1
|
Alavi M, Roudi R, D'Angelo A, Sobhani N, Safari F. Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy. Mol Cell Biochem 2025; 480:3521-3533. [PMID: 39922936 DOI: 10.1007/s11010-025-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.
Collapse
Affiliation(s)
- Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
2
|
Xian R, Xian H, Dong H, Lin J, Zhuang X, Zou Y, Xie Q, Liang Y, Li S. Black Phosphorus-Loaded Gelatin Methacryloyl Hydrogels Enhance Angiogenesis via Activation of the PEAK1-MAPK Pathway. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26371-26385. [PMID: 40272250 DOI: 10.1021/acsami.5c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Repair and regeneration of oral and maxillofacial tissue defects remain significant challenges, mainly due to the limitations of existing treatment approaches. Conventional methods such as transplantation, tissue scaffolds, growth factors, and stem cell therapies often face obstacles, including donor shortages, insufficient vascularization, and safety concerns. There is an urgent need for innovative therapeutic strategies to effectively promote vascular regeneration while minimizing complications. Black phosphorus nanosheets (BPNSs) and hydrogels present significant advantages and broad application potential as tissue regeneration carriers due to their biocompatibility, degradability, and controlled drug release properties. By combining various characterization techniques and detection methods, we conducted a thorough analysis of BPNSs and gelatin methacryloyl (GelMA) scaffolds loaded with BPNSs (BP-GelMA). The results indicate that this study successfully prepared BPNSs with uniform size, good dispersion, and intact structure. Moreover, the BP-GelMA composite demonstrated excellent swelling behavior and structural stability while effectively enabling the controlled release of BPNSs. This study investigated the angiogenic effects of BP-GelMA at concentrations of 0, 12.5, and 25.0 μg/mL. In vitro experiments showed that BP-GelMA significantly enhanced endothelial cell proliferation, migration, and tube formation. In vivo results demonstrated that 12.5 μg/mL and 25.0 μg/mL BP-GelMA did not induce significant developmental toxicity in zebrafish and effectively promoted neovascularization. RNA-Seq analysis revealed that BP-GelMA activates angiogenesis-related biological processes. Mechanistic studies identified PEAK1 as a central regulator, driving vascular formation through activation of the MAPK signaling pathway. These findings highlight the potential of BP-GelMA as a therapeutic strategy for promoting angiogenesis and underscore the importance of optimizing BP-GelMA concentrations to achieve maximum therapeutic efficacy and safety in clinical applications.
Collapse
Affiliation(s)
- Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Dong
- The Department of Pathology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Xianxian Zhuang
- The Department of Stomatology Center, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, China
| | - Yue Zou
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Qinkai Xie
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Youde Liang
- The Department of Stomatology Center, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, China
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Wiggins KJ, Williams ME, Hicks SL, Padilla-Quirarte HO, Akther J, Randall TD, Boss JM, Scharer CD. EZH2 coordinates memory B-cell programming and recall responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf004. [PMID: 40073167 DOI: 10.1093/jimmun/vkaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Antigen-experienced memory B-cells (MBC) are endowed with enhanced functional properties compared to naïve B cells and play an important role in the humoral response. However, the epigenetic enzymes and programs that govern their rapid differentiation are incompletely understood. Here, the role of the histone H3 lysine 27 methyltransferase EZH2 in the formation of MBC in response to an influenza infection was determined in Mus musculus. EZH2 was expressed in all postactivated B-cell subsets, including MBC and antibody-secreting cells (ASC), with maximal expression in germinal center (GC) B cells. Deletion of EZH2 resulted in a skewing of the MBC pool towards a non-GC, IgM+ MBC subset that failed to fully express CCR6 and CD73 at both early and late infection time points. Intriguingly, although EZH2 protein levels were reduced in knockout MBC, deletion was not fully efficient, indicating a strong selective pressure to maintain EZH2 methyltransferase activity. Single-cell RNA-seq of antigen-specific MBC identified a core set of upregulated genes that are likely EZH2 targets across MBC subsets. Finally, defects in the ability to form secondary ASC and GC cells in response to a lethal challenge were observed in EZH2-deficient mice, indicating significant functional impairment in the absence of EZH2. These data show that EZH2 is a critical epigenetic modulator of MBC differentiation and functional potential during reactivation.
