1
|
Hamey JJ, Shah M, Wade JD, Bartolec TK, Wettenhall REH, Quinlan KGR, Williamson NA, Wilkins MR. SMYD5 is a ribosomal methyltransferase that trimethylates RPL40 lysine 22 through recognition of a KXY motif. Cell Rep 2025; 44:115518. [PMID: 40184250 DOI: 10.1016/j.celrep.2025.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/06/2025] Open
Abstract
The eukaryotic ribosome is highly modified by protein methylation, yet many of the responsible methyltransferases remain unknown. Here, we identify SET and MYND domain-containing protein 5 (SMYD5) as a ribosomal protein methyltransferase that catalyzes trimethylation of RPL40/eL40 at lysine 22. Through a systematic mass spectrometry-based approach, we identify 12 primary sites of protein methylation in ribosomes from K562 cells, including at RPL40 K22. Through in vitro methylation of synthetic RPL40 using fractionated lysate, we then identify SMYD5 as a candidate RPL40 K22 methyltransferase. We show that recombinant SMYD5 has robust activity toward RPL40 K22 in vitro and that active site mutations ablate this activity. Knockouts of SMYD5 in K562 cells show a complete loss of RPL40 K22 methylation and decreased polysome levels. We show that SMYD5 does not methylate histones in vitro, and by systematic analysis of its recognition motif, we find that SMYD5 requires a KXY motif for methylation, explaining its lack of activity toward histones.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - John D Wade
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tara K Bartolec
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard E H Wettenhall
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Ji L, Chen J, He L, Zhang F, Deng Z, Lin J, Qi Z, Luo X, Giuliano AE, Cui X, Lin SL, Cui Y. Reversal of endocrine resistance via N6AMT1-NEDD4L pathway-mediated p110α degradation. Oncogene 2025; 44:530-544. [PMID: 39623076 PMCID: PMC11832415 DOI: 10.1038/s41388-024-03238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 02/19/2025]
Abstract
Approximately 70% of breast cancer (BC) cases are luminal-type (estrogen receptor-positive, ER+), suitable for endocrine therapy with tamoxifen as the most commonly used drug. However, about 30% of these patients develop tamoxifen resistance due to various mechanisms, primarily involving PI3K pathway activation through mutations or unknown pathways. Here, we discover, via bioinformatics analysis and clinical samples, that N6 adenine-specific DNA methyltransferase 1 (N6AMT1) is highly expressed in luminal breast cancer but downregulated in tamoxifen-resistant (TamR) BC cells. ChIP-qPCR and luciferase reporter assays showed that FOXA1 binds to the N6AMT1 promoter and enhances its transcription. In TamR models, FOXA1 and N6AMT1 are downregulated, increasing p110α protein levels (but not mRNA), phospho-AKT levels, and tamoxifen resistance. In vivo, N6AMT1 overexpression enhanced tamoxifen sensitivity, while knockdown reduced it; this sensitivity could be restored with the p110α inhibitor A66. Clinically, decreased N6AMT1 expression correlates with poor prognosis in luminal BC patients. In TamR BC organoids, combining tamoxifen with A66 further reduced growth compared to either treatment alone. Mechanistically, increased p110α levels result from inhibited degradation by E3 ubiquitin ligase NEDD4L. These findings suggest N6AMT1 as a potential luminal breast cancer biomarker and highlight the N6AMT1-p110α pathway as a therapeutic target to sensitize cells to tamoxifen.
Collapse
Affiliation(s)
- Likeng Ji
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiongyu Chen
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lifang He
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fan Zhang
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zihao Deng
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiediao Lin
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaochang Qi
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xi Luo
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yukun Cui
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
3
|
Jia Y, Wang S, Urban S, Müller JM, Sum M, Wang Q, Bauer H, Schulte U, Rampelt H, Pfanner N, Schüle KM, Imhof A, Forné I, Berlin C, Sigle A, Gratzke C, Greschik H, Metzger E, Schüle R. Mitochondrial KMT9 methylates DLAT to control pyruvate dehydrogenase activity and prostate cancer growth. Nat Commun 2025; 16:1191. [PMID: 39885202 PMCID: PMC11782658 DOI: 10.1038/s41467-025-56492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types. Mitochondrial KMT9 regulates PDC activity by monomethylation of its subunit dihydrolipoamide transacetylase (DLAT) at lysine 596. Depletion of KMT9 compromises PDC activity, de novo lipogenesis, and PCa cell proliferation, both in vitro and in a PCa mouse model. Finally, in human patients, levels of mitochondrial KMT9 and DLAT K596me1 correlate with Gleason grade. Together, we present a mechanism of PDC regulation and an example of a histone methyltransferase with nuclear and mitochondrial functions. The dependency of PCa cells on mitochondrial KMT9 allows to develop therapeutic strategies to selectively fight PCa.
Collapse
Affiliation(s)
- Yanhan Jia
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Judith M Müller
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Qing Wang
- Complete Omics Inc., Baltimore, MD, USA
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin M Schüle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Imhof
- Institute Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Institute Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christopher Berlin
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - August Sigle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany.
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany.
