1
|
Durojaye OA, Yang F, Gao X, Aikhionbare F, Zhang L, Liu X, Yao X. Probing centromere-kinetochore core complex CENP-L/M assembly using cenpemlin. J Mol Cell Biol 2025; 16:mjae035. [PMID: 39243121 PMCID: PMC12046508 DOI: 10.1093/jmcb/mjae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Indexed: 09/09/2024] Open
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Felix Aikhionbare
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liangyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
2
|
Liu S, Xiong F, Dou Z, Chu L, Yao Y, Wang M, Yao X, Liu X, Wang Z. Phosphorylation of Lamin A/C regulates the structural integrity of the nuclear envelope. J Biol Chem 2025; 301:108033. [PMID: 39615679 PMCID: PMC11731451 DOI: 10.1016/j.jbc.2024.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
Dynamic disassembly and reconstruction of the nuclear lamina during entry and exit of mitosis, respectively, are pivotal steps in the proliferation of higher eukaryotic cells. Although numerous post-translational modifications of lamin proteins have been identified, key factors driving the nuclear lamina dynamics remain elusive. Here we identified CDK1-elicited phosphorylation sites on endogenous Lamin A/C and characterized their functions in regulation of the nuclear lamina. Specifically, mass spectrometry revealed CDK1-mediated phosphorylation of Lamin A/C at the N-terminal Thr19/Ser22 and the C-terminal Ser390/Ser392 during mitosis. Importantly, the phospho-mimicking 4D mutant T19D/S22D/S390D/S392D completely disrupted Lamin A filamentous structure in interphase cells. Conversely, the non-phosphorylatable mutant T19A/S22A and especially the 4A mutant T19A/S22A/S390A/S392A protected Lamin A from depolymerization during mitosis. These results suggest that phosphorylation and dephosphorylation of both N- and C-terminal sites regulate the nuclear lamina dynamics. Engineering the non-phosphorylatable mutant T19A/S22A into the endogenous LMNA gene resulted in nuclear abnormalities and micronucleus formation during telophase. Perturbation of the Lamin A phosphorylation is shown to prevent proper nuclear envelope dynamics and impair nuclear integrity. These findings reveal a previously undefined link between the CDK1-elicited Lamin A phosphorylation dynamics, nuclear envelope plasticity, and genomic stability during the cell cycle.
Collapse
Affiliation(s)
- Shuaiyu Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Lingluo Chu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Yihan Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Cambridge University Department of Chemistry, Cambridge, UK
| | - Ming Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China.
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China.
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
4
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
5
|
Zhang T, Liu S, Durojaye O, Xiong F, Fang Z, Ullah T, Fu C, Sun B, Jiang H, Xia P, Wang Z, Yao X, Liu X. Dynamic phosphorylation of FOXA1 by Aurora B guides post-mitotic gene reactivation. Cell Rep 2024; 43:114739. [PMID: 39276350 DOI: 10.1016/j.celrep.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
FOXA1 serves as a crucial pioneer transcription factor during developmental processes and plays a pivotal role as a mitotic bookmarking factor to perpetuate gene expression profiles and maintain cellular identity. During mitosis, the majority of FOXA1 dissociates from specific DNA binding sites and redistributes to non-specific binding sites; however, the regulatory mechanisms governing molecular dynamics and activity of FOXA1 remain elusive. Here, we show that mitotic kinase Aurora B specifies the different DNA binding modes of FOXA1 and guides FOXA1 biomolecular condensation in mitosis. Mechanistically, Aurora B kinase phosphorylates FOXA1 at Serine 221 (S221) to liberate the specific, but not the non-specific, DNA binding. Interestingly, the phosphorylation of S221 attenuates the FOXA1 condensation that requires specific DNA binding. Importantly, perturbation of the dynamic phosphorylation impairs accurate gene reactivation and cell proliferation, suggesting that reversible mitotic protein phosphorylation emerges as a fundamental mechanism for the spatiotemporal control of mitotic bookmarking.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Olanrewaju Durojaye
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhiyou Fang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Tahir Ullah
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Hao Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Xia
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Institute of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
6
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
7
|
Bray SM, Hämälä T, Zhou M, Busoms S, Fischer S, Desjardins SD, Mandáková T, Moore C, Mathers TC, Cowan L, Monnahan P, Koch J, Wolf EM, Lysak MA, Kolar F, Higgins JD, Koch MA, Yant L. Kinetochore and ionomic adaptation to whole-genome duplication in Cochlearia shows evolutionary convergence in three autopolyploids. Cell Rep 2024; 43:114576. [PMID: 39116207 DOI: 10.1016/j.celrep.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
Collapse
Affiliation(s)
- Sian M Bray
- The University of Nottingham, Nottingham NG7 2RD, UK; The John Innes Centre, Norwich NR4 7UH, UK
| | - Tuomas Hämälä
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Min Zhou
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Silvia Busoms
- The John Innes Centre, Norwich NR4 7UH, UK; Department of Plant Physiology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sina Fischer
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart D Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Chris Moore
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura Cowan
- The University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | - Eva M Wolf
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Kolar
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic; The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Levi Yant
- The University of Nottingham, Nottingham NG7 2RD, UK; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic.
| |
Collapse
|
8
|
Joshi JN, Changela N, Mahal L, Jang J, Defosse T, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. Mol Biol Cell 2024; 35:ar105. [PMID: 38865189 PMCID: PMC11321039 DOI: 10.1091/mbc.e24-02-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.
