1
|
Tapken I, Schweitzer T, Paganin M, Schüning T, Detering NT, Sharma G, Niesert M, Saffari A, Kuhn D, Glynn A, Cieri F, Santonicola P, Cannet C, Gerstner F, Faller KME, Huang YT, Kothary R, Gillingwater TH, Di Schiavi E, Simon CM, Hensel N, Ziegler A, Viero G, Pich A, Claus P. The systemic complexity of a monogenic disease: the molecular network of spinal muscular atrophy. Brain 2025; 148:580-596. [PMID: 39183150 DOI: 10.1093/brain/awae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal muscular atrophy (SMA) is one such monogenic model, caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow the identification of crucial disease-driving molecules. Here, we analysed the systemic characteristics of SMA, using proteomics, phosphoproteomics, translatomics and interactomics, from two mouse models with different disease severities and genetics. This systems approach revealed subnetworks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes, creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.
Collapse
Affiliation(s)
- Ines Tapken
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Theresa Schweitzer
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | | | - Tobias Schüning
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Nora T Detering
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Gaurav Sharma
- CNR Unit, Institute of Biophysics, Trento 38123, Italy
| | - Moritz Niesert
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Afshin Saffari
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Daniela Kuhn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover 30625, Germany
| | - Amy Glynn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Federica Cieri
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
- Department of Biology, University of Naples Federico II, Naples 80131, Italy
| | - Pamela Santonicola
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | | | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Rashmi Kothary
- Faculty of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Elia Di Schiavi
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Niko Hensel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Andreas Ziegler
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | | | - Andreas Pich
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
2
|
Gandhi G, Kodiappan R, Abdullah S, Teoh HK, Tai L, Cheong SK, Yeo WWY. Revealing the potential role of hsa-miR-663a in modulating the PI3K-Akt signaling pathway via miRNA microarray in spinal muscular atrophy patient fibroblast-derived iPSCs. J Neuropathol Exp Neurol 2024; 83:822-832. [PMID: 38894621 DOI: 10.1093/jnen/nlae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder due to deletion or mutation of survival motor neuron 1 (SMN1) gene. Although survival motor neuron 2 (SMN2) gene is still present in SMA patients, the production of full-length survival motor neuron (SMN) protein is insufficient owing to missing or mutated SMN1. No current disease-modifying therapies can cure SMA. The aim of this study was to explore microRNA (miRNA)-based therapies that may serve as a potential target for therapeutic intervention in delaying SMA progression or as treatment. The study screened for potentially dysregulated miRNAs in SMA fibroblast-derived iPSCs using miRNA microarray. Results from the miRNA microarray were validated using quantitative reverse transcription polymerase chain reaction. Bioinformatics analysis using various databases was performed to predict the potential putative gene targeted by hsa-miR-663a. The findings showed differential expression of hsa-miR-663a in SMA patients in relation to a healthy control. Bioinformatics analysis identified GNG7, IGF2, and TNN genes that were targeted by hsa-miR-663a to be involved in the PI3K-AKT pathway, which may be associated with disease progression in SMA. Thus, this study suggests the potential role of hsa-miR-663a as therapeutic target for the treatment of SMA patients in the near future.
Collapse
Affiliation(s)
- Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Radha Kodiappan
- Department of Research and Training, MAHSA Specialist Hospital, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Hoon Koon Teoh
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Lihui Tai
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- Cytopeutics Sdn. Bhd, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Hou M, Zhang Z, Fan Z, Huang L, Wang L. The mechanisms of Ca2+ regulating autophagy and its research progress in neurodegenerative diseases: A review. Medicine (Baltimore) 2024; 103:e39405. [PMID: 39183424 PMCID: PMC11346841 DOI: 10.1097/md.0000000000039405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Neurodegenerative diseases are complex disorders that significantly challenge human health, with their incidence increasing with age. A key pathological feature of these diseases is the accumulation of misfolded proteins. The underlying mechanisms involve an imbalance in calcium homeostasis and disturbances in autophagy, indicating a likely correlation between them. As the most important second messenger, Ca2+ plays a vital role in regulating various cell activities, including autophagy. Different organelles within cells serve as Ca2+ storage chambers and regulate Ca2+ levels under different conditions. Ca2+ in these compartments can affect autophagy via Ca2+ channels or other related signaling proteins. Researchers propose that Ca2+ regulates autophagy through distinct signal transduction mechanisms, under normal or stressful conditions, and thereby contributing to the occurrence and development of neurodegenerative diseases. This review provides a systematic examination of the regulatory mechanisms of Ca2+ in cell membranes and different organelles, as well as its downstream pathways that influence autophagy and its implications for neurodegenerative diseases. This comprehensive analysis may facilitate the development of new drugs and provide more precise treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Hou
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhixiao Zhang
- Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Zexin Fan
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Huang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Wang
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
5
|
Virla F, Turano E, Scambi I, Schiaffino L, Boido M, Mariotti R. Administration of adipose-derived stem cells extracellular vesicles in a murine model of spinal muscular atrophy: effects of a new potential therapeutic strategy. Stem Cell Res Ther 2024; 15:94. [PMID: 38561840 PMCID: PMC10986013 DOI: 10.1186/s13287-024-03693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.