Collapse
Affiliation(s)
- Keenan J Wiggins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark E Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Herbey O Padilla-Quirarte
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jobaida Akther
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Lucet IS, Daly RJ. View from the PEAKs: Insights from structural studies on the PEAK family of pseudokinases. Curr Opin Struct Biol 2024; 89:102932. [PMID: 39321525 DOI: 10.1016/j.sbi.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The PEAK family of pseudokinase scaffolds, comprising PEAK1 (originally termed SgK269), PEAK2 (SgK223, the human orthologue of rat Pragmin) and PEAK3 (C19orf35), have emerged as important regulators and integrators of cellular signaling and also play oncogenic roles in a variety of human cancers. These proteins undergo both homo- and heterotypic association that act to diversify signal output. Recently, structural and functional characterization of PEAK3 and its protein-protein interactions have shed light on PEAK signaling dynamics and the interdependency of PEAK family members, how PEAK dimerization regulates the binding of downstream effectors, and how 14-3-3 binding acts to regulate PEAK3 signal output. These important advances form the basis of this review.
Collapse
Affiliation(s)
- Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Roger J Daly
- Cancer Program, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
5
|
Zuidema A, Atherton P, van der Poel S, Kreft M, Song JY, Bierbooms M, Verhoeven S, Papagianni C, Kroese L, Ali RB, Huijbers I, Carvalho B, Sonnenberg A. Colorectal carcinoma progression is not influenced by the pseudokinase PEAK1. Sci Rep 2024; 14:27663. [PMID: 39532961 PMCID: PMC11557890 DOI: 10.1038/s41598-024-78776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The scaffold protein PEAK1 acts downstream of integrin adhesion complexes and the epidermal growth factor receptor, orchestrating signaling events that control cell proliferation and cytoskeletal remodeling. In this study we investigated the role of PEAK1 in colorectal carcinoma (CRC) progression using various in vitro and in vivo models to replicate the stepwise pathogenesis of CRC. While we observed a cell-type specific role for PEAK1 in the proliferation and in human CRC cell lines in vitro, our in vivo experiments using different CRC mouse models driven by loss of Apc, with or without oncogenic Kras or Pten loss suggest that PEAK1 does not significantly contribute to tumor formation in vivo. However, the survival time of Peak1-/- mice in the Apcfl/+ model appeared to be slightly increased. Furthermore, PEAK1 promotes EGF-induced Caco-2 cell proliferation and regulates spheroid polarization and lumenization. Given that the Caco-2 cells harbor mutations in the tumor suppressors APC and β-CATENIN, but not in other tumor suppressors or in proto-oncogenes, we conclude that the PEAK1's impact on colon carcinogenesis is limited, potentially playing a role in the initial stage of the adenoma to carcinoma progression.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Oncological Urology and Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Molecular and Clinical Cancer Medicine Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, L69 7BE, Liverpool, UK
| | - Sabine van der Poel
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Martine Bierbooms
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Sophie Verhoeven
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Chrysoula Papagianni
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Lona Kroese
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Beatriz Carvalho
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Wang Q, Hao F, Ning L, Sun C. Targeting PEAK1 sensitizes anaplastic thyroid carcinoma cells harboring BRAF V600E to Vemurafenib by Bim upregulation. Histol Histopathol 2024; 39:1159-1165. [PMID: 38284248 DOI: 10.14670/hh-18-705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Pseudopodium-enriched atypical kinase 1 (PEAK1) has been demonstrated to be upregulated in human malignancies and cells. Enhanced PEAK1 expression facilitates tumor cell survival and chemoresistance. However, the role of PEAK1 inhibition to anaplastic thyroid carcinoma cell (ATC) and vemurafenib resistance is still unknown. Here, we observed that targeting PEAK1 inhibited cell viability and colony formation, but not cell apoptosis in both of the 8505C and Hth74 cells in vitro. Targeting PEAK1 sensitized 8505C and Hth74 cells to vemurafenib by inducing cell apoptosis, and thereby decreasing cell viability. Mechanistically, vemurafenib treatment upregulated PEAK1 expression. Combined PEAK1 depletion and Vemurafenib treatment upregulated Bim expression. Targeting PEAK1 sensitized vemurafenib-induced apoptosis by upregulating Bim. In conclusion, vemurafenib resistance in ATC cells harboring BRAFV600E is associated with PEAK1 activation, resulting in the inhibition of pro-apoptotic Bim protein. Therefore, targeting PEAK1 may be an effective strategy to sensitize ATC harboring BRAFV600E to vemurafenib.
