1
|
Gong L, Wu L, Zhao S, Xiao S, Chu X, Zhang Y, Li F, Li S, Yang H, Jiang P. Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review). Int J Mol Med 2025; 55:93. [PMID: 40242977 PMCID: PMC12045471 DOI: 10.3892/ijmm.2025.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Ferroptosis is a type of iron‑dependent cell death characterized by excessive lipid peroxidation and may serve as a potential therapeutic target in cancer treatment. While the mechanisms governing ferroptosis continue to be explored and elucidated, an increasing body of research highlights the significant impact of epigenetic modifications on the sensitivity of cancer cells to ferroptosis. Epigenetic processes, such as DNA methylation, histone modifications and non‑coding RNAs, have been identified as key regulators that modulate the expression of ferroptosis‑related genes. These alterations can either enhance or inhibit the sensitivity of gastrointestinal cancer (GIC) cells to ferroptosis, thereby affecting the fate of GICs. Drugs that target epigenetic markers for advanced‑stage cancer have shown promising results in enhancing ferroptosis and inhibiting tumor growth. This review explores the intricate relationship between epigenetic regulation and ferroptosis in GICs. Additionally, the potential of leveraging epigenetic modifications to trigger ferroptosis in GICs is investigated. This review highlights the importance of further research to elucidate the specific mechanisms underlying epigenetic control of ferroptosis and to advance the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shiyuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, Shandong 272000, P.R. China
| | - Shuai Xiao
- Department of Intensive Care Medicine, Tengzhou Central People's Hospital, Jining Medical University, Tengzhou, Shandong 277500, P.R. China
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
| | - Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Fengfeng Li
- Neurosurgery Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shuhui Li
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Hui Yang
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, Shandong 272000, P.R. China
| |
Collapse
|
2
|
Xu X, Mao X, Liu W, Ming Y, Zhang T, Yang Y, Gu‐Ha A, Lin Y, Peng Y. The Long Noncoding RNA LINC02820 Promotes Tumor Growth and Metastasis Through Regulating MYH9 Expression in Esophageal Squamous Cell Carcinoma. MedComm (Beijing) 2025; 6:e70218. [PMID: 40416600 PMCID: PMC12099067 DOI: 10.1002/mco2.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/27/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in tumorigenesis, but their biological functions and mechanisms in esophageal squamous cell carcinoma (ESCC) remain poorly understood. In this study, we employed high-throughput sequencing and bioinformatics analyses to identify the differentially expressed lncRNAs between ESCC tumors and adjacent normal tissues, among which LINC02820 is significantly upregulated in ESCC. Rapid amplification of cDNA ends assays determined the transcription initiation and termination sites of LINC02820, confirming it as a novel transcript variant localized in both the nucleus and cytoplasm of ESCC cells. Functional studies demonstrated that LINC02820 promotes cell proliferation and migration in vitro and enhances tumor growth and metastasis in vivo. Mechanistically, LINC02820 interacts with Myosin-9 protein and prevent it from ubiquitination-mediated proteasomal degradation. Additionally, the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 binds to LINC02820 and increase its RNA stability in ESCC cells, thus upregulating LINC02820 expression. Therefore, these findings indicate LINC02820 as an oncogenic lncRNA in ESCC progression and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaomin Xu
- Center for Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Xinting Mao
- Center for Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Wenrong Liu
- Center for Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yue Ming
- Center for Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Tingting Zhang
- Center for Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yang Yang
- Center for Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - A‐Lai Gu‐Ha
- Department of Thoracic SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Yi‐Dan Lin
- Department of Thoracic SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Yong Peng
- Center for Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Zhang M, Zhang C, Zhou F, Yang R, Feng Y, Ji Y, Ren H, Ming L. LINC02154 Promotes Esophageal Squamous Cell Carcinoma Progression via the PI3K-AKT-mTOR Signaling Pathway by Interacting With IGF2BP2. Mol Carcinog 2025; 64:985-996. [PMID: 40099590 DOI: 10.1002/mc.23903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
As important types of noncoding RNAs, long noncoding RNAs (lncRNAs) have been found to be involved in the progression of various cancers. Accumulating evidence indicates that LINC02154 plays a critical role in cancer progression, but the underlying mechanisms regulating esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we found that LINC02154 is significantly upregulated in ESCC cell lines and ESCC tissues. LINC02154 knockdown significantly inhibited the proliferation and migration of ESCC cells in vitro and suppressed the progression of ESCC in vivo. Mechanistically, LINC02154 can bind to IGF2BP2 and activate the PI3K-AKT-mTOR signaling pathway. High expression of LINC02154 is positively correlated with poor prognosis in ESCC patients. In conclusion, LINC02154 functions as an oncogenic factor to facilitate ESCC progression through the IG2BP2-PI3K-AKT-mTOR pathway and has the potential to be a promising diagnostic marker and therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Cai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Fuyou Zhou