Collapse
Affiliation(s)
- Jay N. Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lia Mahal
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Janet Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Tyler Defosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Joanatta G. Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kim McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
9
|
Yang F, Ding M, Song X, Chen F, Yang T, Wang C, Hu C, Hu Q, Yao Y, Du S, Yao PY, Xia P, Adams Jr G, Fu C, Xiang S, Liu D, Wang Z, Yuan K, Liu X. Organization of microtubule plus-end dynamics by phase separation in mitosis. J Mol Cell Biol 2024; 16:mjae006. [PMID: 38323478 PMCID: PMC11337005 DOI: 10.1093/jmcb/mjae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024] Open
Abstract
In eukaryotes, microtubule polymers are essential for cellular plasticity and fate decisions. End-binding (EB) proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis. Here, we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid-liquid phase separation to compartmentalize the kinetochore-microtubule plus-end machinery, ensuring accurate kinetochore-microtubule interactions during chromosome segregation in mitosis. Perturbation of EB1-TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos. Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis, and persistent acetylation at Lys220 attenuates phase separation of the EB1-mediated complex, dissolves droplets in vitro, and harnesses accurate chromosome segregation. Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha 410083, China
| | - Tongtong Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Chunyue Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Chengcheng Hu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Qing Hu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Yihan Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Shihao Du
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Phil Y Yao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Peng Xia
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Gregory Adams Jr
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shengqi Xiang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha 410083, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| |
Collapse
|
10
|
Bellah SF, Xiong F, Dou Z, Yang F, Liu X, Yao X, Gao X, Zhang L. PLK1 phosphorylation of ZW10 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 16:mjae008. [PMID: 38402459 PMCID: PMC11328731 DOI: 10.1093/jmcb/mjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
Stable transmission of genetic information during cell division requires faithful chromosome segregation. Mounting evidence has demonstrated that polo-like kinase 1 (PLK1) dynamics at kinetochores control correct kinetochore-microtubule attachments and subsequent silencing of the spindle assembly checkpoint. However, the mechanisms underlying PLK1-mediated silencing of the spindle checkpoint remain elusive. Here, we identified a regulatory mechanism by which PLK1-elicited zeste white 10 (ZW10) phosphorylation regulates spindle checkpoint silencing in mitosis. ZW10 is a cognate substrate of PLK1, and the phosphorylation of ZW10 at Ser12 enables dynamic ZW10-Zwint1 interactions. Inhibition of ZW10 phosphorylation resulted in misaligned chromosomes, while persistent expression of phospho-mimicking ZW10 mutant caused premature anaphase, in which sister chromatids entangled as cells entered anaphase. These findings reveal the previously uncharacterized PLK1-ZW10 interaction through which dynamic phosphorylation of ZW10 fine-tunes accurate chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Liangyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
11
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
12
|
Liang X, Gong M, Wang Z, Wang J, Guo W, Cai A, Yang Z, Liu X, Xu F, Xiong W, Fu C, Wang X. LncRNA TubAR complexes with TUBB4A and TUBA1A to promote microtubule assembly and maintain myelination. Cell Discov 2024; 10:54. [PMID: 38769343 PMCID: PMC11106304 DOI: 10.1038/s41421-024-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/13/2024] [Indexed: 05/22/2024] Open
Abstract
A long-standing hypothesis proposes that certain RNA(s) must exhibit structural roles in microtubule assembly. Here, we identify a long noncoding RNA (TubAR) that is highly expressed in cerebellum and forms RNA-protein complex with TUBB4A and TUBA1A, two tubulins clinically linked to cerebellar and myelination defects. TubAR knockdown in mouse cerebellum causes loss of oligodendrocytes and Purkinje cells, demyelination, and decreased locomotor activity. Biochemically, we establish the roles of TubAR in promoting TUBB4A-TUBA1A heterodimer formation and microtubule assembly. Intriguingly, different from the hypomyelination-causing mutations, the non-hypomyelination-causing mutation TUBB4A-R2G confers gain-of-function for an RNA-independent interaction with TUBA1A. Experimental use of R2G/A mutations restores TUBB4A-TUBA1A heterodimer formation, and rescues the neuronal cell death phenotype caused by TubAR knockdown. Together, we uncover TubAR as the long-elusive structural RNA for microtubule assembly and demonstrate how TubAR mediates microtubule assembly specifically from αβ-tubulin heterodimers, which is crucial for maintenance of cerebellar myelination and activity.
Collapse
Affiliation(s)
- Xiaolin Liang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China
| | - Meng Gong
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China
| | - Jie Wang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Weiwei Guo
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Aoling Cai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wei Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China.
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, School of Life Sciences/Division of Biomedical Sciences, Hefei, Anhui, China.
| |
Collapse
|
13
|
Wang J, Dai W, Zhang M. E2F1 induced neuroblastoma cell migration and invasion via activation of CENPE/FOXM1 signaling pathway. Int J Neurosci 2024; 134:530-542. [PMID: 36168932 DOI: 10.1080/00207454.2022.2126772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
Background: Neuroblastoma (NB) is a common malignancy occurring in infants and young children. Centrosome-associated protein E (CENPE) is a kinetochore-related motor protein highly expressed in NB, with the mechanism largely unknown. This study is committed to investigating the role and mechanism of CENPE in NB.Method: Short hairpin RNAs targeting CENPE and E2F transcription factor 1 (shCENPE and shE2F1) and CENPE overexpression plasmid were transfected into IMR-32 and SK-N-SH cells. The mRNA expressions of CENPE, N-Cadherin, Vimentin, and proliferating cell nuclear antigen (PCNA) in NB cells were detected by qRT-PCR. The viability, migration, and invasion of cells were tested through cell function experiments. Western blot was applied to detect the protein levels of N-Cadherin, Vimentin, PCNA, CENPE and Forkhead box M1 (FOXM1). The relationship between CENPE and E2F1 was verified by dual-luciferase reporter assay, while the interaction between FOXM1 and CENPE in NB cells was analyzed by rescue experiments.Results: CENPE expression was upregulated in NB cells from metastatic sites. Silencing of CENPE suppressed the NB cell viability, migration, and invasion; and decreased N-Cadherin, Vimentin and PCNA expressions, while overexpressed CENPE did oppositely. E2F1 positively targeted CENPE and CENPE partly reversed the effects of shE2F1 on repressing NB cell viability, migration, invasion and the activation of CENPE/FOXM1 signaling pathway. In addition, silenced FOXM1 partly offset the effects of CENPE on promoting NB cell migration and invasion.Conclusion: E2F1 induces NB cell migration and invasion via activating CENPE/FOXM1 pathway.