Collapse
Affiliation(s)
- Qiuhan Wang
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Fengyun Hao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China.
| | - Liang Ning
- Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Chong Sun
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China.
| |
Collapse
|
7
|
Ploypetch S, Wongbandue G, Roytrakul S, Phaonakrop N, Prapaiwan N. Comparative Serum Proteome Profiling of Canine Benign Prostatic Hyperplasia before and after Castration. Animals (Basel) 2023; 13:3853. [PMID: 38136890 PMCID: PMC10740436 DOI: 10.3390/ani13243853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
BPH is the most prevalent prostatic condition in aging dogs. Nevertheless, clinical diagnosis and management remain inconsistent. This study employed in-solution digestion coupled with nano-liquid chromatography tandem mass spectrometry to assess serum proteome profiling of dogs with BPH and those dogs after castration. Male dogs were divided into two groups; control and BPH groups. In the BPH group, each dog was evaluated at two time points: Day 0 (BF subgroup) and Day 30 after castration (AT subgroup). In the BF subgroup, three proteins were significantly upregulated and associated with dihydrotestosterone: solute carrier family 5 member 5, tyrosine-protein kinase, and FRAT regulator of WNT signaling pathway 1. Additionally, the overexpression of polymeric immunoglobulin receptors in the BF subgroup hints at its potential as a novel protein linked to the BPH development process. Conversely, alpha-1-B glycoprotein (A1BG) displayed significant downregulation in the BF subgroup, suggesting A1BG's potential as a predictive protein for canine BPH. Finasteride was associated with increased proteins in the AT subgroup, including apolipoprotein C-I, apolipoprotein E, apolipoprotein A-II, TAO kinase 1, DnaJ homolog subfamily C member 16, PH domain and leucine-rich repeat protein phosphatase 1, neuregulin 1, and pseudopodium enriched atypical kinase 1. In conclusion, this pilot study highlighted alterations in various serum proteins in canine BPH, reflecting different pathological changes occurring in this condition. These proteins could be a source of potential non-invasive biomarkers for diagnosing this disease.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Grisnarong Wongbandue
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Nawarus Prapaiwan
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| |
Collapse
|
8
|
Safari F, Ansari Dogaheh F, Dadashi H. Evaluation of SgK269 expression in colon cancer patients and the effects of hAMSCs secretome on tumor invasion through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2 signaling pathway in HT-29 colon cancer cells. 3 Biotech 2023; 13:346. [PMID: 37744286 PMCID: PMC10516828 DOI: 10.1007/s13205-023-03763-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Colon cancer is the fifth leading cause of cancer-related deaths worldwide. Stem cells have unique characteristics and are considered as a novel therapeutic platform for cancer. Sugen Kinase 269 (SgK269) is considered as an oncogenic scaffolding pseudo kinase which governs the rearranging of the cytoskeleton, cellular motility, and invasion. The aim of this study is to evaluate the expression of SgK269 in colon cancer patients and explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) on invasion and proliferation of colon cancer cells (HT-29) through analyzing SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2 signaling pathway. In this regard, we collected 30 samples from colon cancer patients and evaluated SgK269 expression using quantitative real-time PCR (qRT-PCR). Next, we employed a co-culture system using Transwell 6-well plates and after 72 h, tumor growth promotion and invasion were analyzed in hAMSCs-treated HT-29 cells through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway using qRT-PCR, western