1
|
Assi A, Farhat M, Mohanna R, Hachem MCR, Zalaquett Z, Aoun M, Farraj SA, Daher M, Sebaaly A, Kourie HR. Tyrosine kinase inhibitors in Ewing's sarcoma: a systematic review. BMC Cancer 2025; 25:735. [PMID: 40251562 PMCID: PMC12008964 DOI: 10.1186/s12885-025-14130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Ewing's sarcoma (ES) is a highly aggressive primary bone malignancy that primarily affects children and adolescents. Several tyrosine kinase receptors (RTKs) have been found to be overexpressed in ES samples, and it was demonstrated that some play significant roles in driving the malignant phenotype of ES. Specifically, ES with insulin-like growth factor 1 (IGF1R) or vascular endothelial growth factor (VEGFR) overexpression were correlated with more aggressive ES and worse outcomes. Other RTKs that were determined to be overexpressed in ES include platelet-derived growth factor receptor, stem cell factor receptor, and hepatocyte growth factor. Overexpression of these molecules suggests their possible tumor-driving role, making them potential targets for intervention. Various tyrosine kinase inhibitors (TKIs), including apatinib, anlotinib, and cabozantinib have shown clinical promise in patients with recurrent ES who have progressed on previous lines of therapy. The findings reported in this review emphasize the importance of assessing IGF1R-focused inhibitors and combinational therapeutic regimens in future research. Furthermore, biomarkers predictive of response are necessary to improve patient outcomes. In order to optimize ES care, considerations for patient eligibility on the basis of positivity for biomarkers predictive of response, and the inclusion of quality-of-life evaluations in studies must be addressed.
Collapse
Affiliation(s)
- Ahmad Assi
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon.
| | - Mohamad Farhat
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Rami Mohanna
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | | | - Ziad Zalaquett
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Marven Aoun
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon
| | - Sami Abi Farraj
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Mohammad Daher
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon.
- Orthopedics Department, Brown University, Providence, RI, USA.
| | - Amer Sebaaly
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon.
| | | |
Collapse
|
2
|
Zhra M, Akhund SA, Mohammad KS. Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies. Pharmaceuticals (Basel) 2025; 18:520. [PMID: 40283955 PMCID: PMC12030420 DOI: 10.3390/ph18040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma is recognized as the most prevalent primary bone malignancy, primarily affecting children and adolescents. It is characterized by its aggressive behavior and high metastatic potential, which often leads to poor patient outcomes. Despite advancements in surgical techniques and chemotherapy regimens, the prognosis for patients with osteosarcoma remains unsatisfactory, with survival rates plateauing over the past few decades. A significant barrier to effective treatment is the development of chemotherapy resistance, which complicates the management of the disease and contributes to high rates of recurrence. This review article aims to provide a comprehensive overview of recent advancements in osteosarcoma therapy, particularly in overcoming chemotherapy resistance. We begin by discussing the current standard treatment modalities, including surgical resection and conventional chemotherapy agents such as methotrexate, doxorubicin, and cisplatin. While these approaches have been foundational in managing osteosarcoma, they are often limited by adverse effects and variability in efficacy among patients. To address these challenges, we explore novel pharmacological strategies that aim to enhance treatment outcomes. This includes targeted therapies focusing on specific molecular alterations in osteosarcoma cells and immunotherapeutic approaches designed to harness the body's immune system against tumors. Additionally, we review innovative drug delivery systems that aim to improve the bioavailability and efficacy of existing treatments while minimizing toxicity. The review also assesses the mechanisms underlying chemotherapy resistance, such as drug efflux mechanisms, altered metabolism, and enhanced DNA repair pathways. By synthesizing current research findings, we aim to highlight the potential of new therapeutic agents and strategies for overcoming these resistance mechanisms. Ultimately, this article seeks to inform future research directions and clinical practices, underscoring the need for continued innovation in treating osteosarcoma to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.); (S.A.A.)