Collapse
Affiliation(s)
- Jing Wang
- SICU, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wang Dai
- SICU, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhang
- SICU, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Lakshmi RB, Nayak P, Raz L, Sarkar A, Saroha A, Kumari P, Nair VM, Kombarakkaran DP, Sajana S, M G S, Agasti SS, Paul R, Ben-David U, Manna TK. CKAP5 stabilizes CENP-E at kinetochores by regulating microtubule-chromosome attachments. EMBO Rep 2024; 25:1909-1935. [PMID: 38424231 PMCID: PMC11014917 DOI: 10.1038/s44319-024-00106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.
Collapse
Affiliation(s)
- R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Pinaki Nayak
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Linoy Raz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Apurba Sarkar
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Delvin P Kombarakkaran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - S Sajana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sanusha M G
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Raja Paul
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
15
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
16
|
Joshi JN, Changela N, Mahal L, Defosse T, Jang J, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585003. [PMID: 38559067 PMCID: PMC10980020 DOI: 10.1101/2024.03.14.585003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and co-orientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that SPC105R's C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for two activities that are critical for accurate chromosome segregation in meiosis I, lateral microtubule attachments and bi-orientation of homologs.
Collapse
|
17
|
Jian Y, Jiang Y, Nie L, Dou Z, Liu X, Fu C. Phosphorylation of Bub1 by Mph1 promotes Bub1 signaling at the kinetochore to ensure accurate chromosome segregation. J Biol Chem 2024; 300:105559. [PMID: 38097187 PMCID: PMC10805674 DOI: 10.1016/j.jbc.2023.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/02/2024] Open
Abstract
Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
18
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
19
|
Liu R, Dou Z, Tian T, Gao X, Chen L, Yuan X, Wang C, Hao J, Gui P, Mullen M, Aikhionbare F, Niu L, Bi G, Zou P, Zhang X, Fu C, Yao X, Zang J, Liu X. Dynamic phosphorylation of CENP-N by CDK1 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2023; 15:mjad041. [PMID: 37365681 PMCID: PMC10799313 DOI: 10.1093/jmcb/mjad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/09/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023] Open
Abstract
In mitosis, accurate chromosome segregation depends on the kinetochore, a supermolecular machinery that couples dynamic spindle microtubules to centromeric chromatin. However, the structure-activity relationship of the constitutive centromere-associated network (CCAN) during mitosis remains uncharacterized. Building on our recent cryo-electron microscopic analyses of human CCAN structure, we investigated how dynamic phosphorylation of human CENP-N regulates accurate chromosome segregation. Our mass spectrometric analyses revealed mitotic phosphorylation of CENP-N by CDK1, which modulates the CENP-L-CENP-N interaction for accurate chromosome segregation and CCAN organization. Perturbation of CENP-N phosphorylation is shown to prevent proper chromosome alignment and activate the spindle assembly checkpoint. These analyses provide mechanistic insight into a previously undefined link between the centromere-kinetochore network and accurate chromosome segregation.
Collapse
Affiliation(s)
- Ran Liu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Tian Tian
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Lili Chen
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Jiahe Hao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Felix Aikhionbare
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liwen Niu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Guoqiang Bi
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuan Zhang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
20
|
TANG QINGLING, ATIQ WARDA, MAHNOOR SHAISTA, ABDEL-MAKSOUD MOSTAFAA, AUFY MOHAMMED, YAZ HAMID, ZHU JIANYU. Comprehensively analyzing the genetic alterations, and identifying key genes in ovarian cancer. Oncol Res 2023; 31:141-156. [PMID: 37304238 PMCID: PMC10207953 DOI: 10.32604/or.2023.028548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/02/2023] [Indexed: 06/13/2023] Open
Abstract
Though significant improvements have been made in the treatment methods for ovarian cancer (OC), the prognosis for OC patients is still poor. Exploring hub genes associated with the development of OC and utilizing them as appropriate potential biomarkers or therapeutic targets is highly valuable. In this study, the differentially expressed genes (DEGs) were identified from an independent GSE69428 Gene Expression Omnibus (GEO) dataset between OC and control samples. The DEGs were processed to construct the protein-protein interaction (PPI) network using STRING. Later, hub genes were identified through Cytohubba analysis of the Cytoscape. Expression and survival profiling of the hub genes were validated using GEPIA, OncoDB, and GENT2. For exploring promoter methylation levels and genetic alterations in hub genes, MEXPRESS and cBioPortal were utilized, respectively. Moreover, DAVID, HPA, TIMER, CancerSEA, ENCORI, DrugBank, and GSCAlite were used for gene enrichment analysis, subcellular localization analysis, immune cell infiltration analysis, exploring correlations between hub genes and different diverse states, lncRNA-miRNA-mRNA co-regulatory network analysis, predicting hub gene-associated drugs, and conducting drug sensitivity analysis, respectively. In total, 8947 DEGs were found between OC and normal samples in GSE69428. After STRING and Cytohubba analysis, 4 hub genes including TTK (TTK Protein Kinase), (BUB1 mitotic checkpoint serine/threonine kinase B) BUB1B, (Nucleolar and spindle-associated protein 1) NUSAP1, and (ZW10 interacting kinetochore protein) ZWINT were selected as the hub genes. Further, it was validated that these 4 hub genes were significantly up-regulated in OC samples compared to normal controls, but overexpression of these genes was not associated with overall survival (OS). However, genetic alterations in those genes were found to be linked with OS and disease-free (DFS) survival. Moreover, this study also revealed some novel links between TTK, BUB1B, NUSAP1, and ZWINT overexpression and promoter methylation status, immune cell infiltration, miRNAs, gene enrichment terms, and various chemotherapeutic drugs. Four hub genes, including TTK, BUB1B, NUSAP1, and ZWINT, were revealed as tumor-promotive factors in OC, having the potential to be utilized as novel biomarkers and therapeutic targets for OC management.