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Foged MM, Recazens E, Chollet S, Lisci M, Allen GE, Zinshteyn B, Boutguetait D, Münch C, Mootha VK, Jourdain AA. Cytosolic N6AMT1-dependent translation supports mitochondrial RNA processing. Proc Natl Acad Sci U S A 2024; 121:e2414187121. [PMID: 39503847 PMCID: PMC11588129 DOI: 10.1073/pnas.2414187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
Mitochondrial biogenesis relies on both the nuclear and mitochondrial genomes, and imbalance in their expression can lead to inborn errors of metabolism, inflammation, and aging. Here, we investigate N6AMT1, a nucleo-cytosolic methyltransferase that exhibits genetic codependency with mitochondria. We determine transcriptional and translational profiles of N6AMT1 and report that it is required for the cytosolic translation of TRMT10C (MRPP1) and PRORP (MRPP3), two subunits of the mitochondrial RNAse P enzyme. In the absence of N6AMT1, or when its catalytic activity is abolished, RNA processing within mitochondria is impaired, leading to the accumulation of unprocessed and double-stranded RNA, thus preventing mitochondrial protein synthesis and oxidative phosphorylation, and leading to an immune response. Our work sheds light on the function of N6AMT1 in protein synthesis and highlights a cytosolic program required for proper mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mads M. Foged
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Emeline Recazens
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Sylvain Chollet
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Miriam Lisci
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - George E. Allen
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva 41211, Switzerland
| | - Boris Zinshteyn
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Doha Boutguetait
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main60590, Germany
| | - Christian Münch
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main60590, Germany
| | - Vamsi K. Mootha
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- HHMI, Massachusetts General Hospital Boston, MA02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| | - Alexis A. Jourdain
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| |
Collapse
|
5
|
Falnes PØ. Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases. Nucleic Acids Res 2024; 52:11423-11441. [PMID: 39351878 PMCID: PMC11514484 DOI: 10.1093/nar/gkae816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway
- CRESCO - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Xu F, Suyama R, Inada T, Kawaguchi S, Kai T. HemK2 functions for sufficient protein synthesis and RNA stability through eRF1 methylation during Drosophila oogenesis. Development 2024; 151:dev202795. [PMID: 38881530 DOI: 10.1242/dev.202795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
HemK2 is a highly conserved methyltransferase, but the identification of its genuine substrates has been controversial, and its biological importance in higher organisms remains unclear. We elucidate the role of HemK2 in the methylation of eukaryotic Release Factor 1 (eRF1), a process that is essential for female germline development in Drosophila melanogaster. Knockdown of hemK2 in the germline cells (hemK2-GLKD) induces apoptosis, accompanied by a pronounced decrease in both eRF1 methylation and protein synthesis. Overexpression of a methylation-deficient eRF1 variant recapitulates the defects observed in hemK2-GLKD, suggesting that eRF1 is a primary methylation target of HemK2. Furthermore, hemK2-GLKD leads to a significant reduction in mRNA levels in germline cell. These defects in oogenesis and protein synthesis can be partially restored by inhibiting the No-Go Decay pathway. In addition, hemK2 knockdown is associated with increased disome formation, suggesting that disruptions in eRF1 methylation may provoke ribosomal stalling, which subsequently activates translation-coupled mRNA surveillance mechanisms that degrade actively translated mRNAs. We propose that HemK2-mediated methylation of eRF1 is crucial for ensuring efficient protein production and mRNA stability, which are vital for the generation of high-quality eggs.
Collapse
Affiliation(s)
- Fengmei Xu
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Ritsuko Suyama
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toshifumi Inada
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shinichi Kawaguchi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Brūmele B, Serova E, Lupp A, Suija M, Mutso M, Kurg R. Cross-Reactivity of N6AMT1 Antibodies with Aurora Kinase A: An Example of Antibody-Specific Non-Specificity. Antibodies (Basel) 2024; 13:33. [PMID: 38804301 PMCID: PMC11130794 DOI: 10.3390/antib13020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Primary antibodies are one of the main tools used in molecular biology research. However, the often-occurring cross-reactivity of primary antibodies complicates accurate data analysis. Our results show that three commercial polyclonal antibodies raised against N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) strongly cross-react with endogenous and recombinant mitosis-associated protein Aurora kinase A (AURKA). The cross-reactivity was verified through immunofluorescence, immunoblot, and immunoprecipitation assays combined with mass spectrometry. N6AMT1 and AURKA are evolutionarily conserved proteins that are vital for cellular processes. Both proteins share the motif ENNPEE, which is unique to only these two proteins. We suggest that N6AMT1 antibodies recognise this motif in N6AMT1 and AURKA proteins and exhibit an example of "specific" non-specificity. This serves as an example of the importance of controls and critical data interpretation in molecular biology research.