Collapse
Affiliation(s)
- Federica Virla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Schiaffino
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
6
|
Matveeva A, Watters O, Rukhadze A, Khemka N, Gentile D, Perez IF, Llorente-Folch I, Farrell C, Lo Cacciato E, Jackson J, Piazzesi A, Wischhof L, Woods I, Halang L, Hogg M, Muñoz AG, Dillon ET, Matallanas D, Arijs I, Lambrechts D, Bano D, Connolly NMC, Prehn JHM. Integrated analysis of transcriptomic and proteomic alterations in mouse models of ALS/FTD identify early metabolic adaptions with similarities to mitochondrial dysfunction disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:135-149. [PMID: 37779364 DOI: 10.1080/21678421.2023.2261979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD. METHODS By means of label-free mass spectrometry (MS) and mRNA sequencing (mRNA-seq), we report pre-symptomatic changes in the cortices of TDP-43 and FUS mutant mouse models. Using tissues from transgenic mouse models of mitochondrial diseases as a reference, we performed comparative analyses and extracted unique and common mitochondrial signatures that revealed neuroprotective compensatory mechanisms in response to early damage. RESULTS In this regard, upregulation of both Acyl-CoA Synthetase Long-Chain Family Member 3 (ACSL3) and mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) were the most representative change in pre-symptomatic ALS/FTD tissues, suggesting that fatty acid beta-oxidation and mitochondrial protein translation are mechanisms of adaptation in response to ALS/FTD pathology. CONCLUSIONS Together, our unbiased integrative analyses unveil novel molecular components that may influence mitochondrial homeostasis in the earliest phase of ALS.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Ani Rukhadze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niraj Khemka
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ivan Fernandez Perez
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Cliona Farrell
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina Woods
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Luise Halang
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marion Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Amaya Garcia Muñoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niamh M C Connolly
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
7
|
Santos TDO, Cruz-Filho JD, Costa DM, Silva RPD, Anjos-Santos HCD, Santos JRD, Reis LC, Kettelhut ÍDC, Navegantes LC, Camargo EA, Lauton-Santos S, Badauê-Passos D, Mecawi ADS, Lustrino D. Non-canonical Ca 2+- Akt signaling pathway mediates the antiproteolytic effects induced by oxytocin receptor stimulation in skeletal muscle. Biochem Pharmacol 2023; 217:115850. [PMID: 37832795 DOI: 10.1016/j.bcp.2023.115850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Although it has been previously demonstrated that oxytocin (OXT) receptor stimulation can control skeletal muscle mass in vivo, the intracellular mechanisms that mediate this effect are still poorly understood. Thus, rat oxidative skeletal muscles were isolated and incubated with OXT or WAY-267,464, a non-peptide selective OXT receptor (OXTR) agonist, in the presence or absence of atosiban (ATB), an OXTR antagonist, and overall proteolysis was evaluated. The results indicated that both OXT and WAY-267,464 suppressed muscle proteolysis, and this effect was blocked by the addition of ATB. Furthermore, the WAY-induced anti-catabolic action on protein metabolism did not involve the coupling between OXTR and Gαi since it was insensitive to pertussis toxin (PTX). The decrease in overall proteolysis induced by WAY was probably due to the inhibition of the autophagic/lysosomal system, as estimated by the decrease in LC3 (an autophagic/lysosomal marker), and was accompanied by an increase in the content of Ca2+-dependent protein kinase (PKC)-phosphorylated substrates, pSer473-Akt, and pSer256-FoxO1. Most of these effects were blocked by the inhibition of inositol triphosphate receptors (IP3R), which mediate Ca2+ release from the sarcoplasmic reticulum to the cytoplasm, and triciribine, an Akt inhibitor. Taken together, these findings indicate that the stimulation of OXTR directly induces skeletal muscle protein-sparing effects through a Gαq/IP3R/Ca2+-dependent pathway and crosstalk with Akt/FoxO1 signaling, which consequently decreases the expression of genes related to atrophy, such as LC3, as well as muscle proteolysis.
Collapse
Affiliation(s)
- Tatiane de Oliveira Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João da Cruz-Filho
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Daniely Messias Costa
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Raquel Prado da Silva
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Hevely Catharine Dos Anjos-Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - José Ronaldo Dos Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luís Carlos Reis
- Department of Physiological Sciences, Center for Biological and Health Sciences, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ísis do Carmo Kettelhut
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos Navegantes
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Enilton Aparecido Camargo
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Sandra Lauton-Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Daniel Badauê-Passos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - André de Souza Mecawi
- Department of Biophysics, São Paulo Medical School, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|