Collapse
Affiliation(s)
- QINGLING TANG
- Department of Gynecology and Obstetrics, Shanghai Songjiang District Jiuting Hospital, Shanghai, 20000, China
| | - WARDA ATIQ
- Department of Medicine, Fatima Jinnah Medical University, Lahore, 42000, Pakistan
| | - SHAISTA MAHNOOR
- Department of Medicine, Fatima Jinnah Medical University, Lahore, 42000, Pakistan
| | - MOSTAFA A. ABDEL-MAKSOUD
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - MOHAMMED AUFY
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, 1010, Austria
| | - HAMID YAZ
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - JIANYU ZHU
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
21
|
Song X, Yang F, Yang T, Wang Y, Ding M, Li L, Xu P, Liu S, Dai M, Chi C, Xiang S, Xu C, Li D, Wang Z, Li L, Hill DL, Fu C, Yuan K, Li P, Zang J, Hou Z, Jiang K, Shi Y, Liu X, Yao X. Phase separation of EB1 guides microtubule plus-end dynamics. Nat Cell Biol 2023; 25:79-91. [PMID: 36536176 DOI: 10.1038/s41556-022-01033-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
In eukaryotes, end-binding (EB) proteins serve as a hub for orchestrating microtubule dynamics and are essential for cellular dynamics and organelle movements. EB proteins modulate structural transitions at growing microtubule ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. However, the molecular mechanisms and physiochemical properties of the EB1 interaction network remain elusive. Here we show that EB1 formed molecular condensates through liquid-liquid phase separation (LLPS) to constitute the microtubule plus-end machinery. EB1 LLPS is driven by multivalent interactions among different segments, which are modulated by charged residues in the linker region. Phase-separated EB1 provided a compartment for enriching tubulin dimers and other plus-end tracking proteins. Real-time imaging of chromosome segregation in HeLa cells expressing LLPS-deficient EB1 mutants revealed the importance of EB1 LLPS dynamics in mitotic chromosome movements. These findings demonstrate that EB1 forms a distinct physical and biochemical membraneless-organelle via multivalent interactions that guide microtubule dynamics.
Collapse
Affiliation(s)
- Xiaoyu Song
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tongtong Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Yong Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Linge Li
- Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Panpan Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Ming Dai
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Changbiao Chi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Dong Li
- Institute of Biophysics, Beijing, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Lin Li
- CAS Center of Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Donald L Hill
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University School of Life Sciences, Changsha, China
| | - Pilong Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianye Zang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Zhonghuai Hou
- Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Kai Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China. .,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.
| |
Collapse
|
22
|
Structural insights into human CCAN complex assembled onto DNA. Cell Discov 2022; 8:90. [PMID: 36085283 PMCID: PMC9463443 DOI: 10.1038/s41421-022-00439-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022] Open
Abstract
In mitosis, accurate chromosome segregation depends on kinetochores that connect centromeric chromatin to spindle microtubules. The centromeres of budding yeast, which are relatively simple, are connected to individual microtubules via a kinetochore constitutive centromere associated network (CCAN). However, the complex centromeres of human chromosomes comprise millions of DNA base pairs and attach to multiple microtubules. Here, by use of cryo-electron microscopy and functional analyses, we reveal the molecular basis of how human CCAN interacts with duplex DNA and facilitates accurate chromosome segregation. The overall structure relates to the cooperative interactions and interdependency of the constituent sub-complexes of the CCAN. The duplex DNA is topologically entrapped by human CCAN. Further, CENP-N does not bind to the RG-loop of CENP-A but to DNA in the CCAN complex. The DNA binding activity is essential for CENP-LN localization to centromere and chromosome segregation during mitosis. Thus, these analyses provide new insights into mechanisms of action underlying kinetochore assembly and function in mitosis.
Collapse
|
23
|
Gama Braga L, Garand C, Elowe S. Considerations for studying phosphorylation of the mitotic checkpoint pseudokinase BUBR1. Methods Enzymol 2022; 667:507-534. [PMID: 35525552 DOI: 10.1016/bs.mie.2022.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Budding uninhibited by benzimidazole 1-related protein 1 (BUBR1) is a mitotic checkpoint (better known as the spindle assembly checkpoint) protein that forms part of an inhibitory complex required to delay mitosis when errors occur in the attachment between chromosomes and the mitotic spindle. If these errors remain uncorrected, it could result in unequal distribution of genetic material to each of the nascent daughter cells, leading to potentially disastrous consequences at both the cellular and organismal level. In some higher eukaryotes including vertebrates, BUBR1 has a C-terminal kinase fold that is largely thought to be inactive, whereas in many species this domain has been lost through evolution and the truncated protein is known as mitotic arrest deficient 3 (MAD3). Here we present advice and practical considerations for the design of experiments, their analysis and interpretation to study the functions of the vertebrate BUBR1 during mitosis with emphasis on analysis implicating the pseudokinase domain.