Collapse
Affiliation(s)
- Baiba Brūmele
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Evgeniia Serova
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Aleksandra Lupp
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mihkel Suija
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Margit Mutso
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
8
|
Weirich S, Ulu GT, Chandrasekaran TT, Kehl J, Schmid J, Dorscht F, Kublanovsky M, Levy D, Jeltsch A. Distinct specificities of the HEMK2 protein methyltransferase in methylation of glutamine and lysine residues. Protein Sci 2024; 33:e4897. [PMID: 38284488 PMCID: PMC10804810 DOI: 10.1002/pro.4897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
The HEMK2 protein methyltransferase has been described as glutamine methyltransferase catalyzing ERF1-Q185me1 and lysine methyltransferase catalyzing H4K12me1. Methylation of two distinct target residues is unique for this class of enzymes. To understand the specific catalytic adaptations of HEMK2 allowing it to master this chemically challenging task, we conducted a detailed investigation of the substrate sequence specificities of HEMK2 for Q- and K-methylation. Our data show that HEMK2 prefers methylation of Q over K at peptide and protein level. Moreover, the ERF1 sequence is strongly preferred as substrate over the H4K12 sequence. With peptide SPOT array methylation experiments, we show that Q-methylation preferentially occurs in a G-Q-X3 -R context, while K-methylation prefers S/T at the first position of the motif. Based on this, we identified novel HEMK2 K-methylation peptide substrates with sequences taken from human proteins which are methylated with high activity. Since H4K12 methylation by HEMK2 was very low, other protein lysine methyltransferases were examined for their ability to methylate the H4K12 site. We show that SETD6 has a high H4K12me1 methylation activity (about 1000-times stronger than HEMK2) and this enzyme is mainly responsible for H4K12me1 in DU145 prostate cancer cells.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, Department of BiochemistryUniversity of StuttgartStuttgartGermany
| | - Gizem T. Ulu
- Institute of Biochemistry and Technical Biochemistry, Department of BiochemistryUniversity of StuttgartStuttgartGermany
| | - Thyagarajan T. Chandrasekaran
- Institute of Biochemistry and Technical Biochemistry, Department of BiochemistryUniversity of StuttgartStuttgartGermany
| | - Jana Kehl
- Institute of Biochemistry and Technical Biochemistry, Department of BiochemistryUniversity of StuttgartStuttgartGermany
| | - Jasmin Schmid
- Institute of Biochemistry and Technical Biochemistry, Department of BiochemistryUniversity of StuttgartStuttgartGermany
| | - Franziska Dorscht
- Institute of Biochemistry and Technical Biochemistry, Department of BiochemistryUniversity of StuttgartStuttgartGermany
| | - Margarita Kublanovsky
- The Shraga Segal Department of Microbiology, Immunology and GeneticsBen‐Gurion University of the NegevBe'er‐ShevaIsrael
- The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBe'er‐ShevaIsrael
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and GeneticsBen‐Gurion University of the NegevBe'er‐ShevaIsrael
- The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBe'er‐ShevaIsrael
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of BiochemistryUniversity of StuttgartStuttgartGermany
| |
Collapse
|
9
|
Febrimarsa, Gornik SG, Barreira SN, Salinas‐Saavedra M, Schnitzler CE, Baxevanis AD, Frank U. Randomly incorporated genomic N6-methyldeoxyadenosine delays zygotic transcription initiation in a cnidarian. EMBO J 2023; 42:e112934. [PMID: 37708295 PMCID: PMC10390872 DOI: 10.15252/embj.2022112934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023] Open
Abstract
N6-methyldeoxyadenosine (6mA) is a chemical alteration of DNA, observed across all realms of life. Although the functions of 6mA are well understood in bacteria and protists, its roles in animal genomes have been controversial. We show that 6mA randomly accumulates in early embryos of the cnidarian Hydractinia symbiolongicarpus, with a peak at the 16-cell stage followed by clearance to background levels two cell cycles later, at the 64-cell stage-the embryonic stage at which zygotic genome activation occurs in this animal. Knocking down Alkbh1, a putative initiator of animal 6mA clearance, resulted in higher levels of 6mA at the 64-cell stage and a delay in the initiation of zygotic transcription. Our data are consistent with 6mA originating from recycled nucleotides of degraded m6A-marked maternal RNA postfertilization. Therefore, while 6mA does not function as an epigenetic mark in Hydractinia, its random incorporation into the early embryonic genome inhibits transcription. In turn, Alkbh1 functions as a genomic 6mA "cleaner," facilitating timely zygotic genome activation. Given the random nature of genomic 6mA accumulation and its ability to interfere with gene expression, defects in 6mA clearance may represent a hitherto unknown cause of various pathologies.
Collapse
Affiliation(s)
- Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
- Present address:
Centre for Organismal StudiesHeidelberg UniversityHeidelbergGermany
| | - Sofia N Barreira
- Computational and Statistical Genomics Branch, Division of Intramural ResearchNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Miguel Salinas‐Saavedra
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine BioscienceUniversity of FloridaSt. AugustineFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural ResearchNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayRepublic of Ireland
| |
Collapse
|
10
|
Falnes PØ, Małecki JM, Herrera MC, Bengtsen M, Davydova E. Human seven-β-strand (METTL) methyltransferases - conquering the universe of protein lysine methylation. J Biol Chem 2023; 299:104661. [PMID: 36997089 DOI: 10.1016/j.jbc.2023.104661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
|
11
|
Feng X, He C. Mammalian DNA N 6-methyladenosine: Challenges and new insights. Mol Cell 2023; 83:343-351. [PMID: 36736309 PMCID: PMC10182828 DOI: 10.1016/j.molcel.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
DNA N6-methyldeoxyadenosine (6mA) modification was first discovered in Bacterium coli in the 1950s. Over the next several decades, 6mA was recognized as a critical DNA modification in the genomes of prokaryotes and protists. While important in prokaryotes, less is known about the presence and functional roles of DNA 6mA in eukaryotes, particularly in mammals. Taking advantage of recent technology advances that made 6mA detection and sequencing possible, studies over the past several years have brought new insights into 6mA biology in mammals. In this perspective, we present recent progress, discuss challenges, and pose four questions for future research regarding mammalian DNA 6mA.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Li H, Zhang N, Wang Y, Xia S, Zhu Y, Xing C, Tian X, Du Y. DNA N6-Methyladenine Modification in Eukaryotic Genome. Front Genet 2022; 13:914404. [PMID: 35812743 PMCID: PMC9263368 DOI: 10.3389/fgene.2022.914404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is treated as an important epigenetic mark in various biological activities. In the past, a large number of articles focused on 5 mC while lacking attention to N6-methyladenine (6 mA). The presence of 6 mA modification was previously discovered only in prokaryotes. Recently, with the development of detection technologies, 6 mA has been found in several eukaryotes, including protozoans, metazoans, plants, and fungi. The importance of 6 mA in prokaryotes and single-celled eukaryotes has been widely accepted. However, due to the incredibly low density of 6 mA and restrictions on detection technologies, the prevalence of 6 mA and its role in biological processes in eukaryotic organisms are highly debated. In this review, we first summarize the advantages and disadvantages of 6 mA detection methods. Then, we conclude existing reports on the prevalence of 6 mA in eukaryotic organisms. Next, we highlight possible methyltransferases, demethylases, and the recognition proteins of 6 mA. In addition, we summarize the functions of 6 mA in eukaryotes. Last but not least, we summarize our point of view and put forward the problems that need further research.