| |
Collapse
|
3
|
Chantre-justino M, Silvestre RT, De Castro TL, Luz E, Pinheiro RDCES, Caruso A, Lopes ACDS, Meohas W, Alves G, Ornellas MHF. Genetic profiling of osteosarcoma in an adolescent using a next‑generation sequencing panel and Sanger sequencing: A case report and review of the literature. Biomed Rep 2025; 22:42. [PMID: 39810900 PMCID: PMC11729137 DOI: 10.3892/br.2025.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor affecting adolescents and young adults and it usually occurs in the long bones of the extremities. The detection of cancer-related genetic alterations has a growing effect in guiding diagnosis, prognosis and targeted therapies. However, little is known about the molecular aspects involved in the etiology and progression of OS, which limits options for targeted therapies. The present study described a case of an adolescent patient (16-years-old) who was diagnosed with conventional central OS in the right distal femur without the evidence of pulmonary metastases; the patient was treated with surgery and adjuvant chemotherapy. Genetic alterations in resected tumor tissue were investigated via next-generation sequencing (NGS) technology using a targeted NGS panel. Sanger sequencing was also performed to investigate somatic and germline TP53 mutations (exons 4-8). NGS analysis revealed an intratumor heterogeneity signature in OS tumor, including several single nucleotide variants identified in genes encoding tyrosine kinase proteins. No PCR products for TP53 exon 5 were detected in the tumor sample by PCR analysis prior to Sanger sequencing, suggesting a significant deletion in this exon. Sanger sequencing analysis revealed the missense variant TP53 c.712T>A (p.Cys238Ser) in tumor tissue sample, thus reinforcing the role of TP53 somatic mutations in OS development. Additionally, the TP53 c.215C>G (p.Pro72Arg) germline missense variant was identified in the peripheral blood sample. In conclusion, the findings provided new information on genetic aspects that may contribute to OS development, especially in pediatric patients.
Collapse
Affiliation(s)
- Mariana Chantre-justino
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Rafaele Tavares Silvestre
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Thiago Luz De Castro
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Eliane Luz
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Rafael De Castro E Silva Pinheiro
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Anabela Caruso
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Ana Cristina De Sá Lopes
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Walter Meohas
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
4
|
Liu C, Huang J, Chang H, Chen C, Tsai Y, Chen W, Lin J, Chang H, Chen C, Lin M, Huang M, Lin N. C1GALT1 expression predicts poor survival in osteosarcoma and is crucial for ABCC1 transporter-mediated doxorubicin resistance. J Pathol 2025; 265:289-301. [PMID: 39844613 PMCID: PMC11794964 DOI: 10.1002/path.6384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 01/24/2025]
Abstract
Osteosarcoma is an aggressive bone malignancy with a high propensity for drug resistance and metastasis, leading to poor clinical outcomes. This study investigates the role of core 1 β1,3-galactosyltransferase 1 (C1GALT1) in osteosarcoma, focusing on its implications in chemoresistance. Our findings reveal that high expression of C1GALT1 is associated with advanced stages, adverse overall survival, and increased recurrence rates. Elevated levels of C1GALT1 were observed in doxorubicin-selected osteosarcoma cells, where its suppression significantly promoted doxorubicin-induced apoptosis and reduced drug efflux. Pharmacological inhibition of C1GALT1 using itraconazole replicated these effects, suggesting a potential therapeutic strategy to overcome chemoresistance. Additionally, we identified the involvement of the ATP-binding cassette (ABC) transporter ABCC1 in the drug-resistance phenotype mediated by C1GALT1. C1GALT1-mediated O-glycan changes were found to influence the cell-surface targeting and lysosomal degradation of ABCC1, thereby modulating its efflux capacity. In vitro and in vivo studies confirmed that C1GALT1 impacts ABCC1 expression and function, further supporting its role in osteosarcoma chemoresistance. These results highlight the clinical relevance of C1GALT1 as a biomarker for prognosis and a potential therapeutic target for osteosarcoma. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chun‐Wei Liu
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Jing‐Hui Huang
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Biochemistry and Molecular MedicineNational Dong Hwa UniversityHualienTaiwan
| | - Hsiu‐Hao Chang
- Department of PediatricsNational Taiwan University Hospital, National Taiwan University College of MedicineTaipeiTaiwan
| | - Chia‐Hua Chen
- Department of Anatomy, School of MedicineChang Gung UniversityTaoyuanTaiwan
- Neuroscience Research CenterChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
- Graduate Institute of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yi‐Huan Tsai
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Wei‐Li Chen
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Jung‐An Lin
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Hsiu‐Ling Chang
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Cheng‐Chang Chen
- Department of Laboratory MedicineNational Taiwan University HospitalTaipeiTaiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Mei‐Chun Lin
- National Taiwan University Cancer CenterTaipeiTaiwan
| | - Min‐Chuan Huang
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Neng‐Yu Lin
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
5
|
Chiappetta C, Della Rocca C, Di Cristofano C. Whole-Exome Analysis and Osteosarcoma: A Game Still Open. Int J Mol Sci 2024; 25:13657. [PMID: 39769419 PMCID: PMC11728052 DOI: 10.3390/ijms252413657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant bone tumor in adolescents and young adults. OS cells grow in a permissive local microenvironment which modulates their behavior and facilitates all steps in tumor development (e.g., proliferation/quiescence, invasion/migration, and drug resistance) and contributes to their intrinsic heterogeneity. The lung parenchyma is the most common metastatic site in OS, and metastatic foci are frequently associated with a poor clinical outcome. Although multiple factors may be responsible for the disease, including genetic mutations (e.g., Rb and p53), the molecular mechanism of development of OS remains unclear, and the conventional treatment for OS is still based on a sequential approach that combines chemotherapy and surgery. Also, despite the increase in clinical trials, the survival rates for OS have not improved. Non-specific targeting therapies thus show poor therapeutic effects, along with side effects at high doses. For these reasons, many efforts have been made to characterize the complex genome of OS thanks to the whole-exome analysis, with the aim of identifying predictive biomarkers to give these patients a better therapeutic option. This review aims to summarize and discuss the main recent advances in OS molecular research for precision medicine.
