1
|
Jeong D, Kim S, Park H, Woo K, Choi J, Choi M, Shin J, Park SH, Seon M, Lee D, Cha J, Kim Y. Optogenetically Activatable MLKL as a Standalone Functional Module for Necroptosis and Therapeutic Applications in Antitumoral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412393. [PMID: 39921454 PMCID: PMC11967802 DOI: 10.1002/advs.202412393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Necroptosis plays a crucial role in the progression of various diseases and has gained substantial attention for its potential to activate antitumor immunity. However, the complex signaling networks that regulate necroptosis have made it challenging to fully understand its mechanisms and translate this knowledge into therapeutic applications. To address these challenges, an optogenetically activatable necroptosis system is developed that allows for precise spatiotemporal control of key necroptosis regulators, bypassing complex upstream signaling processes. The system, specifically featuring optoMLKL, demonstrates that it can rapidly assemble into functional higher-order "hotspots" within cellular membrane compartments, independent of RIPK3-mediated phosphorylation. Moreover, the functional module of optoMLKL significantly enhances innate immune responses by promoting the release of iDAMPs and cDAMPs, which are critical for initiating antitumor immunity. Furthermore, optoMLKL exhibits antitumor effects when activated in patient-derived pancreatic cancer organoids, highlighting its potential for clinical application. These findings will pave the way for innovative cancer therapies by leveraging optogenetic approaches to precisely control and enhance necroptosis.
Collapse
Affiliation(s)
- Da‐Hye Jeong
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Seokhwi Kim
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Han‐Hee Park
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Kyoung‐Jin Woo
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Jae‐Il Choi
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Minji Choi
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
| | - Jisoo Shin
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
| | - So Hyun Park
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Myung‐Wook Seon
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Dakeun Lee
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Jong‐Ho Cha
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheon22212Republic of Korea
- Biohybrid Systems Research CenterInha UniversityIncheon22212Republic of Korea
| | - You‐Sun Kim
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| |
Collapse
|
2
|
Frumento D, Ţălu Ș. Light-based technologies in immunotherapy: advances, mechanisms and applications. Immunotherapy 2025; 17:123-131. [PMID: 40032620 PMCID: PMC11901425 DOI: 10.1080/1750743x.2025.2470111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
Light-based immunotherapy uses specific wavelengths of light to activate or modulate immune responses. It primarily employs two mechanisms: direct activation of immune cells and indirect modulation of the tumor microenvironment (TME). Several light-based technologies are under investigation or clinical use in immunotherapy, including photodynamic immunotherapy (PDIT) and photothermal therapy (PTT). Optogenetic tools have the potential to precisely control T-cell receptor activation, cytokine release, or the activity of other immune effector cells. Light-based technologies present innovative opportunities within the realm of immunotherapy. The ability to precisely regulate immune cell activation via optogenetics, alongside the improved targeting of cancer cells through photoimmunotherapy, signifies a transformative shift in our strategies for immune modulation. Although many of these technologies remain in the experimental stage for various applications, initial findings are encouraging, especially concerning cancer treatment and immune modulation. Continued research and clinical trials are essential to fully harness the capabilities of light technology in the context of immune cell therapy.
Collapse
Affiliation(s)
| | - Ștefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), The Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Huang ZD, Bugaj LJ. Optogenetic Control of Condensates: Principles and Applications. J Mol Biol 2024; 436:168835. [PMID: 39454749 DOI: 10.1016/j.jmb.2024.168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
Collapse
Affiliation(s)
- Zikang Dennis Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Oh TJ, Krishnamurthy V, Han JW, Zhu J, Beg Z, Mehfooz A, Gworek B, Shapiro DJ, Zhang K. Spatiotemporal Control of Inflammatory Lytic Cell Death Through Optogenetic Induction of RIPK3 Oligomerization. J Mol Biol 2024; 436:168628. [PMID: 38797430 PMCID: PMC11234905 DOI: 10.1016/j.jmb.2024.168628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization. La-RIPK3 activation dissects RIPK3-centric lytic cell death through the induction of RIPK3-containing necrosome, which mediates cytokine production and plasma membrane rupture. Bulk RNA-Seq analysis reveals that RIPK3 oligomerization results in partially overlapped gene expression compared to pharmacological induction of necroptosis. Additionally, La-RIPK3 activates separated groups of genes regulated by RIPK3 kinase-dependent and -independent processes. Using patterned light stimulation delivered by a spatial light modulator, we demonstrate precise spatiotemporal control of necroptosis in La-RIPK3-transduced HT-29 cells. Optogenetic control of proinflammatory lytic cell death could lead to the development of innovative experimental strategies to finetune the immune landscape for disease intervention.
Collapse
Affiliation(s)
- Teak-Jung Oh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vishnu Krishnamurthy
- High-throughput Screening Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeong Won Han
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Junyao Zhu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zayn Beg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amna Mehfooz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bryan Gworek
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; NSF Science and Technology Center for Quantitative Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Hernandez-Candia CN, Brady BR, Harrison E, Tucker CL. A platform to induce and mature biomolecular condensates using chemicals and light. Nat Chem Biol 2024; 20:452-462. [PMID: 38191942 PMCID: PMC10978248 DOI: 10.1038/s41589-023-01520-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Biomolecular condensates are membraneless compartments that impart spatial and temporal organization to cells. Condensates can undergo maturation, transitioning from dynamic liquid-like states into solid-like states associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Huntington's disease. Despite their important roles, many aspects of condensate biology remain incompletely understood, requiring tools for acutely manipulating condensate-relevant processes within cells. Here we used the BCL6 BTB domain and its ligands BI-3802 and BI-3812 to create a chemical genetic platform, BTBolig, allowing inducible condensate formation and dissolution. We also developed optogenetic and chemical methods for controlled induction of condensate maturation, where we surprisingly observed recruitment of chaperones into the condensate core and formation of dynamic biphasic condensates. Our work provides insights into the interaction of condensates with proteostasis pathways and introduces a suite of chemical-genetic approaches to probe the role of biomolecular condensates in health and disease.
Collapse
Affiliation(s)
| | - Brian R Brady
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Evan Harrison
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
6
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|