Collapse
Affiliation(s)
- Luciano Gama Braga
- Biologie Cellulaire et Moléculaire, Faculté de Médicine, Université Laval, Québec, QC, Canada; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Reproduction, Santé de la Mère et de l'Enfant, Québec, QC, Canada; PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada; Département de Pédiatire, Faculté de Médicine, Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Reproduction, Santé de la Mère et de l'Enfant, Québec, QC, Canada; PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
| | - Sabine Elowe
- Biologie Cellulaire et Moléculaire, Faculté de Médicine, Université Laval, Québec, QC, Canada; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Reproduction, Santé de la Mère et de l'Enfant, Québec, QC, Canada; PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada; Département de Pédiatire, Faculté de Médicine, Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
24
|
Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nat Chem Biol 2021; 17:1314-1323. [PMID: 34608293 DOI: 10.1038/s41589-021-00875-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Spindle position control is essential for cell fate determination and organogenesis. Early studies indicate the essential role of the evolutionarily conserved Gαi/LGN/NuMA network in spindle positioning. However, the regulatory mechanisms that couple astral microtubules dynamics to the spindle orientation remain elusive. Here we delineated a new mitosis-specific crotonylation-regulated astral microtubule-EB1-NuMA interaction in mitosis. EB1 is a substrate of TIP60, and TIP60-dependent crotonylation of EB1 tunes accurate spindle positioning in mitosis. Mechanistically, TIP60 crotonylation of EB1 at Lys66 forms a dynamic link between accurate attachment of astral microtubules to the lateral cell cortex defined by NuMA-LGN and fine tune of spindle positioning. Real-time imaging of chromosome movements in HeLa cells expressing genetically encoded crotonylated EB1 revealed the importance of crotonylation dynamics for accurate control of spindle orientation during metaphase-anaphase transition. These findings delineate a general signaling cascade that integrates protein crotonylation with accurate spindle positioning for chromosome stability in mitosis.
Collapse
|
25
|
Edwards DM, Mitchell DK, Abdul-Sater Z, Chan KK, Sun Z, Sheth A, He Y, Jiang L, Yuan J, Sharma R, Czader M, Chin PJ, Liu Y, de Cárcer G, Nalepa G, Broxmeyer HE, Clapp DW, Sierra Potchanant EA. Mitotic Errors Promote Genomic Instability and Leukemia in a Novel Mouse Model of Fanconi Anemia. Front Oncol 2021; 11:752933. [PMID: 34804941 PMCID: PMC8602820 DOI: 10.3389/fonc.2021.752933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
Fanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis in vivo, the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood. To examine the role of mitotic dysregulation in FA pathway deficient malignancies, we genetically exacerbated the baseline mitotic defect in Fancc-/- mice by introducing heterozygosity of the key spindle assembly checkpoint regulator Mad2. Fancc-/-;Mad2+/- mice were viable, but died from acute myeloid leukemia (AML), thus recapitulating the high risk of myeloid malignancies in FA patients better than Fancc-/-mice. We utilized hematopoietic stem cell transplantation to propagate Fancc-/-; Mad2+/- AML in irradiated healthy mice to model FANCC-deficient AMLs arising in the non-FA population. Compared to cells from Fancc-/- mice, those from Fancc-/-;Mad2+/- mice demonstrated an increase in mitotic errors but equivalent DNA cross-linker hypersensitivity, indicating that the cancer phenotype of Fancc-/-;Mad2+/- mice results from error-prone cell division and not exacerbation of the DNA damage repair defect. We found that FANCC enhances targeting of endogenous MAD2 to prometaphase kinetochores, suggesting a mechanism for how FANCC-dependent regulation of the spindle assembly checkpoint prevents chromosome mis-segregation. Whole-exome sequencing revealed similarities between human FA-associated myelodysplastic syndrome (MDS)/AML and the AML that developed in Fancc-/-; Mad2+/- mice. Together, these data illuminate the role of mitotic dysregulation in FA-pathway deficient malignancies in vivo, show how FANCC adjusts the spindle assembly checkpoint rheostat by regulating MAD2 kinetochore targeting in cell cycle-dependent manner, and establish two new mouse models for preclinical studies of AML.
Collapse
Affiliation(s)
- Donna M Edwards
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Dana K Mitchell
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zahi Abdul-Sater
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ka-Kui Chan
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zejin Sun
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aditya Sheth
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying He
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Li Jiang
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jin Yuan
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richa Sharma
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN, United States
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pei-Ju Chin
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yie Liu
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Guillermo de Cárcer
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Grzegorz Nalepa
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN, United States
| | - Hal E Broxmeyer
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - D Wade Clapp
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN, United States
| | - Elizabeth A Sierra Potchanant
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
26
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
27
|
Zhang M, Yang F, Wang W, Wang X, Wang D, Dou Z, Song X, Liu X, Yao X. SKAP interacts with Aurora B to guide end-on capture of spindle microtubules via phase separation. J Mol Cell Biol 2021; 13:841-852. [PMID: 34554241 PMCID: PMC8800532 DOI: 10.1093/jmcb/mjab058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. Our recent studies show that mitotic motor CENP-E cooperates with SKAP and forms a link between kinetochore core MIS13 complex and spindle microtubule plus-ends to achieve accurate chromosome alignment in mitosis. However, it remains elusive how SKAP regulates kinetochore attachment from lateral association to end-on attachment during metaphase alignment. Here, we identify a novel interaction between Aurora B and SKAP that orchestrates accurate interaction between the kinetochore and dynamic spindle microtubules. Interestingly, SKAP spontaneously phase-separates in vitro via weak, multivalent interactions into droplets with fast internal dynamics. SKAP and Aurora B form heterogeneous coacervates in vitro, which recapitulate the dynamics and behavior of SKAP comets in vivo. Importantly, SKAP interaction with Aurora B via phase separation is essential for accurate chromosome segregation and alignment. Based on those findings, we reason that SKAP–Aurora B interaction via phase separation constitutes a dynamic pool of Aurora B activity during the lateral to end-on conversion of kinetochore–microtubule attachments to achieve faithful cell division.