- Thoracic Department, Anyang Tumor Hospital, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, China
| | - Ruotong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Yang Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Yangyang Ji
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Huijun Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| |
Collapse
|
4
|
Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: an m 6A reader that affects cellular function and disease progression. Cell Mol Biol Lett 2025; 30:43. [PMID: 40205577 PMCID: PMC11983839 DOI: 10.1186/s11658-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2) is a widely studied N6-methyladenosine (m6A) modification reader, primarily functioning to recognize and bind to m6A modification sites on the mRNA of downstream target genes, thereby enhancing their stability. Previous studies have suggested that the IGF2BP2-m6A modification plays an essential role in cellular functions and the progression of various diseases. In this review, we focus on summarizing the molecular mechanisms by which IGF2BP2 enhances the mRNA stability of downstream target genes through m6A modification, thereby regulating cell ferroptosis, epithelial-mesenchymal transition (EMT), stemness, angiogenesis, inflammatory responses, and lipid metabolism, ultimately affecting disease progression. Additionally, we update the related research progress on IGF2BP2. This article aims to elucidate the effects of IGF2BP2 on cell ferroptosis, EMT, stemness, angiogenesis, inflammatory responses, and lipid metabolism, providing a new perspective for a comprehensive understanding of the relationship between IGF2BP2 and cell functions such as ferroptosis and EMT, as well as the potential for targeted IGF2BP2 therapy for tumors and other diseases.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, 410007, Hunan, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Fan B, Chen G, Huang S, Li Y, Nabil ZUH, Yang Z. Summary of the mechanism of ferroptosis regulated by m6A modification in cancer progression. Front Cell Dev Biol 2025; 13:1507171. [PMID: 40271153 PMCID: PMC12014555 DOI: 10.3389/fcell.2025.1507171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
The most common form of internal RNA modification in eukaryotes is called n6-methyladenosine (m6A) methylation. It has become more and more well-known as a research issue in recent years since it alters RNA metabolism and is involved in numerous biological processes. Currently, m6A alteration offers new opportunities in clinical applications and is intimately linked to carcinogenesis. Ferroptosis-a form of iron-dependent, lipid peroxidation-induced regulated cell death-was discovered. In the development of cancer, it has become an important factor. According to newly available data, ferroptosis regulates tumor growth, and cancer exhibits aberrant m6A levels in crucial ferroptosis regulatory components. On the other hand, m6A has multiple roles in the development of tumors, and the relationship between m6A-modified ferroptosis and malignancies is quite intricate. In this review, we first give a thorough review of the regulatory and functional roles of m6A methylation, focusing on the molecular processes of m6A through the regulation of ferroptosis in human cancer progression and metastasis, which are strongly associated to cancer initiation, progression, and drug resistance. Therefore, it is crucial to clarify the relationship between m6A-mediated regulation of ferroptosis in cancer progression, providing a new strategy for cancer treatment with substantial clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| |
Collapse
|
6
|
Ju Y, Lv Y, Liu X, Lu J, Shi Y, Guo H, Xu S, Tian J, Yang J, Zhong J. Role of long non-coding RNAs in the regulation of ferroptosis in tumors. Front Immunol 2025; 16:1568567. [PMID: 40191204 PMCID: PMC11968707 DOI: 10.3389/fimmu.2025.1568567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Normal cells begin to grow indefinitely and immortalize to form tumor cells after an external stimulus resulting in a genetic mutation. Effective killing of tumor cells is the basis of various cancer therapies. Ferroptosis is a class of cell death types dependent on iron and cellular lipid peroxidation. Tumors themselves are iron-dependent, and conventional radiotherapy also sensitizes cancer cells to ferroptosis. Increasing the sensitivity of tumor cells to ferroptosis may be a potential therapeutic strategy to overcome the resistance mechanisms of conventional cancer therapy. Long noncoding RNAs (LncRNAs) are a class of transcripts more than 200 nucleotides in length that regulate gene expression at multiple levels and are involved in biological processes such as cell differentiation, cell cycle arrest, and maintenance of tumor stemness. Recent studies have found that lncRNAs regulate ferroptosis of tumor cells through multiple mechanisms and may influence or ameliorate tumor resistance to chemotherapeutic agents. With the continuous maturation of nanomaterials technology, it may provide new means for cancer treatment by regulating the levels of ferroptosis-related lncRNAs inside tumors as well as increasing the levels of Fe2+ and ROS inside tumors. In this paper, we systematically introduce the regulatory mechanism of lncRNAs in ferroptosis, the role of ferroptosis in tumor immunotherapy and the application of lncRNAs combined with ferroptosis in nanomaterials, which provides new perspectives for tumor therapy.