Collapse
Affiliation(s)
- Hao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yating Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Xing
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuefeng Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du,
| |
Collapse
|
13
|
Biziaev NS, Shuvalov AV, Alkalaeva EZ. HEMK-Like Methyltransferases in the Regulation of Cellular Processes. Mol Biol 2022. [DOI: 10.1134/s0026893322030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Yu D, Zhou J, Chen Q, Wu T, Blumenthal RM, Zhang X, Cheng X. Enzymatic Characterization of In Vitro Activity of RNA Methyltransferase PCIF1 on DNA. Biochemistry 2022; 61:1005-1013. [PMID: 35605980 PMCID: PMC9178792 DOI: 10.1021/acs.biochem.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Indexed: 11/30/2022]
Abstract
PCIF1 and FTO are a pair of human mRNA cap-specific modification enzymes that have opposing activities. PCIF1 adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am), when Am is the cap-proximal nucleotide. FTO removes the N6-methyl group from m6Am. In addition, FTO has a demethylase activity on a broad spectrum of various RNA substrates, as well as on DNA N6-methyldeoxyadenosine (m6dA). While the existence of m6dA in mammalian DNA remains controversial, we show here that PCIF1 has significant methylation activity on single stranded DNA deoxyadenosine, double stranded RNA/DNA hybrids, and double stranded DNA, though with lower catalytic efficiency than that on its preferred RNA substrate. PCIF1 has activities in the order ssRNA > RNA/DNA hybrid > ssDNA > dsDNA. We discuss the implications of PCIF1 generation, and FTO removal, of DNA adenine methylation.
Collapse
Affiliation(s)
- Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Qin Chen
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Tao Wu
- Department
of Molecular & Human Genetics, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
15
|
Shen C, Wang K, Deng X, Chen J. DNA N 6-methyldeoxyadenosine in mammals and human disease. Trends Genet 2022; 38:454-467. [PMID: 34991904 PMCID: PMC9007851 DOI: 10.1016/j.tig.2021.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
N6-methyladenine (6mA) is the most prevalent DNA modification in prokaryotes. However, its presence and significance in eukaryotes remain elusive. Recently, with methodology advances in detection and sequencing of 6mA in eukaryotes, 6mA is back in the spotlight. Although multiple studies have reported that 6mA is an important epigenetic mark in eukaryotes and plays a regulatory role in DNA transcription, transposon activation, stress response, and other bioprocesses, there are some discrepancies in the current literature. We review the recent advances in 6mA research in eukaryotes, especially in mammals. In particular, we describe the abundance/distribution of 6mA, its potential role in regulating gene expression, identified regulators, and pathological roles in human diseases, especially in cancer. The limitations faced by the field and future perspectives in 6mA research are also discussed.
Collapse
Affiliation(s)
- Chao Shen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Kitty Wang
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Xiaolan Deng
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Jianjun Chen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| |
Collapse
|
16
|
Mammalian HEMK1 methylates glutamine residue of the GGQ motif of mitochondrial release factors. Sci Rep 2022; 12:4104. [PMID: 35260756 PMCID: PMC8904536 DOI: 10.1038/s41598-022-08061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Despite limited reports on glutamine methylation, methylated glutamine is found to be highly conserved in a "GGQ" motif in both prokaryotes and eukaryotes. In bacteria, glutamine methylation of peptide chain release factors 1/2 (RF1/2) by the enzyme PrmC is essential for translational termination and transcript recycling. Two PrmC homologs, HEMK1 and HEMK2, are found in mammals. In contrast to those of HEMK2, the biochemical properties and biological significance of HEMK1 remain largely unknown. In this study, we demonstrated that HEMK1 is an active methyltransferase for the glutamine residue of the GGQ motif of all four putative mitochondrial release factors (mtRFs)-MTRF1, MTRF1L, MRPL58, and MTRFR. In HEMK1-deficient HeLa cells, GGQ motif glutamine methylation was absent in all the mtRFs. We examined cell growth and mitochondrial properties, but disruption of the HEMK1 gene had no considerable impact on the overall cell growth, mtDNA copy number, mitochondrial membrane potential, and mitochondrial protein synthesis under regular culture condition with glucose as a carbon source. Furthermore, cell growth potential of HEMK1 KO cells was still maintained in the respiratory condition with galactose medium. Our results suggest that HEMK1 mediates the GGQ methylation of all four mtRFs in human cells; however, this specific modification seems mostly dispensable in cell growth and mitochondrial protein homeostasis at least for HeLa cells under fermentative culture condition.