Collapse
Affiliation(s)
- Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xiwei Wang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
28
|
Chen Q, Ke H, Luo X, Wang L, Wu Y, Tang S, Li J, Jin L, Zhang F, Qin Y, Chen X. Rare deleterious BUB1B variants induce premature ovarian insufficiency and early menopause. Hum Mol Genet 2021; 29:2698-2707. [PMID: 32716490 DOI: 10.1093/hmg/ddaa153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Losing of ovarian functions prior to natural menopause age causes female infertility and early menopause. Premature ovarian insufficiency (POI) is defined as the loss of ovarian activity before 40 years of age. Known genetic causes account for 25-30% of POI cases, demonstrating the high genetic heterogeneity of POI and the necessity for further genetic explorations. Here we conducted genetic analyses using whole-exome sequencing in a Chinese non-syndromic POI family with the affected mother and at least four affected daughters. Intriguingly, a rare missense variant of BUB1B c.273A>T (p.Gln91His) was shared by all the cases in this family. Furthermore, our replication study using targeted sequencing revealed a novel stop-gain variant of BUB1B c.1509T>A (p.Cys503*) in one of 200 sporadic POI cases. Both heterozygous BUB1B variants were evaluated to be deleterious by multiple in silico tools. BUB1B encodes BUBR1, a crucial spindle assembly checkpoint component involved in cell division. BUBR1 insufficiency may induce vulnerability to oxidative stress. Therefore, we generated a mouse model with a loss-of-function mutant of Bub1b, and also employed D-galactose-induced aging assays for functional investigations. Notably, Bub1b+/- female mice presented late-onset subfertility, and they were more sensitive to oxidative stress than wild-type female controls, mimicking the clinical phenotypes of POI cases affected by deleterious BUB1B variants. Our findings in human cases and mouse models consistently suggest, for the first time, that heterozygous deleterious variants of BUB1B are involved in late-onset POI and related disorders.
Collapse
Affiliation(s)
- Qing Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China.,The Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan 250021, China
| | - Xuezhen Luo
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China.,The Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan 250021, China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
29
|
Mullen M, Yang F, Cao J, Cao Y, Liu X, Lee GY, Li T, Yao W, Yang Z, Zhang J, Johnson K, Aikhionbare F, Chen Y, Ding X, Green HN, Liu X, Yao X. Syntelin inhibits triple-negative breast cancer cell proliferation and metastasis. J Mol Cell Biol 2021; 13:834-837. [PMID: 34450654 PMCID: PMC8782585 DOI: 10.1093/jmcb/mjab054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- McKay Mullen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China.,Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China.,Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Jun Cao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China
| | - Yang Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, Xi'an 710032, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China.,Morehouse School of Medicine, Atlanta, GA30310, USA
| | | | - Tao Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China.,Beijing University of Chinese Medicine, Beijing 100081, China
| | - William Yao
- Beijing University of Chinese Medicine, Beijing 100081, China
| | - Zhihong Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China
| | - Kela Johnson
- Morehouse School of Medicine, Atlanta, GA30310, USA
| | | | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Xi'an 710032, China
| | - Xia Ding
- Beijing University of Chinese Medicine, Beijing 100081, China
| | | | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China.,Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei 230027, China.,Morehouse School of Medicine, Atlanta, GA30310, USA
| |
Collapse
|
30
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Gui P, Sedzro DM, Yuan X, Liu S, Hei M, Tian W, Zohbi N, Wang F, Yao Y, Aikhionbare FO, Gao X, Wang D, Yao X, Dou Z. Mps1 dimerization and multisite interactions with Ndc80 complex enable responsive spindle assembly checkpoint signaling. J Mol Cell Biol 2021; 12:486-498. [PMID: 32219319 PMCID: PMC7493027 DOI: 10.1093/jmcb/mjaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules, which is monitored by the spindle assembly checkpoint (SAC) signaling. As an upstream factor of SAC, the precise and dynamic kinetochore localization of Mps1 kinase is critical for initiating and silencing SAC signaling. However, the underlying molecular mechanism remains elusive. Here, we demonstrated that the multisite interactions between Mps1 and Ndc80 complex (Ndc80C) govern Mps1 kinetochore targeting. Importantly, we identified direct interaction between Mps1 tetratricopeptide repeat domain and Ndc80C. We further identified that Mps1 C-terminal fragment, which contains the protein kinase domain and C-tail, enhances Mps1 kinetochore localization. Mechanistically, Mps1 C-terminal fragment mediates its dimerization. Perturbation of C-tail attenuates the kinetochore targeting and activity of Mps1, leading to aberrant mitosis due to compromised SAC function. Taken together, our study highlights the importance of Mps1 dimerization and multisite interactions with Ndc80C in enabling responsive SAC signaling.
Collapse
Affiliation(s)
- Ping Gui
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Divine M Sedzro
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Sikai Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mohan Hei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Najdat Zohbi
- Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Felix O Aikhionbare
- Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
32
|
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021; 13:239-258. [PMID: 33914074 PMCID: PMC8339361 DOI: 10.1093/jmcb/mjab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution has enabled living cells to adopt their structural and functional complexity by organizing intricate cellular compartments, such as membrane-bound and membraneless organelles (MLOs), for spatiotemporal catalysis of physiochemical reactions essential for cell plasticity control. Emerging evidence and view support the notion that MLOs are built by multivalent interactions of biomolecules via phase separation and transition mechanisms. In healthy cells, dynamic chemical modifications regulate MLO plasticity, and reversible phase separation is essential for cell homeostasis. Emerging evidence revealed that aberrant phase separation results in numerous neurodegenerative disorders, cancer, and other diseases. In this review, we provide molecular underpinnings on (i) mechanistic understanding of phase separation, (ii) unifying structural and mechanistic principles that underlie this phenomenon, (iii) various mechanisms that are used by cells for the regulation of phase separation, and (iv) emerging therapeutic and other applications.