blot method, MTT assay, wound healing assay, and DAPI staining. Our results showed upregulation of SgK269 in colon cancer patients. Treatment of HT-29 colon cancer cells with hAMSCs secretome can inhibit SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway and the resulting suppression of cell invasion and proliferation. Our results suggest that SgK269 is an important target in colon cancer therapy and MSCs secretome may be an effective therapeutic approach to inhibit colon cancer cell invasion and proliferation through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | | | - Haniyeh Dadashi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
9
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
10
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Delage P, Ségrestin B, Seyssel K, Chanon S, Vieille-Marchiset A, Durand A, Nemeth A, Métairon S, Charpagne A, Descombes P, Hager J, Laville M, Vidal H, Meugnier E. Adipose tissue angiogenesis genes are down-regulated by grape polyphenols supplementation during a human overfeeding trial. J Nutr Biochem 2023; 117:109334. [PMID: 36965784 DOI: 10.1016/j.jnutbio.2023.109334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
The adaptive response to overfeeding is associated with profound modifications of gene expression in adipose tissue to support lipid storage and weight gain. The objective of this study was to assess in healthy lean men whether a supplementation with polyphenols could interact with these molecular adaptations. Abdominal subcutaneous adipose tissue biopsies were sampled from 42 subjects participating to an overfeeding protocol providing an excess of 50% of their total energy expenditure for 31 days, and who were supplemented with 2 g/day of grape polyphenols or a placebo. Gene expression profiling was performed by RNA sequencing. Overfeeding led to a modification of the expression of 163 and 352 genes in the placebo and polyphenol groups, respectively. The GO functions of these genes were mostly involved in lipid metabolism, followed by genes involved in adipose tissue remodeling and expansion. In response to overfeeding, 812 genes were differentially regulated between groups. Among them, a set of 41 genes were related to angiogenesis and were downregulated in the polyphenol group. Immunohistochemistry targeting PECAM1, as endothelial cell marker, confirmed reduced angiogenesis in this group. Finally, quercetin and isorhamnetin, two polyphenol species enriched in the plasma of the volunteers submitted to the polyphenols, were found to inhibit human umbilical vein endothelial cells migration in vitro. Polyphenol supplementation do not prevent the regulation of genes related to lipid metabolism in human adipose tissue during overfeeding, but impact the angiogenesis pathways. This may potentially contribute to a protection against adipose tissue expansion during dynamic phase of weight gain.
Collapse
Affiliation(s)
- Pauline Delage
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | - Bérénice Ségrestin
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France; Centre Hospitalier Lyon-Sud, Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Pierre-Bénite, F-69100, France.
| | - Kévin Seyssel
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France.
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | | | - Annie Durand
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | - Angéline Nemeth
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France.
| | | | - Aline Charpagne
- Nestlé Research, EPFL Innovation Park, H, Lausanne, Switzerland.
| | | | - Jörg Hager
- Nestlé Research, EPFL Innovation Park, H, Lausanne, Switzerland.
| | - Martine Laville
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France; Centre Hospitalier Lyon-Sud, Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Pierre-Bénite, F-69100, France.
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France.