Collapse
|
17
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
18
|
Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA. Nat Commun 2022; 13:1072. [PMID: 35228526 PMCID: PMC8885841 DOI: 10.1038/s41467-022-28471-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
DNA modifications are used to regulate gene expression and defend against invading genetic elements. In eukaryotes, modifications predominantly involve C5-methylcytosine (5mC) and occasionally N6-methyladenine (6mA), while bacteria frequently use N4-methylcytosine (4mC) in addition to 5mC and 6mA. Here we report that 4mC can serve as an epigenetic mark in eukaryotes. Bdelloid rotifers, tiny freshwater invertebrates with transposon-poor genomes rich in foreign genes, lack canonical eukaryotic C5-methyltransferases for 5mC addition, but encode an amino-methyltransferase, N4CMT, captured from bacteria >60 Mya. N4CMT deposits 4mC at active transposons and certain tandem repeats, and fusion to a chromodomain shapes its “histone-read-DNA-write” architecture recognizing silent chromatin marks. Furthermore, amplification of SETDB1 H3K9me3 histone methyltransferases yields variants preferentially binding 4mC-DNA, suggesting “DNA-read-histone-write” partnership to maintain chromatin-based silencing. Our results show how non-native DNA methyl groups can reshape epigenetic systems to silence transposons and demonstrate the potential of horizontal gene transfer to drive regulatory innovation in eukaryotes. Eukaryotic DNA can be methylated as 5-methylcytosine and N6-methyladenine, but whether other forms of DNA methylation occur has been controversial. Here the authors show that a bacterial DNA methyltransferase was acquired >60 Mya in bdelloid rotifers that catalyzes N4-methylcytosine addition and is involved in suppression of transposon proliferation.
Collapse
|
19
|
Evolutionary History of RNA Modifications at N6-Adenosine Originating from the R-M System in Eukaryotes and Prokaryotes. BIOLOGY 2022; 11:biology11020214. [PMID: 35205080 PMCID: PMC8868631 DOI: 10.3390/biology11020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary The m6A is the most abundant and well-studied modification of mRNA, and plays an important role in transcription and translation. It is known to be evolutionarily conserved machinery present in the last eukaryotic common ancestor (LECA). The writers and erasers responsible for adding or removing m6A belong to specific protein families, respectively, suggesting that these members are evolutionarily related. However, only some of these mRNA m6A modification-associated proteins have been studied from an evolutionary perspective, while there has been no comprehensive and systematic analysis of the distributions and evolutionary history of N6mA-associated proteins in the three kingdoms of life. In this study, we identified orthologues of all the reported N6mA-associated proteins in 88 organisms from three kingdoms of life and comprehensively reconstructed the evolutionary history of the RNA N6mA modification machinery. The results demonstrate that RNA N6mA-MTases are derived from at least two different types of prokaryotic DNA MTases (class α and β MTases). As the m6A reader, YTH proteins may be acquired by LECA from an individual prokaryotic YTH-domain protein that evolved from the N-terminals of an R-M system endonuclease. In addition, the origin of eukaryotic ALKBH family proteins is inferred to be driven by at least two occasions of independent HTG from the bacterial ALKB family. Abstract Methylation at the N6-position of adenosine (N6mA) on mRNA (m6A) is one of the most widespread, highly selective and dynamically regulated RNA modifications and plays an important role in transcription and translation. In the present study, a comprehensive analysis of phylogenetic relationships, conserved domain sequence characteristics and protein structure comparisons were employed to explore the distribution of RNA N6mA modification (m6A, m6,6A, m6Am, m6, 6Am and m6t6A)-associated proteins (writers, readers and erasers) in three kingdoms of life and reveal the evolutionary history of these modifications. These findings further confirmed that the restriction-modification (R-M) system is the origin of DNA and RNA N6mA modifications. Among them, the existing mRNA m6A modification system derived from the last eukaryotic common ancestor (LECA) is the evolutionary product of elements from the last universal common ancestor (LUCA) or driven by horizontal gene transfer (HGT) from bacterial elements. The subsequent massive gene gains and losses contribute to the development of unique and diverse functions in distinct species. Particularly, RNA methyltransferases (MTases) as the writer responsible for adding N6mA marks on mRNA and ncRNAs may have evolved from class α and β prokaryotic “orphan” MTases originating from the R-M system. The reader, YTH proteins that specifically recognize the m6A deposit, may be acquired by LECA from an individual prokaryotic YTH-domain protein that evolved from N-terminals of an R-M system endonuclease. The eraser, which emerged from the ALKB family (ALKBH5 and FTO) in eukaryotes, may be driven by independent HTG from bacterial ALKB proteins. The evolutionary history of RNA N6mA modifications was inferred in the present study, which will deepen our understanding of these modifications in different species.
Collapse
|
20
|
Brūmele B, Mutso M, Telanne L, Õunap K, Spunde K, Abroi A, Kurg R. Human TRMT112-Methyltransferase Network Consists of Seven Partners Interacting with a Common Co-Factor. Int J Mol Sci 2021; 22:ijms222413593. [PMID: 34948388 PMCID: PMC8708615 DOI: 10.3390/ijms222413593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
Methylation is an essential epigenetic modification mainly catalysed by S-Adenosyl methionine-dependent methyltransferases (MTases). Several MTases require a cofactor for their metabolic stability and enzymatic activity. TRMT112 is a small evolutionary conserved protein that acts as a co-factor and activator for different MTases involved in rRNA, tRNA and protein methylation. Using a SILAC screen, we pulled down seven methyltransferases-N6AMT1, WBSCR22, METTL5, ALKBH8, THUMPD2, THUMPD3 and TRMT11-as interaction partners of TRMT112. We showed that TRMT112 stabilises all seven MTases in cells. TRMT112 and MTases exhibit a strong mutual feedback loop when expressed together in cells. TRMT112 interacts with its partners in a similar way; however, single amino acid mutations on the surface of TRMT112 reveal several differences as well. In summary, mammalian TRMT112 can be considered as a central "hub" protein that regulates the activity of at least seven methyltransferases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Reet Kurg
- Correspondence: ; Tel.: +372-737-5040
| |
Collapse
|
21
|
Witecka A, Kwiatkowski S, Ishikawa T, Drozak J. The Structure, Activity, and Function of the SETD3 Protein Histidine Methyltransferase. Life (Basel) 2021; 11:1040. [PMID: 34685411 PMCID: PMC8537074 DOI: 10.3390/life11101040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
SETD3 has been recently identified as a long sought, actin specific histidine methyltransferase that catalyzes the Nτ-methylation reaction of histidine 73 (H73) residue in human actin or its equivalent in other metazoans. Its homologs are widespread among multicellular eukaryotes and expressed in most mammalian tissues. SETD3 consists of a catalytic SET domain responsible for transferring the methyl group from S-adenosyl-L-methionine (AdoMet) to a protein substrate and a RuBisCO LSMT domain that recognizes and binds the methyl-accepting protein(s). The enzyme was initially identified as a methyltransferase that catalyzes the modification of histone H3 at K4 and K36 residues, but later studies revealed that the only bona fide substrate of SETD3 is H73, in the actin protein. The methylation of actin at H73 contributes to maintaining cytoskeleton integrity, which remains the only well characterized biological effect of SETD3. However, the discovery of numerous novel methyltransferase interactors suggests that SETD3 may regulate various biological processes, including cell cycle and apoptosis, carcinogenesis, response to hypoxic conditions, and enterovirus pathogenesis. This review summarizes the current advances in research on the SETD3 protein, its biological importance, and role in various diseases.