Collapse
Affiliation(s)
- Hazrat Ismail
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Junying Li
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Ayesha Zahid
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| |
Collapse
|
33
|
Xu L, Ali M, Duan W, Yuan X, Garba F, Mullen M, Sun B, Poser I, Duan H, Lu J, Tian R, Ge Y, Chu L, Pan W, Wang D, Hyman A, Green H, Li L, Dou Z, Liu D, Liu X, Yao X. Feedback control of PLK1 by Apolo1 ensures accurate chromosome segregation. Cell Rep 2021; 36:109343. [PMID: 34260926 PMCID: PMC8358895 DOI: 10.1016/j.celrep.2021.109343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/01/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stable transmission of genetic material during cell division requires accurate chromosome segregation. PLK1 dynamics at kinetochores control establishment of correct kinetochore-microtubule attachments and subsequent silencing of the spindle checkpoint. However, the regulatory mechanism responsible for PLK1 activity in prometaphase has not yet been affirmatively identified. Here we identify Apolo1, which tunes PLK1 activity for accurate kinetochore-microtubule attachments. Apolo1 localizes to kinetochores during early mitosis, and suppression of Apolo1 results in misaligned chromosomes. Using the fluorescence resonance energy transfer (FRET)-based PLK1 activity reporter, we found that Apolo1 sustains PLK1 kinase activity at kinetochores for accurate attachment during prometaphase. Apolo1 is a cognate substrate of PLK1, and the phosphorylation enables PP1γ to inactivate PLK1 by dephosphorylation. Mechanistically, Apolo1 constitutes a bridge between kinase and phosphatase, which governs PLK1 activity in prometaphase. These findings define a previously uncharacterized feedback loop by which Apolo1 provides fine-tuning for PLK1 to guide chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Leilei Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mahboob Ali
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Wenxiu Duan
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fatima Garba
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Binwen Sun
- National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hequan Duan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Jianlin Lu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yushu Ge
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Lingluo Chu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Weijun Pan
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Anthony Hyman
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hadiyah Green
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Lin Li
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Dan Liu
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
34
|
Bloom CR, North BJ. Physiological relevance of post-translational regulation of the spindle assembly checkpoint protein BubR1. Cell Biosci 2021; 11:76. [PMID: 33892776 PMCID: PMC8066494 DOI: 10.1186/s13578-021-00589-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
BubR1 is an essential component of the spindle assembly checkpoint (SAC) during mitosis where it functions to prevent anaphase onset to ensure proper chromosome alignment and kinetochore-microtubule attachment. Loss or mutation of BubR1 results in aneuploidy that precedes various potential pathologies, including cancer and mosaic variegated aneuploidy (MVA). BubR1 is also progressively downregulated with age and has been shown to be directly involved in the aging process through suppression of cellular senescence. Post-translational modifications, including but not limited to phosphorylation, acetylation, and ubiquitination, play a critical role in the temporal and spatial regulation of BubR1 function. In this review, we discuss the currently characterized post-translational modifications to BubR1, the enzymes involved, and the biological consequences to BubR1 functionality and implications in diseases associated with BubR1. Understanding the molecular mechanisms promoting these modifications and their roles in regulating BubR1 is important for our current understanding and future studies of BubR1 in maintaining genomic integrity as well as in aging and cancer.
Collapse
Affiliation(s)
- Celia R Bloom
- Biomedical Sciences Department, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
35
|
Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 2021; 64:313-324. [PMID: 32347304 PMCID: PMC7475649 DOI: 10.1042/ebc20190073] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.
Collapse
|
36
|
Jiao CY, Feng QC, Li CX, Wang D, Han S, Zhang YD, Jiang WJ, Chang J, Wang X, Li XC. BUB1B promotes extrahepatic cholangiocarcinoma progression via JNK/c-Jun pathways. Cell Death Dis 2021; 12:63. [PMID: 33431813 PMCID: PMC7801618 DOI: 10.1038/s41419-020-03234-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Currently, the controversy regarding the expression profile and function of BUB1B in different malignancies still exist. In this project, we aimed to explore the role and molecular mechanism of BUB1B in the progression of extrahepatic cholangiocarcinoma (ECC). The expression levels of BUB1B in human ECC were evaluated by immunohistochemistry, western blot, and real-time PCR. The role and mechanism of BUB1B in CCA cell proliferation and invasion were investigated in both in vitro and in vivo functional studies. To indicate the clinical significance, a tissue microarray was performed on 113 ECC patients, followed by univariate and multivariate analyses. The expression of BUB1B was increased in both human CCA tissues and CCA cells. Results from loss-of-function and gain-of-function experiments suggested that the inhibition of BUB1B decreased the proliferation and invasiveness of CCA cells in vitro and in vivo, while overexpression of BUB1B achieved the opposite effect. Furthermore, the activation of c-Jun N-terminal kinase-c-Jun (JNK)-c-Jun pathway was regulated by BUB1B. BUB1B regulated the proliferation and invasiveness of CAA cells in a JNK-c-Jun-dependent manner. Clinically, ECC patients with BUB1B high expression had worse overall survival and recurrence-free survival than those with BUB1B low expression. Multivariate analysis identified that BUB1B was an independent predictor for postoperative recurrence and overall survival of ECC patients. In conclusion, BUB1B promoted ECC progression via JNK/c-Jun pathways. These findings suggested that BUB1B could be a potential therapeutic target and a biomarker for predicting prognosis for ECC patients.
