1
|
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X, Song J. Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review). Int J Mol Med 2025; 56:113. [PMID: 40444475 PMCID: PMC12121985 DOI: 10.3892/ijmm.2025.5554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025] Open
Abstract
The early growth response (EGR) family comprises four zinc finger transcription factors: EGR1, EGR2, EGR3 and EGR4. These transcription factors belong to the Cys2‑His2‑type zinc finger protein family and are essential in cell differentiation, proliferation, apoptosis and stress response. Initially, EGR1 was recognised for its essential regulatory role in tumourigenesis. Recent studies have identified similarities between other members of the EGR family and EGR1 in tumour regulation and the multifaceted regulatory mechanism employed by the EGR family to affect tumours. Therefore, the present review describes the dual roles of the EGR family in tumours and their regulatory mechanisms in immunity, metabolism and differentiation. Additionally, the present review offers a new perspective on relevant tumour therapeutic studies based on current EGR targeting.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
2
|
Makrinioti H, Chun S. Circadian clock gene expression: a key player in inflammation underlying chronic lung disease? ERJ Open Res 2025; 11:01066-2024. [PMID: 40337334 PMCID: PMC12053736 DOI: 10.1183/23120541.01066-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 05/09/2025] Open
Abstract
The circadian clock genes might play a key role in regulating the pathophysiological processes underlying COPD. Their role in regulating pathophysiological processes in other chronic lung diseases is still unclear, but important to elucidate. https://bit.ly/4f3KXQk.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sung Chun
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Xiao Y, Li Y, Gu J, Lu S, Yu S, Song C. Circadian rhythm gene cryptochrome 2 (Cry2) interacts with lipid metabolism to promote vascular aging. Arch Gerontol Geriatr 2025; 131:105761. [PMID: 39879691 DOI: 10.1016/j.archger.2025.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Vascular aging is the basis of many chronic diseases of the aged, such as hypertension, coronary heart disease and stroke. OBJECTIVE This study aims to deepen our understanding of the pathological mechanisms of vascular aging by combining multiple big data research methods, and reveal potential therapeutic targets and biomarkers. METHODS WGCNA method was used to integrate the aortic transcriptome data of multiple age stages, and extract the key module and key pathway. The gene of aortic rhythm was integrated by JTK algorithm. Correlation calculation was performed for core gene and associated pathways. Finally, the expression of the core gene and their interaction with the associated pathways were verified in cell senescence. RESULTS WGCNA showed that circadian rhythm is the key pathway of vascular aging, and circadian rhythm and metabolism interact to promote the occurrence of vascular aging. Cry2 has been identified as the most critical core rhythm gene. Lipid metabolism is the most Cry2-related subpathway, among which phospholipid metabolism and Serac1 have the strongest and most significant correlation with Cry2. Cry2 is mainly distributed in endothelial cells in both young and senescent blood vessels, and affects five lipid-related metabolic processes including lipid transport during endothelial senescence. CONCLUSION This study suggests that circadian rhythm and Cry2 may be potential targets of vascular aging, and further studies on their interaction with lipid metabolism will provide effective strategies for the prevention and treatment of age-related vascular diseases.