Collapse
Affiliation(s)
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Claudio Di Cristofano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| |
Collapse
|
6
|
Zhang H, Bai Y, Li J, Chen T, Shang G. FBXO22 promotes osteosarcoma progression via regulation of FOXO1 for ubiquitination and degradation. J Cell Mol Med 2024; 28:e70021. [PMID: 39153212 PMCID: PMC11330286 DOI: 10.1111/jcmm.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Accumulating evidence has demonstrated that F-box protein 22 (FBXO22) participates in tumour development and progression in various types of human malignancies. However, the functions and detailed molecular mechanisms of FBXO22 in osteosarcoma tumorigenesis and progression remain elusive. In this study, we aimed to determine the effects of FBXO22 on the cell proliferation, migration and invasion of osteosarcoma cells using cell counting kit-8 and Matrigel Transwell approaches. Moreover, we explored the molecular mechanisms by which FBXO22 mediated oncogenesis and progression in osteosarcoma via Western blotting, immunoprecipitation and ubiquitination. We found that FBXO22 depletion inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas FBXO22 overexpression increased the proliferation and motility of osteosarcoma cells. Mechanistically, FBXO22 promoted the ubiquitination and degradation of FoxO1 in osteosarcoma cells. FBXO22 depletion reduced cell proliferation and motility via regulation of FoxO1. Taken together, our findings provide new insight into FBXO22-induced osteosarcoma tumorigenesis. The inhibition of FBXO22 could be a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- He Zhang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yang Bai
- Department of NursingShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiatong Li
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ting Chen
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanning Shang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
7
|
Yu S, Zhang R, Xie Z, Xiong Z, Peng S, Li B, Zhuang R, Wu J, Huang H. Sorafenib Encapsulated Poly(ester amide) Nanoparticles for Efficient and Biosafe Prostate Cancer Therapy. ACS Biomater Sci Eng 2024; 10:4336-4346. [PMID: 38850557 DOI: 10.1021/acsbiomaterials.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Prostate cancer (PCa) with a high incidence worldwide is a serious threat to men's health. Despite the continuous development of treatment strategies for PCa in recent years, the long-term prognosis of patients is still poor. Hence, the discovery and development of novel, secure, and efficient therapeutic approaches hold significant clinical significance. Although sorafenib (SOR) displays potential as a therapeutic option for PCa, its clinical efficacy is hindered by drug resistance, limited water solubility, and rapid metabolism. Therefore, we proposed to prepare nanoparticles (named SOR@8P4 NPs) utilizing the phenylalanine-based poly(ester amide) polymer (8P4) as the drug carrier to enhance the solubility and drug stability of SOR and improve the therapeutic targeting and bioavailability. SOR@8P4 NPs had high stability and showed acid-responsive drug release at the acidic tumor microenvironment. Additionally, SOR@8P4 NPs demonstrated more remarkable anticancer, antimetastatic, and antiproliferative abilities in vitro, compared with those of free drugs. SOR@8P4 NPs showed high tumor targeting and significantly inhibited tumor growth in vivo. In summary, the drug delivery system of SOR@8P4 NPs provides new ideas for the clinical treatment of PCa.