Collapse
Affiliation(s)
- Ying Ju
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yuanhao Lv
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xu Liu
- Department of Anesthesia and Perioperative Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing Lu
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yashen Shi
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Huimin Guo
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Siguang Xu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiaqi Tian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jun Yang
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Zhang X, Bai Y, Shang L, Wang Y, Yao W, Wu S. METTL3-Mediated m6A Methylation Stabilizes IFI27 to Drive Esophageal Squamous Cell Carcinoma Progression Through an IGF2BP2-Dependent Mechanism. J Biochem Mol Toxicol 2025; 39:e70167. [PMID: 39987518 DOI: 10.1002/jbt.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Dysregulation of m6A modification has emerged as a vital factor in the development of esophageal squamous cell carcinoma (ESCC). Here, we sought to explore the critical role of m6A methylation mediated by the m6A methyltransferase METTL3 in ESCC. Protein expression analysis was performed by immunohistochemistry and immunoblot assays. The mRNA levels of METTL3 and IFI27 were detected by quantitative PCR. Cell sphere formation potential, migration, invasiveness, apoptosis, proliferation and viability were assessed by standard sphere formation, wound healing, transwell, flow cytometry, EdU and CCK-8 assays, respectively. The impact of METTL3 or IGF2BP2 on IFI27 mRNA was evaluated by methylated RNA immunoprecipitation (MeRIP), RIP or mRNA stability analysis. Xenograft assays were used to detect the in vivo function of METTL3. Elevated levels of METTL3 were observed in ESCC tumors and cells, and these increased levels were associated with the declined prognosis of ESCC. MELLT3 depletion impeded ESCC cell growth, invasiveness, migration, and sphere formation, and induced cell apoptosis in vitro. Elevated IFI27 expression was positively correlated with METTL3 levels in ESCC. Moreover, METTL3 mediated m6A methylation of IFI27 mRNA to stabilize the mRNA. The m6A reader IGF2BP2 also affected m6A methylation and expression of IFI27 mRNA. Additionally, IFI27 re-expression had a counteracting impact on the effects of METTL3 deficiency on in vitro ESCC cell behaviors and in vivo KYSE30 xenograft growth. Our findings demonstrate that METTL3-mediated IFI27 mRNA m6A methylation drives ESCC development through an IGF2BP2-dependent mechanism. Blocking the METTL3/IFI27 axis may be effective for preventing ESCC.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Linlin Shang
- Zhengzhou University People's Hospital, Medical School, Zhengzhou, Henan, China
| | - Yinghao Wang
- Henan University, Medical school, Kaifeng, Henan, China
| | - Wenjian Yao
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Sen Wu
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Shen J, Ding Y. Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 2025; 31:75. [PMID: 39886962 PMCID: PMC11795254 DOI: 10.3892/mmr.2025.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2025] Open
Abstract
Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
Collapse
Affiliation(s)
- Jianan Shen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
9
|
Ou S, Nie X, Qiu X, Jin X, Wu G, Zhang R, Zhu J. Deciphering the mechanisms of long non-coding RNAs in ferroptosis: insights into its clinical significance in cancer progression and immunology. Cell Death Discov 2025; 11:14. [PMID: 39827195 PMCID: PMC11743196 DOI: 10.1038/s41420-025-02290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
A new type of nonapoptotic, iron-dependent cell death induced by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including inflammation and cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Long non-coding RNAs (LncRNAs) are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that lncRNAs can interfere with the progression of ferroptosis by modulating ferroptosis-related genes directly or indirectly. Despite evidence implicating lncRNAs in cancer and inflammation, studies on their mechanisms and therapeutic potential remain scarce. We investigate the mechanisms of lncRNA-mediated regulation of inflammation and cancer immunity, assessing the feasibility and challenges of lncRNAs as therapeutic targets in these conditions.