| | - Emmanuelle Meugnier
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| |
Collapse
|
12
|
Gruver S, Rata S, Peshkin L, Kirschner MW. Identification of kinases activated by multiple pro-angiogenic growth factors. Front Pharmacol 2023; 13:1022722. [PMID: 36686695 PMCID: PMC9847502 DOI: 10.3389/fphar.2022.1022722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
Antiangiogenic therapy began as an effort to inhibit VEGF signaling, which was thought to be the sole factor driving tumor angiogenesis. It has become clear that there are more pro-angiogenic growth factors that can substitute for VEGF during tumor vascularization. This has led to the development of multi-kinase inhibitors which simultaneously target multiple growth factor receptors. These inhibitors perform better than monotherapies yet to date no multi-kinase inhibitor targets all receptors known to be involved in pro-angiogenic signaling and resistance inevitably occurs. Given the large number of pro-angiogenic growth factors identified, it may be impossible to simultaneously target all pro-angiogenic growth factor receptors. Here we search for kinase targets, some which may be intracellularly localized, that are critical in endothelial cell proliferation irrespective of the growth factor used. We develop a quantitative endothelial cell proliferation assay and combine it with "kinome regression" or KIR, a recently developed method capable of identifying kinases that influence a quantitative phenotype. We report the kinases implicated by KIR and provide orthogonal evidence of their importance in endothelial cell proliferation. Our approach may point to a new strategy to develop a more complete anti-angiogenic blockade.
Collapse
Affiliation(s)
- Scott Gruver
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| | - Scott Rata
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| | - Leonid Peshkin
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| | - Marc W Kirschner
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
14
|
Wang X, Zheng Y, Wang Y. PEAK1 promotes invasion and metastasis and confers drug resistance in breast cancer. Clin Exp Med 2021; 22:393-402. [PMID: 34554318 PMCID: PMC9338157 DOI: 10.1007/s10238-021-00761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Pseudopodium-enriched atypical kinase 1 (PEAK1) has been reported to be upregulated in human malignancies and is correlated with a poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is unclear. We investigated PEAK1 expression in breast cancer and analyzed the relationship with clinicopathological status and chemotherapy resistance. We also investigated the role of PEAK1 in breast cancer cells in vitro and in vivo. Immunohistochemistry for PEAK1 was performed in 112 surgically resected breast cancer tissues. The association between clinicopathological status, chemotherapy resistance and PEAK1 expression was determined. The effect of PEAK1 overexpression or downregulation on proliferation, colony formation, invasion, migration, metastasis and doxorubicin sensitivity in MCF-7 cells in vitro and in vivo was studied. PEAK1 was overexpressed in breast cancer tissues. High PEAK1 expression was correlated with tumor size, high tumor grade, tumor stage, lymph node metastasis, recurrence, Ki-67 expression, Her-2 expression and chemotherapy resistance. Inhibiting PEAK1 decreased cell growth, invasion, metastasis and reversed chemoresistance to doxorubicin in breast cancer cells both in vitro and in vivo. High PEAK1 expression was associated with the invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 inhibited cell growth and metastasis and reversed chemoresistance in breast cancer cells. Targeting PEAK1 could be an effective treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Xingang Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yan Zheng
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yu Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
15
|
Kadkhoda S, Taslimi R, Noorbakhsh F, Darbeheshti F, Bazzaz JT, Ghafouri-Fard S, Shakoori A. Importance of Circ0009910 in colorectal cancer pathogenesis as a possible regulator of miR-145 and PEAK1. World J Surg Oncol 2021; 19:265. [PMID: 34479583 PMCID: PMC8417957 DOI: 10.1186/s12957-021-02378-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is one of the most frequent neoplasms in the world. Based on the emerging role of noncoding RNAs, particularly circular RNAs in pathogenesis of cancers, we designed this study to inspect the expression levels of a circ0009910-mediated regulatory pathway in colorectal cancer. Methods After bioinformatics analyses and construction of putative circ0009910/ miR-145-5p/PEAK1 pathway, the expression levels of these components were