Collapse
Affiliation(s)
- Shunli Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruhe Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhaoxiang Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhi Xiong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bingheng Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruilin Zhuang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
8
|
Yang Q, Li Q, Fan H. Antitumor activity of anlotinib in malignant melanoma: modulation of angiogenesis and vasculogenic mimicry. Arch Dermatol Res 2024; 316:447. [PMID: 38958761 DOI: 10.1007/s00403-024-03020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
Malignant melanoma presents a formidable challenge due to its aggressive metastatic behavior and limited response to current treatments. To address this, our study delves into the impact of anlotinib on angiogenesis and vasculogenic mimicry using malignant melanoma cells and human umbilical vein endothelial cells. Evaluating tubular structure formation, cell proliferation, migration, invasion, and key signaling molecules in angiogenesis, we demonstrated that anlotinib exerts a dose-dependent inhibition on tubular structures and effectively suppresses cell growth and invasion in both cell types. Furthermore, in a mouse xenograft model, anlotinib treatment resulted in reduced tumor growth and vascular density. Notably, the downregulation of VEGFR-2, FGFR-1, PDGFR-β, and PI3K underscored the multitargeted antitumor activity of anlotinib. Our findings emphasize the therapeutic potential of anlotinib in targeting angiogenesis and vasculogenic mimicry, contributing to the development of novel strategies for combating malignant melanoma.
Collapse
MESH Headings
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Quinolines/administration & dosage
- Humans
- Melanoma/drug therapy
- Melanoma/pathology
- Animals
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Indoles/pharmacology
- Indoles/therapeutic use
- Mice
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Human Umbilical Vein Endothelial Cells
- Cell Line, Tumor
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Cell Movement/drug effects
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Signal Transduction/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/therapeutic use
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Mice, Nude
- Angiogenesis
Collapse
Affiliation(s)
- Qian Yang
- Department of Oncology and Hematology, People's Hospital of Leshan, 2-428 Yong'an Road, Leshan, 614000, Sichuan, People's Republic of China.
| | - Qianqian Li
- Department of General Medical, People's Hospital of Leshan, Leshan, 614000, People's Republic of China
| | - Hua Fan
- Department of Oncology and Hematology, People's Hospital of Leshan, 2-428 Yong'an Road, Leshan, 614000, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Meng Q, Han J, Wang P, Jia C, Guan M, Zhang B, Zhao W. BMS-794833 reduces anlotinib resistance in osteosarcoma by targeting the VEGFR/Ras/CDK2 pathway. J Bone Oncol 2024; 45:100594. [PMID: 38532893 PMCID: PMC10963651 DOI: 10.1016/j.jbo.2024.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Background Osteosarcoma, a tumor that originates from bone cells, has a poor prognosis and a high degree of malignancy. Anlotinib, a small-molecule multi-target tyrosine kinase inhibitor (TKI), is the first-line drug in treating osteosarcoma, especially in late-stage osteosarcoma. However, patients often develop resistance after using anlotinib for a certain period, which poses a challenge to its further clinical application. Recently, several TKIs, for instance regorafenib and cabozantinib, have showed clinical interest in treating osteosarcoma and target both vascular endothelial growth factor receptor (VEGFR) and mesenchymal epithelial transition factor (c-MET). Therefore, the identification of new TKI warrants further investigation. Methods We performed CCK8 aasays to confirm that BMS-794833 sensitization osteosarcoma cells to anlotinib. Bioinformatics analysis and rescue experiments showed that the reduce of resistance were dependent on the VEGFR/Ras/CDK2 pathway. Cell line based xenograft model were used to demonstrate that BMS-794833 and anlotinib could synergistically treat OS. Results Here, we found that BMS-794833 reduced anlotinib resistance in osteosarcoma by targeting the VEGFR/Ras/CDK2 pathway. CCK8 assay showed that BMS-794833 significantly improved the resistance of osteosarcoma cells to anlotinib. The results of rescue experiments showed that the regulatory effects of BMS-794833 on the proliferation and drug resistance of osteosarcoma cells were dependent on the VEGFR/Ras/CDK2 pathway. In addition, BMS-794833 affected the resistance of osteosarcoma cells to anlotinib through epithelial-mesenchymal transition (EMT) and apoptosis pathways. More importantly, BMS-794833 and anlotinib exerted synergistic therapeutic effects against osteosarcoma in vivo. Conclusion Altogether, this study reveals a new (VEGFR)-targeting drug that can be combined with anlotinib for the treatment of osteosarcoma, which provides an important theoretical basis for overcoming anlotinib resistance.
