250858 DOI: 10.1016/j.mocell.2024.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway and the p53 pathway, linked to tumorgenesis, are also promising targets for cancer treatment. NMD plays an important role in RNA quality control, while the p53 pathway is involved in cancer suppression. However, their individual and combined effects on cervical cancer are poorly understood. In this study, we evaluated the impacts of NMD inhibitor, Mouse double minute 2 homolog (MDM2) inhibitor, and their combination on cell apoptosis, cell cycle, and p53 target genes in human papillomavirus-18-positive HeLa cells. Our findings revealed that XR-2 failed to activate p53 or induce apoptosis in HeLa cells, whereas SMG1 (serine/threonine-protein kinase 1) inhibitor repressed cell proliferation at high concentrations. Notably, the combination of these 2 agents significantly inhibited cell proliferation, arrested the cell cycle, and triggered cell apoptosis. Mechanistically, MDM2 inhibitor and NMD inhibitor likely exert a synergistically through the truncated E6 protein. These results underscore the potential of employing a combination of MDM2 inhibitor and NMD inhibitor as a promising candidate for the clinical treatment of human papillomavirus-infected tumors.
Collapse
Affiliation(s)
- Ying Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Li Wan
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Xiaokun Tang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Siyuan Xu
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| |
Collapse
|
6
|
Parodis I, Lindblom J, Barturen G, Ortega-Castro R, Cervera R, Pers JO, Genre F, Hiepe F, Gerosa M, Kovács L, De Langhe E, Piantoni S, Stummvoll G, Vasconcelos C, Vigone B, Witte T, Alarcón-Riquelme ME, Beretta L. Molecular characterisation of lupus low disease activity state (LLDAS) and DORIS remission by whole-blood transcriptome-based pathways in a pan-European systemic lupus erythematosus cohort. Ann Rheum Dis 2024; 83:889-900. [PMID: 38373843 PMCID: PMC11187369 DOI: 10.1136/ard-2023-224795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES To unveil biological milieus underlying low disease activity (LDA) and remission versus active systemic lupus erythematosus (SLE). METHODS We determined differentially expressed pathways (DEPs) in SLE patients from the PRECISESADS project (NTC02890121) stratified into patients fulfilling and not fulfilling the criteria of (1) Lupus LDA State (LLDAS), (2) Definitions of Remission in SLE remission, and (3) LLDAS exclusive of remission. RESULTS We analysed data from 321 patients; 40.8% were in LLDAS, and 17.4% in DORIS remission. After exclusion of patients in remission, 28.3% were in LLDAS. Overall, 604 pathways differed significantly in LLDAS versus non-LLDAS patients with an false-discovery rate-corrected p (q)<0.05 and a robust effect size (dr)≥0.36. Accordingly, 288 pathways differed significantly between DORIS remitters and non-remitters (q<0.05 and dr≥0.36). DEPs yielded distinct molecular clusters characterised by differential serological, musculoskeletal, and renal activity. Analysis of partially overlapping samples showed no DEPs between LLDAS and DORIS remission. Drug repurposing potentiality for treating SLE was unveiled, as were important pathways underlying active SLE whose modulation could aid attainment of LLDAS/remission, including toll-like receptor (TLR) cascades, Bruton tyrosine kinase (BTK) activity, the cytotoxic T lymphocyte antigen 4 (CTLA-4)-related inhibitory signalling, and the nucleotide-binding oligomerization domain leucine-rich repeat-containing protein 3 (NLRP3) inflammasome pathway. CONCLUSIONS We demonstrated for the first time molecular signalling pathways distinguishing LLDAS/remission from active SLE. LLDAS/remission was associated with reversal of biological processes related to SLE pathogenesis and specific clinical manifestations. DEP clustering by remission better grouped patients compared with LLDAS, substantiating remission as the ultimate treatment goal in SLE; however, the lack of substantial pathway differentiation between the two states justifies LLDAS as an acceptable goal from a biological perspective.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Jacques-Olivier Pers
- Centre Hospitalier Universitaire de Brest, Hopital de la Cavale Blanche, Brest, France
| | - Fernanda Genre
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Spain
| | - Falk Hiepe
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Ellen De Langhe
- Katholieke Universiteit Leuven and Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Silvia Piantoni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, Azienda Socio Sanitaria Territoriale Spedali Civili and University of Brescia, Brescia, Italy