evaluated in 50 CRC tissues and adjacent specimens by quantitative real-time PCR. Moreover, we appraised the correlation coefficients between these transcripts and calculated the correlation between circ0009910 expression levels with clinicopathological features of patients. Results Circ0009910 and PEAK1 were significantly upregulated, while miR-145-5p was decreased in CRC samples compared with adjacent tissues (p < 0.05). Moreover, statistically significant correlations were observed between expression levels of circ0009910, miR-145-5p, and PEAK1. We also reported considerable correlations between circ0009910 expression and clinicopathological parameters including sex and perineural invasion. Finally, ROC curve analysis showed circ0009910 level as a discriminative biomarker for CRC. Conclusion For the first time, we could introduce circ0009910 as an important biomarker in CRC. Collectively, this investigation helped us to identify a newly diagnosed pathway in CRC that can be a potential axis for designing effective drugs for treatment of CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02378-0.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
16
|
Hoang VT, Van HAT, Trinh CT, Pham NTT, Huynh C, Ha TN, Huynh PH, Nguyen HQ, Vo UG, Nguyen TT. Uterine Arteriovenous Malformation: A Pictorial Review of Diagnosis and Management. J Endovasc Ther 2021; 28:659-675. [PMID: 34142901 DOI: 10.1177/15266028211025022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uterine arteriovenous malformation (UAVM) is a rare condition and is classified as either congenital or acquired UAVM. Patients with UAVMs usually experience miscarriages or recurrent menorrhagia. Ultrasound is used for the initial estimation of UAVMs. Computed tomography and magnetic resonance imaging are noninvasive and valuable methods that provide good compatibility with digital subtraction angiography to support the diagnosis and treatment of UAVM. Timely diagnosis is crucial to provide appropriate treatment for alleviating complications. This article presents a pictorial and literature review of the current evidence of the diagnosis and management of UAVM.
Collapse
Affiliation(s)
- Van Trung Hoang
- Department of Radiology, Thien Hanh Hospital, Buon Ma Thuot, Vietnam
| | - Hoang Anh Thi Van
- Department of Radiology, Thien Hanh Hospital, Buon Ma Thuot, Vietnam
| | | | | | - Chinh Huynh
- Department of Radiology, Tu Du Hospital, Ho Chi Minh City, Vietnam
| | - To Nguyen Ha
- Department of Radiology, Tu Du Hospital, Ho Chi Minh City, Vietnam
| | - Phuong Hai Huynh
- Department of Radiology, University Medical Center at Ho Chi Minh City, Vietnam
| | - Hoang Quan Nguyen
- Department of Radiology, Da Nang Oncology Hospital, Da Nang, Vietnam
| | - Uyen Giao Vo
- Department of Vascular Surgery, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Thanh Thao Nguyen
- Department of Radiology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| |
Collapse
|
17
|
Zhang M, Ding X, Zhang Q, Liu J, Zhang Y, Zhang Y, Tian Z, Li W, Zhu W, Kang H, Wang Z, Wu X, Wang C, Yang X, Wang K. Exome sequencing of 112 trios identifies recessive genetic variants in brain arteriovenous malformations. J Neurointerv Surg 2020; 13:568-573. [PMID: 32848021 DOI: 10.1136/neurintsurg-2020-016469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Brain arteriovenous malformation (BAVM) is a main cause of cerebral hemorrhage and hemorrhagic stroke in adolescents. Morphologically, a BAVM is an abnormal connection between cerebrovascular arteries and veins. The genetic etiology of BAVMs has not been fully elucidated. In this study, we aim to investigate potential recessive genetic variants in BAVMs by interrogation of rare compound heterozygous variants. METHODS We performed whole exome sequencing (WES) on 112 BAVM trios and analyzed the data for rare and deleterious compound heterozygous mutations associated with the disease. RESULTS We identified 16 genes with compound heterozygous variants that were recurrent in more than one trio. Two genes (LRP2, MUC5B) were recurrently mutated in three trios. LRP2 has been previously associated with BAVM pathogenesis. Fourteen genes (MYLK, HSPG2, PEAK1, PIEZO1, PRUNE2, DNAH14, DNAH5, FCGBP, HERC2, HMCN1, MYH1, NHSL1, PLEC, RP1L1) were recurrently mutated in two trios, and five of these genes (MYLK, HSPG2, PEAK1, PIEZO1, PRUNE2) have been reported to play a role in angiogenesis or vascular diseases. Additionally, abnormal expression of the MYLK protein is related to spinal arteriovenous malformations. CONCLUSION Our study indicates that rare recessive compound heterozygous variants may underlie cases of BAVM. These findings improve our understanding of BAVM pathology and indicate genes for functional validation.