Collapse
Affiliation(s)
- Qingtao Meng
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116028, China
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chenxu Jia
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Wenzhi Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116028, China
| |
Collapse
|
10
|
Liu X, Duan Z, Fang S, Wang S. Imaging Assessment of the Efficacy of Chemotherapy in Primary Malignant Bone Tumors: Recent Advances in Qualitative and Quantitative Magnetic Resonance Imaging and Radiomics. J Magn Reson Imaging 2024; 59:7-31. [PMID: 37154415 DOI: 10.1002/jmri.28760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Recent studies have shown that MRI demonstrates promising results for evaluating the chemotherapy efficacy in bone sarcomas. This article reviews current methods for evaluating the efficacy of malignant bone tumors and the application of MRI in this area, and emphasizes the advantages and limitations of each modality. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xiaoge Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Zhiqing Duan
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Shaobo Fang
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Shen Y, Xie Q, Wang Y, Liang J, Jiang C, Liu X, Wang Y, Hu C. Design, synthesis and anti-osteosarcoma activity study of novel pyrido[2,3-d]pyrimidine derivatives by inhibiting DKK1-Wnt/β-catenin pathway. Bioorg Chem 2023; 141:106848. [PMID: 37716273 DOI: 10.1016/j.bioorg.2023.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Osteosarcoma is a common primary malignant bone tumor in adolescents. Wnt/β-catenin has been proved to play a pro-oncogenic role and was overactivated in osteosarcoma. Therefore, this pathway has become an interesting therapeutic target for osteosarcoma. Herein we report the design, synthesis and biological activities of a series of novel pyrido[2,3-d]pyrimidine derivatives based on our previous work. Among these, the representative compound 2-{[1,3-dimethyl-7-(4-methylpiperazin-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl]amino}-N-[4-(trifluoromethoxy)phenyl]acetamide (7m) has exhibited good antiproliferative activity towards 143B and MG63 cells with good selectivity over non-cancerous HSF cells. In the assay of Ca2+ concentration, the compound 7m increased the intracellular Ca2+ concentration in 143B cells. In addition, the expression of DKK1 increased, and that of p-β-catenin decreased by 7m treatment. Finally, the Hoechst 33,342 staining, Annexin-FITC/PI staining and mitochondrial fluorescence staining have clearly demonstrated that compound 7m induced apoptosis in 143B cells.
Collapse
Affiliation(s)
- Yanni Shen
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Xie
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Orthopaedics, General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Yiling Wang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Jianhui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuilu Jiang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Xiaoping Liu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| |
Collapse
|
12
|
Xu J, Chen C, Sun K, Shi Q, Wang B, Huang Y, Ren T, Tang X. Tocilizumab (monoclonal anti-IL-6R antibody) reverses anlotinib resistance in osteosarcoma. Front Oncol 2023; 13:1192472. [PMID: 37404767 PMCID: PMC10315670 DOI: 10.3389/fonc.2023.1192472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Anlotinib, a tyrosine kinase inhibitor (TKI) has been in clinical application to inhibit malignant cell growth and lung metastasis in osteosarcoma (OS). However, a variety of drug resistance phenomena have been observed in the treatment. We aim to explore the new target to reverse anlotinib resistance in OS. Materials and Methods In this study, we established four OS anlotinib-resistant cell lines, and RNA-sequence was performed to evaluate differentially expressed genes. We verified the results of RNA-sequence by PCR, western blot and ELISA assay. We further explored the effects of tocilizumab (anti- IL-6 receptor), either alone or in combined with anlotinib, on the inhibition of anlotinib-resistant OS cells malignant viability by CCK8, EDU, colony formation, apoptosis, transwell, wound healing, Cytoskeletal stain assays, and xenograft nude mouse model. The expression of IL-6 in 104 osteosarcoma samples was tested by IHC. Results We found IL-6 and its downstream pathway STAT3 were activated in anlotinib-resistant osteosarcoma. Tocilizumab impaired the tumor progression of anlotinib-resistant OS cells, and combined treatment with anlotinib augmented these effects by inhibiting STAT3 expressions. IL-6 was highly expressed in patients with OS and correlated with poor prognosis. Conclusion Tocilizumab could reverse anlotinib resistance in OS by IL-6/STAT3 pathway and the combination treatment with anlotinib rationalized further studies and clinical treatment of OS.
Collapse
Affiliation(s)
- Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Chenglong Chen
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|