Collapse
Affiliation(s)
- Shengming Ou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Nie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Qiu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Jin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jinrong Zhu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
10
|
Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, Pant K, Ali H, Singh SK, Rama Raju Allam VS, Paudel KR, Dua K, Kumarasamy V, Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res 2024; 9:1222-1234. [PMID: 39036600 PMCID: PMC11259992 DOI: 10.1016/j.ncrna.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
Collapse
Affiliation(s)
- Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
11
|
Tu R, Zhong D, Li P, Li Y, Chen Z, Hu F, Yuan G, Chen Z, Yu S, Song J. Assessment of LINC-PINT genetic polymorphisms and esophageal squamous cell carcinoma risk in the Hainan Han population. Ann Med 2024; 56:2397569. [PMID: 39221756 PMCID: PMC11370687 DOI: 10.1080/07853890.2024.2397569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high incidence and mortality rates worldwide. This study aimed to investigate the correlation between LINC-PINT polymorphisms and ESCC risk in the Hainan Han population. METHODS A total of 391 patients with ESCC and 452 healthy controls were enrolled to evaluate the effect of LINC-PINT SNPs (single nucleotide polymorphisms) on ESCC susceptibility. Associations were evaluated by calculating odds ratios (OR) and 95% confidence intervals (CIs). Multifactor dimensionality reduction analysis was performed to explore the association between SNP-SNP interactions and ESCC susceptibility. We further determined the correlation between clinical indicators and SNP in patients with ESCC. RESULTS Our study showed that rs157916 (OR 0.63, p = 0.011) and rs157928 (OR 0.80, p = 0.021) were associated with a decreased risk of ESCC. Stratified analysis indicated that rs157916 could decrease the risk of ESCC in people aged >64 years, in males, and non-drinkers (OR 0.58, p = 0.042; OR 0.58, p = 0.010; OR 0.62, p = 0.025, respectively). Rs16873842 was related to a decreased risk of ESCC in males (OR 0.70, p = 0.015). Rs7801029 was associated with ESCC risk in females (OR 0.39, p = 0.033) and non-drinkers (OR 0.68, p = 0.040). Rs7781295 decreased the ESCC risk in smokers (OR 0.58, p = 0.046) and drinkers (OR 0.58, p = 0.046). In addition, rs157928 played a protective role in ESCC risk in females (OR 0.39, p = 0.033) and non-smokers (OR 0.32, p = 0.006). Additionally, the best predictive model for ESCC was a combination of rs157916, rs16873842, rs7801029, rs7781295, rs28662387, and rs157928. CONCLUSION Our study revealed that LINC-PINT polymorphisms were associated with ESCC risk.