Collapse
Affiliation(s)
- Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| |
Collapse
|
22
|
Liang Z, Kidwell RL, Deng H, Xie Q. Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer. Cancer Biol Med 2021; 17:9-19. [PMID: 32296573 PMCID: PMC7142843 DOI: 10.20892/j.issn.2095-3941.2019.0347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
The biological roles of N6 methylation of nucleic acids have been extensively studied. Adenine methylation of RNA is the most prevalent RNA modification and has widespread effects on RNA splicing, translation, localization, and stability. Aberrant dynamic regulation of RNA N6-methyladenosine (m6A) has been reported in numerous human diseases, including several cancers. In recent years, eukaryotic DNA N6-methyladenosine (6mA) has also been reported and implicated in cancer progression and tumorigenesis. In this review, we summarize the contributions of N6-methyladenosine modification to cancer biology and pathogenesis in the context of both RNA and DNA. We also highlight the clinical relevance of targeting these modifications as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Zhixian Liang
- School of Life Sciences, Westlake University, Hangzhou 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037, USA.,University of California San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Haijing Deng
- School of Life Sciences, Westlake University, Hangzhou 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qi Xie
- School of Life Sciences, Westlake University, Hangzhou 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
23
|
Chen D, Meng Y, Yu D, Noinaj N, Cheng X, Huang R. Chemoproteomic Study Uncovers HemK2/KMT9 As a New Target for NTMT1 Bisubstrate Inhibitors. ACS Chem Biol 2021; 16:1234-1242. [PMID: 34192867 DOI: 10.1021/acschembio.1c00279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Understanding the selectivity of methyltransferase inhibitors is important to dissecting the functions of each methyltransferase target. From this perspective, we report a chemoproteomic study to profile the selectivity of a potent protein N-terminal methyltransferase 1 (NTMT1) bisubstrate inhibitor NAH-C3-GPKK (Ki, app = 7 ± 1 nM) in endogenous proteomes. First, we describe the rational design, synthesis, and biochemical characterization of a new chemical probe 6, a biotinylated analogue of NAH-C3-GPKK. Next, we systematically analyze protein networks that may selectively interact with the biotinylated probe 6 in concert with the competitor NAH-C3-GPKK. Besides NTMT1, the designated NTMT1 bisubstrate inhibitor NAH-C3-GPKK was found to also potently inhibit a methyltransferase complex HemK2-Trm112 (also known as KMT9-Trm112), highlighting the importance of systematic selectivity profiling. Furthermore, this is the first potent inhibitor for HemK2/KMT9 reported until now. Thus, our studies lay the foundation for future efforts to develop selective inhibitors for either methyltransferase.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Cheng M, Shu X, Cao J, Gao M, Xiang S, Wang F, Wang Y, Liu J. A Mutation-Based Method for Pinpointing a DNA N 6 -Methyladenine Methyltransferase Modification Site at Single Base Resolution. Chembiochem 2021; 22:1936-1939. [PMID: 33779011 DOI: 10.1002/cbic.202100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Indexed: 01/01/2023]
Abstract
DNA N6 -methyladenine (6mA) has recently received notable attention due to an increased finding of its functional roles in higher eukaryotes. Here we report an enzyme-assisted chemical labeling method to pinpoint the DNA 6mA methyltransferase (MTase) substrate modification site at single base resolution. A designed allyl-substituted MTase cofactor was applied in the catalytic transfer reaction, and the allyl group was installed to the N6 -position of adenine within a specific DNA sequence to form N6 -allyladenine (6aA). The iodination of 6aA allyl group induced the formation of 1, N6 -cyclized adenine which caused mutations during DNA replication by a polymerase. Thus the modification site could be precisely detected by a mutation signal. We synthesized 6aA deoxynucleoside and deoxynucleotide model compounds and a 6aA-containing DNA probe, and screened nine DNA polymerases to define an optimal system capable of detecting the substrate modification site of a DNA 6mA MTase at single-base resolution.