Collapse
Affiliation(s)
- Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xinghuan Ding
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing 100070, China
| | - Qianqian Zhang
- Department of Cerebrovascular Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center and Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou 450000, Henan, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhongbin Tian
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenqiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huibin Kang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhongxiao Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xinzhi Wu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chao Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
18
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
19
|
Roche S, Lecointre C, Simon V, Labesse G. SHEDding light on the role of Pragmin pseudo-kinases in cancer. Am J Cancer Res 2019; 9:449-454. [PMID: 30906642 PMCID: PMC6405979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023] Open
Abstract
The human kinome comprises more than 50 pseudo-kinases with unclear biological function due to the absence of apparent catalytic activity, and therefore, with presumably little interest for cancer drug discovery. However, it is now acknowledged that several of them, such as Pragmin family members, play roles as important as those of active kinases in human cancer. How these pseudo-kinases promote tumor formation is largely unknown. Recently, independent structural analyses of three Pragmin pseudo-kinases (Pragmin, SGK223, and SGK269/PEAK1) revealed a split helical dimerization (SHED)-based mechanism of action. Additional sequence-structure analysis identified C19orf35 as a new member of the Pragmin family. Based on the results of these molecular studies, we present a unified model on how Pragmin pseudo-kinases may regulate oncogenic signaling, and suggest potential therapeutic strategies to block their tumor activity.
Collapse
Affiliation(s)
- Serge Roche
- CRBM, CNRS, University Montpellier, Equipe labellisée Ligue Contre le CancerF-34000 Montpellier, France
| | - Céline Lecointre
- CRBM, CNRS, University Montpellier, Equipe labellisée Ligue Contre le CancerF-34000 Montpellier, France
| | - Valérie Simon
- CRBM, CNRS, University Montpellier, Equipe labellisée Ligue Contre le CancerF-34000 Montpellier, France
| | - Gilles Labesse
- CBS, CNRS, INSERM, University MontpellierF34090 Montpellier, France
| |
Collapse
|
20
|
Ding C, Tang W, Wu H, Fan X, Luo J, Feng J, Wen K, Wu G. The PEAK1-PPP1R12B axis inhibits tumor growth and metastasis by regulating Grb2/PI3K/Akt signalling in colorectal cancer. Cancer Lett 2018; 442:383-395. [PMID: 30472186 DOI: 10.1016/j.canlet.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Pseudopodium enriched atypical kinase 1 (PEAK1), a novel non-receptor tyrosine kinase, was recently implicated in cancer pathogenesis. However, its functional role in colorectal cancer (CRC) is not well known. Herein, we demonstrated that PEAK1 was frequently downregulated in CRC and significantly associated with tumor size, differentiation status, metastasis, and clinical stage. PEAK1 overexpression suppressed CRC cell growth, invasion, and metastasis in vitro and in vivo, whereas knockout had the opposite effects. Further evaluation revealed that PEAK1 expression was positively correlated with protein phosphatase 1 regulatory subunit 12B (PPP1R12B) in CRC cell lines and clinical tissues, and this protein was found to suppress activation of the Grb2/PI3K/Akt pathway. Moreover, PPP1R12B knockdown markedly abrogated PEAK1-mediated tumor suppressive effects, whereas its upregulation recapitulated the effects of PEAK1 knockout on cell behaviours and the activation of signalling. Mechanistically, PI3K and Akt inhibitors reversed impaired the effect of PEAK1 function on cell proliferation, migration, and invasion. Our results provide compelling evidence that the PEAK1-PPP1R12B axis inhibits colorectal tumorigenesis and metastasis through deactivation of the Grb2/PI3K/Akt pathway, which might provide a novel therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China; Center of Clinical Laboratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Wendong Tang
- Medical School of Southeast University, Nanjing, China
| | - Hailu Wu
- Medical School of Southeast University, Nanjing, China; Department of Gastroenterology, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jihong Feng
- Department of Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China; Center of Clinical Laboratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|