Collapse
Affiliation(s)
- Ruisha Tu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Dunjing Zhong
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Ping Li
- Department of Digestive Endoscopy Center, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Yongyu Li
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Zhuang Chen
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Feixiang Hu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Guihong Yuan
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Zhaowei Chen
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Vaghari-Tabari M, Qujeq D, Hashemzadeh MS. Long noncoding RNAs as potential targets for overcoming chemoresistance in upper gastrointestinal cancers. Biomed Pharmacother 2024; 179:117368. [PMID: 39214010 DOI: 10.1016/j.biopha.2024.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the last decade, researchers have paid much attention to the role of noncoding RNA molecules in human diseases. Among the most important of these molecules are LncRNAs, which are RNA molecules with a length of more than 200 nucleotides. LncRNAs can regulate gene expression through various mechanisms, such as binding to DNA sequences and interacting with miRNAs. Studies have shown that LncRNAs may be valuable therapeutic targets in treating various cancers, including upper-gastrointestinal cancers. Upper gastrointestinal cancers, mainly referring to esophageal and gastric cancers, are among the deadliest gastrointestinal cancers. Despite notable advances, traditional chemotherapy remains a common strategy for treating these cancers. However, chemoresistance poses a significant obstacle to the effective treatment of upper gastrointestinal cancers, resulting in a low survival rate. Chemoresistance arises from various events, such as the enhancement of efflux and detoxification of chemotherapy agents, reduction of drug uptake, alteration of drug targeting, reduction of prodrug activation, strengthening of EMT and stemness, and the attenuation of apoptosis in cancerous cells. Tumor microenvironment also plays an important role in chemoresistance. Interestingly, a series of studies have revealed that LncRNAs can influence important mechanisms associated with some of the aforementioned events and may serve as promising targets for mitigating chemoresistance in upper gastrointestinal cancers. In this review paper, following a concise overview of chemoresistance mechanisms in upper gastrointestinal cancers, we will review the most intriguing findings of these investigations in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
13
|
Wen Y, Lei W, Zhang J, Liu Q, Li Z. Advances in understanding the role of lncRNA in ferroptosis. PeerJ 2024; 12:e17933. [PMID: 39210921 PMCID: PMC11361268 DOI: 10.7717/peerj.17933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
LncRNA is a type of transcript with a length exceeding 200 nucleotides, which was once considered junk transcript with no biological function during the transcription process. In recent years, lncRNA has been shown to act as an important regulatory factor at multiple levels of gene expression, affecting various programmed cell death modes including ferroptosis. Ferroptosis, as a new form of programmed cell death, is characterized by a deficiency of cysteine or inactivation of glutathione peroxidase, leading to depletion of glutathione, aggregation of iron ions, and lipid peroxidation. These processes are influenced by many physiological processes, such as the Nrf2 pathway, autophagy, p53 pathway and so on. An increasing number of studies have shown that lncRNA can block the expression of specific molecules through decoy effect, guide specific proteins to function, or promote interactions between molecules as scaffolds. These modes of action regulate the expression of key factors in iron metabolism, lipid metabolism, and antioxidant metabolism through epigenetic or genetic regulation, thereby regulating the process of ferroptosis. In this review, we snapshotted the regulatory mechanism of ferroptosis as an example, emphasizing the regulation of lncRNA on these pathways, thereby helping to fully understand the evolution of ferroptosis in cell fate.
Collapse
Affiliation(s)
- Yating Wen
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jie Zhang
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Qiong Liu
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
15
|
Zhang L, Wang Y, Gao J, Zhou X, Huang M, Wang X, He Z. Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncol Lett 2024; 27:255. [PMID: 38646493 PMCID: PMC11027111 DOI: 10.3892/ol.2024.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Esophageal cancer (EC) is a common form of malignant tumor in the digestive system that is classified into two types: Esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinoma. ESCC is known for its early onset of symptoms, which can be difficult to identify, as well as its rapid progression and tendency to develop drug resistance to chemotherapy and radiotherapy. These factors contribute to the high incidence of disease and low cure rate. Therefore, a diagnostic biomarker and therapeutic target need to be identified for ESCC. Non-coding RNAs (ncRNAs) are a class of molecules that are transcribed from DNA but do not encode proteins. Initially, ncRNAs were considered to be non-functional segments generated during transcription. However, with advancements in high-throughput sequencing technologies in recent years, ncRNAs have been associated with poor prognosis, drug resistance and progression of ESCC. The present study provides a comprehensive overview of the biogenesis, characteristics and functions of ncRNAs, particularly focusing on microRNA, long ncRNAs and circular RNAs. Furthermore, the ncRNAs that could potentially be used as diagnostic biomarkers and therapeutic targets for ESCC are summarized to highlight their application value and prospects in ESCC.
Collapse
Affiliation(s)
- Longze Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyang Wang
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xue Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|