Collapse
Affiliation(s)
- Mohan Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Siying Xiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Fengqin Wang
- College of Animal Sciences, Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yizhen Wang
- College of Animal Sciences, Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| |
Collapse
|
25
|
Structural insight into HEMK2-TRMT112-mediated glutamine methylation. Biochem J 2021; 477:3833-3838. [PMID: 32969463 DOI: 10.1042/bcj20200594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Post-translational modifications play important roles in mediating protein functions in a wide variety of cellular events in vivo. HEMK2-TRMT112 heterodimer has been reported to be responsible for both histone lysine methylation and eukaryotic release factor 1 (eRF1) glutamine methylation. However, how HEMK2-TRMT112 complex recognizes and catalyzes eRF1 glutamine methylation is largely unknown. Here, we present two structures of HEMK2-TRMT112, with one bound to SAM and the other bound with SAH and methylglutamine (Qme). Structural analyses of the post-catalytic complex, complemented by mass spectrometry experiments, indicate that the HEMK2 utilizes a specific pocket to accommodate the substrate glutamine and catalyzes the subsequent methylation. Therefore, our work not only throws light on the protein glutamine methylation mechanism, but also reveals the dual activity of HEMK2 by catalyzing the methylation of both Lys and Gln residues.
Collapse
|
26
|
Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 2021; 20:265-286. [PMID: 33469207 DOI: 10.1038/s41573-020-00108-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Protein lysine methylation is a crucial post-translational modification that regulates the functions of both histone and non-histone proteins. Deregulation of the enzymes or 'writers' of protein lysine methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, including cancer, mental health disorders and developmental disorders. Over the past decade, significant advances have been made in developing drugs to target KMTs that are involved in histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate protein synthesis and other fundamental biological processes are emerging as promising new targets for drug development to treat diverse diseases.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biology, Stanford University, Stanford, CA, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Enzymatic characterization of three human RNA adenosine methyltransferases reveals diverse substrate affinities and reaction optima. J Biol Chem 2021; 296:100270. [PMID: 33428944 PMCID: PMC7948815 DOI: 10.1016/j.jbc.2021.100270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
RNA methylations of varied RNA species (mRNA, tRNA, rRNA, non-coding RNA) generate a range of modified nucleotides, including N6-methyladenosine. Here we study the enzymology of three human RNA methyltransferases that methylate the adenosine amino group in diverse contexts, when it is: the first transcribed nucleotide after the mRNA cap (PCIF1), at position 1832 of 18S rRNA (MettL5-Trm112 complex), and within a hairpin in the 3′ UTR of the S-adenosyl-l-methionine synthetase (MettL16). Among these three enzymes, the catalytic efficiency ranges from PCIF1, with the fastest turnover rate of >230 h−1 μM−1 on mRNA cap analog, down to MettL16, which has the lowest rate of ∼3 h−1 μM−1 acting on an RNA hairpin. Both PCIF1 and MettL5 have a binding affinity (Km) of ∼1 μM or less for both substrates of SAM and RNA, whereas MettL16 has significantly lower binding affinities for both (Km >0.4 mM for SAM and ∼10 μM for RNA). The three enzymes are active over a wide pH range (∼5.4–9.4) and have different preferences for ionic strength. Sodium chloride at 200 mM markedly diminished methylation activity of MettL5-Trm112 complex, whereas MettL16 had higher activity in the range of 200 to 500 mM NaCl. Zinc ion inhibited activities of all three enzymes. Together, these results illustrate the diversity of RNA adenosine methyltransferases in their enzymatic mechanisms and substrate specificities and underline the need for assay optimization in their study.
Collapse
|
28
|
Bochtler M, Fernandes H. DNA adenine methylation in eukaryotes: Enzymatic mark or a form of DNA damage? Bioessays 2020; 43:e2000243. [PMID: 33244833 DOI: 10.1002/bies.202000243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
6-methyladenine (6mA) is fairly abundant in nuclear DNA of basal fungi, ciliates and green algae. In these organisms, 6mA is maintained near transcription start sites in ApT context by a parental-strand instruction dependent maintenance methyltransferase and is positively associated with transcription. In animals and plants, 6mA levels are high only in organellar DNA. The 6mA levels in nuclear DNA are very low. They are attributable to nucleotide salvage and the activity of otherwise mitochondrial METTL4, and may be considered as a price that cells pay for adenine methylation in RNA and/or organellar DNA. Cells minimize this price by sanitizing dNTP pools to limit 6mA incorporation, and by converting 6mA that has been incorporated into DNA back to adenine. Hence, 6mA in nuclear DNA should be described as an epigenetic mark only in basal fungi, ciliates and green algae, but not in animals and plants.
Collapse
Affiliation(s)
- Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Humberto Fernandes
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Woodcock CB, Horton JR, Zhang X, Blumenthal RM, Cheng X. Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Res 2020; 48:10034-10044. [PMID: 32453412 PMCID: PMC7544214 DOI: 10.1093/nar/gkaa446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
S-adenosyl-l-methionine dependent methyltransferases catalyze methyl transfers onto a wide variety of target molecules, including DNA and RNA. We discuss a family of methyltransferases, those that act on the amino groups of adenine or cytosine in DNA, have conserved motifs in a particular order in their amino acid sequence, and are referred to as class beta MTases. Members of this class include M.EcoGII and M.EcoP15I from Escherichia coli, Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM), the MTA1-MTA9 complex from the ciliate Oxytricha, and the mammalian MettL3-MettL14 complex. These methyltransferases all generate N6-methyladenine in DNA, with some members having activity on single-stranded DNA as well as RNA. The beta class of methyltransferases has a unique multimeric feature, forming either homo- or hetero-dimers, allowing the enzyme to use division of labor between two subunits in terms of substrate recognition and methylation. We suggest that M.EcoGII may represent an ancestral form of these enzymes, as its activity is independent of the nucleic acid type (RNA or DNA), its strandedness (single or double), and its sequence (aside from the target adenine).