| | | | | | - Barbara Vigone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Beretta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Cui J, Wang Y, Li X, Xiao F, Ren H, Wu M. Synthesis and Antineoplastic Activity of a Dimer, Spiroindolinone Pyrrolidinecarboxamide. Molecules 2023; 28:molecules28093912. [PMID: 37175323 PMCID: PMC10180320 DOI: 10.3390/molecules28093912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The mutation or function loss of tumour suppressor p53 plays an important role in abnormal cell proliferation and cancer generation. Murine Double Minute 2 (MDM2) is one of the key negative regulators of p53. p53 reactivation by inhibiting MDM2-p53 interaction represents a promising therapeutic option in cancer treatment. Here, to develop more effective MDM2 inhibitors with lower off-target toxicities, we synthesized a dimer, spiroindolinone pyrrolidinecarboxamide XR-4, with potent MDM2-p53 inhibition activity. Western blotting and qRT-PCR were performed to detect the impact of XR-4 on MDM2 and p53 protein levels and p53 downstream target gene levels in different cancers. Cancer cell proliferation inhibition and clonogenic activity were also investigated via the CCK8 assay and colony formation assay. A subcutaneous 22Rv1-derived xenografts mice model was used to investigate the in vivo anti-tumour activity of XR-4. The results reveal that XR-4 can induce wild-type p53 accumulation in cancer cells, upregulate the levels of the p53 target genes p21 and PUMA levels, and then inhibit cancer cell proliferation and induce cell apoptosis. XR-4 can also act as a homo-PROTAC that induces MDM2 protein degradation. Meanwhile, the in vivo study results show that XR-4 possesses potent antitumour efficacy and a favourable safety property. In summary, XR-4 is an interesting spiroindolinone pyrrolidinecarboxamide-derivative dimer with effective p53 activation activity and a cancer inhibition ability.
Collapse
Affiliation(s)
- Jingyi Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
| | - Yujie Wang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoxin Li
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, China
| | - Meng Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Wang X, Li W, Lou N, Han W, Hai B, Xiao W, Zhang X. High Expression of DNTTIP1 Predicts Poor Prognosis in Clear Cell Renal Cell Carcinoma. Pharmgenomics Pers Med 2023; 16:1-14. [PMID: 36636625 PMCID: PMC9831534 DOI: 10.2147/pgpm.s382843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Background Invasion and metastasis led to poor prognosis and death of clear cell renal cell carcinoma (ccRCC) patients. The deoxynucleotidyl transferase terminal interacting protein 1 (DNTTIP1) was reported to promote multiple tumor progression. However, there is no research about DNTTIP1 in ccRCC. Methods Kaplan-Meier survival analysis, multivariate analysis demonstrated the prognostic indicator in overall survival (OS) and disease-free survival (DFS) of ccRCC with DNTTIP1 expression in the Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC). Receiver operator characteristic (ROC) curve analyzed diagnostic ability of DNTTIP1 in TCGA-KIRC and validation dataset. The quantitative real-time polymerase chain reaction (qRT-PCR) detected the DNTTIP1 expression in renal cancer tissues, and the Office of Cancer Clinical Proteomics Research (CPTAC) verified the protein expression of DNTTIP1. Moreover, nomogram predicted the role of DNTTIP1 in ccRCC patient. Single-sample Gene Set Enrichment Analysis (SsGSEA) and GSEA evaluated the pathogenesis role of DNTTIP1 in TCGA-KIRC. Results DNTTIP1 expression was higher in ccRCC tumor tissues. High expression of DNTTIP1 was associated with poor OS (HR = 1.618, P < 0.0001), and poor DFS (HR = 1.789, P < 0.0001). SsGSEA and GSEA showed DNTTIP1 was associated with hypoxia, epithelial-mesenchymal transition (EMT), angiogenesis, G2M checkpoint. DNTTIP1 had a positive correlation with EMT biomarkers in ccRCC, and might be an effective target for ccRCC. Conclusion This study provided that higher expression of DNTTIP1 predicted poor prognosis in ccRCC, and DNTTIP1 might be a novel detection biomarker and therapeutic target of tumor malignant in the future.
Collapse
Affiliation(s)
- Xuegang Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ning Lou
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Weiwei Han
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bo Hai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China,Correspondence: Wen Xiao; Bo, Hai, Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, People’s Republic of China, Tel +86-17088353610, Fax +86 85776343, Email ;
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|