Collapse
Affiliation(s)
- Yu Xiao
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130041, PR China
| | - Jinning Gu
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Shan Lu
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Shuang Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Chunli Song
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
4
|
Wan X, Wang L, Khan MA, Peng L, Sun X, Yi X, Wang Z, Chen K. NAT10-mediated N4-acetylcytidine modification in KLF9 mRNA promotes adipogenesis. Cell Death Differ 2025:10.1038/s41418-025-01483-x. [PMID: 40123006 DOI: 10.1038/s41418-025-01483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Dysfunctional adipogenesis is a major contributor of obesity. N-acetyltransferase 10 (NAT10) plays a crucial role in regulating N4-acetylcysteine (ac4C) modification in tRNA, 18SrRNA, and mRNA. As the sole "writer" in the ac4C modification process, NAT10 enhances mRNA stability and translation efficiency. There are few reports on the relationship between NAT10 and adipogenesis, as well as obesity. Our study revealed a significant upregulation of NAT10 in adipose tissues of obese individuals and high-fat diet-fed mice. Furthermore, our findings revealed that the overexpression of NAT10 promotes adipogenesis, while its silencing inhibits adipogenesis in both human adipose tissue-derived stem cells (hADSCs) and 3T3-L1 cells. These results indicate the intimate relationship between NAT10 and obesity. After silencing mouse NAT10 (mNAT10), we identified 30 genes that exhibited both hypo-ac4C modification and downregulation in their expression, utilizing a combined approach of acRIP-sequencing (acRIP-seq) and RNA-sequencing (RNA-seq). Among these genes, we validated KLF9 as a target of NAT10 through acRIP-PCR. KLF9, a pivotal transcription factor that positively regulates adipogenesis. Our findings showed that NAT10 enhances the stability of KLF9 mRNA and further activates the CEBPA/B-PPARG pathway. Furthermore, a dual-luciferase reporter assay demonstrated that NAT10 can bind to three motifs of mouse KLF9 and one motif of human KLF9. In vivo studies revealed that adipose tissue-targeted mouse AAV-NAT10 (AAV-shRNA-mNAT10) inhibits adipose tissue expansion in mice. Additionally, Remodelin, a specific NAT10 inhibitor, significantly reduced body weight, adipocyte size, and adipose tissue expansion in high-fat diet-fed mice by inhibiting KLF9 mRNA ac4C modification. These findings provide novel insights and experimental evidence of the prevention and treatment of obesity, highlighting NAT10 and its downstream targets as potential therapeutic targets.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
5
|
Zhong Y, Yang S, Li S, Yuan S, Chen X, Long H, Wu H, Guo Y, Wang T. IL-27 alleviates high-fat diet-induced obesity and metabolic disorders by inhibiting adipogenesis via activating HDAC6. Commun Biol 2025; 8:460. [PMID: 40108289 PMCID: PMC11923273 DOI: 10.1038/s42003-025-07918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Obesity arises from an imbalance between adipogenesis and adipocyte thermogenesis. Interleukin-27 (IL-27), a heterodimer cytokine, is known to promote thermogenesis in brown adipose tissue. However, its role in adipogenesis remains unclear. This study aims to investigate the effects of IL-27 on adipogenesis both in vitro and in vivo, and to elucidate the underlying mechanisms. In vitro, an adipogenic differentiation model of adipose-derived mesenchymal stem cells (ADSCs) demonstrate that IL-27 is non-cytotoxic to ADSCs and inhibits ADSCs adipogenic differentiation. In vivo, using a high-fat diet (HFD)-induced obese mouse model and a targeted adipose tissue-specific IL-27 overexpression adeno-associated viral (AAV) vector, we confirm that IL-27 suppresses adipogenesis, prevents weight gain, and improves glucose and lipid metabolic homeostasis in obese mice. Additionally, the inhibition of adipogenesis by IL-27 is mediated through HDAC6 activation of the TGFβ/Smad3 signaling pathway. Our study suggests that IL-27 is a potential therapeutic target for obesity and metabolic disorders.
Collapse
Grants
- No. 81070125, 81270213, 81670306 National Natural Science Foundation of China (National Science Foundation of China)
- the Science and Technology Foundation in Guangdong Province (2014A020211002); the National Natural Science Foundation of Guangdong Province (No. 2017A030313503); the Science and Technology Foundation in Guangzhou City (No. 201806020084); Guangdong Basic and Applied Basic Research Foundation (2023A1515220199); the Fundamental Research Funds for the Central Universities (No. 13ykzd16, 17ykjc18); the Futian District Health and Public Welfare Research Project of Shenzhen City (No. FTWS2019001, FTWS2021016, FTWS2022018, FTWS2023064), the Shenzhen Science and Technology Program (No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009, KCXFZ20230731094100002).
Collapse
Affiliation(s)
- Yinsheng Zhong
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Shujun Yang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Shuangmei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Sijun Yuan
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Xuxiang Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Huibao Long
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Haidong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Yajie Guo
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China.
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China.
| |
Collapse
|