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Zhang X, Blumenthal RM, Cheng X. A Role for N6-Methyladenine in DNA Damage Repair. Trends Biochem Sci 2020; 46:175-183. [PMID: 33077363 DOI: 10.1016/j.tibs.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
The leading cause of mutation due to oxidative damage is 8-oxo-2'-deoxyguanosine (8-oxoG) mispairing with adenine (Ade), which can occur in two ways. First, guanine of a G:C DNA base pair can be oxidized. If not repaired in time, DNA polymerases can mispair Ade with 8-oxoG in the template. This 8-oxoG:A can be repaired by enzymes that remove Ade opposite to template 8-oxoG, or 8-oxoG opposite to Cyt. Second, free 8-oxo-dGTP can be misincorporated by DNA polymerases into DNA opposite template Ade. However, there is no known repair activity that removes 8-oxoG opposite to template Ade. We suggest that a major role of N6-methyladenine in mammalian DNA is minimizing incorporation of 8-oxoG opposite to Ade by DNA polymerases following adduct formation.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Woodcock CB, Horton JR, Zhou J, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA. Nucleic Acids Res 2020; 48:10329-10341. [PMID: 32663306 PMCID: PMC7544203 DOI: 10.1093/nar/gkaa604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
The recently characterized mammalian writer (methyltransferase) and eraser (demethylase) of the DNA N6-methyladenine (N6mA) methyl mark act on single-stranded (ss) and transiently-unpaired DNA. As YTH domain-containing proteins bind N6mA-containing RNA in mammalian cells, we investigated whether mammalian YTH domains are also methyl mark readers of N6mA DNA. Here, we show that the YTH domain of YTHDC1 (known to localize in the nucleus) binds ssDNA containing N6mA, with a 10 nM dissociation constant. This binding is stronger by a factor of 5 than in an RNA context, tested under the same conditions. However, the YTH domains of YTHDF2 and YTHDF1 (predominantly cytoplasmic) exhibited the opposite effect with ∼1.5-2× stronger binding to ssRNA containing N6mA than to the corresponding DNA. We determined two structures of the YTH domain of YTHDC1 in complex with N6mA-containing ssDNA, which illustrated that YTHDC1 binds the methylated adenine in a single-stranded region flanked by duplexed DNA. We discuss the hypothesis that the writer-reader-eraser of N6mA-containining ssDNA is associated with maintaining genome stability. Structural comparison of YTH and SRA domains (the latter a DNA 5-methylcytosine reader) revealed them to be diverse members of a larger family of DNA/RNA modification readers, apparently having originated from bacterial modification-dependent restriction enzymes.
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Dai S, Horton JR, Wilkinson AW, Gozani O, Zhang X, Cheng X. An engineered variant of SETD3 methyltransferase alters target specificity from histidine to lysine methylation. J Biol Chem 2020; 295:2582-2589. [PMID: 31911441 DOI: 10.1074/jbc.ra119.012319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Most characterized SET domain (SETD) proteins are protein lysine methyltransferases, but SETD3 was recently demonstrated to be a protein (i.e. actin) histidine-N3 methyltransferase. Human SETD3 shares a high structural homology with two known protein lysine methyltransferases-human SETD6 and the plant LSMT-but differs in the residues constituting the active site. In the SETD3 active site, Asn255 engages in a unique hydrogen-bonding interaction with the target histidine of actin that likely contributes to its >1300-fold greater catalytic efficiency (k cat/Km ) on histidine than on lysine. Here, we engineered active-site variants to switch the SETD3 target specificity from histidine to lysine. Substitution of Asn255 with phenylalanine (N255F), together with substitution of Trp273 with alanine (W273A), generated an active site mimicking that of known lysine methyltransferases. The doubly substituted SETD3 variant exhibited a 13-fold preference for lysine over histidine. We show, by means of X-ray crystallography, that the two target nitrogen atoms-the N3 atom of histidine and the terminal ϵ-amino nitrogen of lysine-occupy the same position and point toward and are within a short distance of the incoming methyl group of SAM for a direct methyl transfer during catalysis. In contrast, SETD3 and its Asn255 substituted derivatives did not methylate glutamine (another potentially methylated amino acid). However, the glutamine-containing peptide competed with the substrate peptide, and glutamine bound in the active site, but too far away from SAM to be methylated. Our results provide insight into the structural parameters defining the target amino acid specificity of SET enzymes.
Collapse
Affiliation(s)
- Shaobo Dai
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, California 94305
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California 94305
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
33
|
Yang J, Zhang X, Blumenthal RM, Cheng X. Detection of DNA Modifications by Sequence-Specific Transcription Factors. J Mol Biol 2019:S0022-2836(19)30568-6. [PMID: 31626807 DOI: 10.1016/j.jmb.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
The establishment, detection, and alteration or elimination of epigenetic DNA modifications are essential to controlling gene expression ranging from bacteria to mammals. The DNA methylations occurring at cytosine and adenine are carried out by SAM-dependent methyltransferases. Successive oxidations of 5-methylcytosine (5mC) by Tet dioxygenases generate 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxyl (5caC) derivatives; thus, DNA elements with multiple methylation sites can have a wide range of modification states. In contrast, oxidation of N6-methyladenine by homologs of Escherichia coli AlkB removes the methyl group directly. Both Tet and AlkB enzymes are 2-oxoglutarate- and Fe(II)-dependent dioxygenases. DNA-binding proteins decode the modification status of specific genomic regions. This article centers on two families of sequence-specific transcription factors: bZIP (basic leucine-zipper) proteins, exemplified by the AP-1 and CEBPβ recognition of 5mC; and bHLH (basic helix-loop-helix) proteins, exemplified by MAX and TCF4 recognition of 5caC. We discuss the impact of template strand DNA modification on the activities of DNA and RNA polymerases, and the varied tendencies of modifications to alter base pairing and their interactions with DNA repair enzymes.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|