Collapse
Affiliation(s)
- Chen Yu Jiao
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qin Chao Feng
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of surgery, JiangYuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, China
| | - Chang Xian Li
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Dong Wang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sheng Han
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yao Dong Zhang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wang Jie Jiang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiang Cheng Li
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
37
|
Mace PD, Murphy JM. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. J Biol Chem 2021; 296:100705. [PMID: 33895136 PMCID: PMC8141879 DOI: 10.1016/j.jbc.2021.100705] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Protein kinases are present in all domains of life and play diverse roles in cellular signaling. Whereas the impact of substrate phosphorylation by protein kinases has long been appreciated, it is becoming increasingly clear that protein kinases also play other, noncatalytic, functions. Here, we review recent developments in understanding the noncatalytic functions of protein kinases. Many noncatalytic activities are best exemplified by protein kinases that are devoid of enzymatic activity altogether-known as pseudokinases. These dead proteins illustrate that, beyond conventional notions of kinase function, catalytic activity can be dispensable for biological function. Through key examples we illustrate diverse mechanisms of noncatalytic kinase activity: as allosteric modulators; protein-based switches; scaffolds for complex assembly; and as competitive inhibitors in signaling pathways. In common, these noncatalytic mechanisms exploit the nature of the protein kinase fold as a versatile protein-protein interaction module. Many examples are also intrinsically linked to the ability of the protein kinase to switch between multiple states, a function shared with catalytic protein kinases. Finally, we consider the contemporary landscape of small molecules to modulate noncatalytic functions of protein kinases, which, although challenging, has significant potential given the scope of noncatalytic protein kinase function in health and disease.
Collapse
Affiliation(s)
- Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - James M Murphy
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
38
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
BUBR1 Pseudokinase Domain Promotes Kinetochore PP2A-B56 Recruitment, Spindle Checkpoint Silencing, and Chromosome Alignment. Cell Rep 2020; 33:108397. [PMID: 33207204 DOI: 10.1016/j.celrep.2020.108397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of phospho-signaling at the outer kinetochore is critical for forming accurate attachments between kinetochores and the mitotic spindle and timely exit from mitosis. A major player in determining this balance is the PP2A-B56 phosphatase, which is recruited to the kinase attachment regulatory domain (KARD) of budding uninhibited by benzimidazole 1-related 1 (BUBR1) in a phospho-dependent manner. This unleashes a rapid, switch-like phosphatase relay that reverses mitotic phosphorylation at the kinetochore, extinguishing the checkpoint and promoting anaphase. Here, we demonstrate that the C-terminal pseudokinase domain of human BUBR1 is required to promote KARD phosphorylation. Mutation or removal of the pseudokinase domain results in decreased PP2A-B56 recruitment to the outer kinetochore attenuated checkpoint silencing and errors in chromosome alignment as a result of imbalance in Aurora B activity. Our data, therefore, elucidate a function for the BUBR1 pseudokinase domain in ensuring accurate and timely exit from mitosis.
Collapse
|
40
|
Legal T, Hayward D, Gluszek-Kustusz A, Blackburn EA, Spanos C, Rappsilber J, Gruneberg U, Welburn JPI. The C-terminal helix of BubR1 is essential for CENP-E-dependent chromosome alignment. J Cell Sci 2020; 133:jcs246025. [PMID: 32665320 PMCID: PMC7473641 DOI: 10.1242/jcs.246025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores to facilitate chromosome alignment. The spindle checkpoint protein BubR1 (also known as BUB1B) has been reported as a CENP-E interacting partner, but the extent to which BubR1 contributes to CENP-E localization at kinetochores has remained controversial. Here we define the molecular determinants that specify the interaction between BubR1 and CENP-E. The basic C-terminal helix of BubR1 is necessary but not sufficient for CENP-E interaction, and a minimal key acidic patch on the kinetochore-targeting domain of CENP-E is also essential. We then demonstrate that BubR1 is required for the recruitment of CENP-E to kinetochores to facilitate chromosome alignment. This BubR1-CENP-E axis is critical for alignment of chromosomes that have failed to congress through other pathways and recapitulates the major known function of CENP-E. Overall, our studies define the molecular basis and the function for CENP-E recruitment to BubR1 at kinetochores during mammalian mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Thibault Legal
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Agata Gluszek-Kustusz
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Elizabeth A Blackburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 10623, Germany
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
41
|
Liu X, Xu L, Li J, Yao PY, Wang W, Ismail H, Wang H, Liao B, Yang Z, Ward T, Ruan K, Zhang J, Wu Q, He P, Ding X, Wang D, Fu C, Dou Z, Yan F, Wang W, Liu X, Yao X. Mitotic motor CENP-E cooperates with PRC1 in temporal control of central spindle assembly. J Mol Cell Biol 2020; 12:654-665. [PMID: 31174204 PMCID: PMC7683015 DOI: 10.1093/jmcb/mjz051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Error-free cell division depends on the accurate assembly of the spindle midzone from dynamic spindle microtubules to ensure chromatid segregation during metaphase-anaphase transition. However, the mechanism underlying the key transition from the mitotic spindle to central spindle before anaphase onset remains elusive. Given the prevalence of chromosome instability phenotype in gastric tumorigenesis, we developed a strategy to model context-dependent cell division using a combination of light sheet microscope and 3D gastric organoids. Light sheet microscopic image analyses of 3D organoids showed that CENP-E inhibited cells undergoing aberrant metaphase-anaphase transition and exhibiting chromosome segregation errors during mitosis. High-resolution real-time imaging analyses of 2D cell culture revealed that CENP-E inhibited cells undergoing central spindle splitting and chromosome instability phenotype. Using biotinylated syntelin as an affinity matrix, we found that CENP-E forms a complex with PRC1 in mitotic cells. Chemical inhibition of CENP-E in metaphase by syntelin prevented accurate central spindle assembly by perturbing temporal assembly of PRC1 to the midzone. Thus, CENP-E-mediated PRC1 assembly to the central spindle constitutes a temporal switch to organize dynamic kinetochore microtubules into stable midzone arrays. These findings reveal a previously uncharacterized role of CENP-E in temporal control of central spindle assembly. Since CENP-E is absent from yeast, we reasoned that metazoans evolved an elaborate central spindle organization machinery to ensure accurate sister chromatid segregation during anaphase and cytokinesis.
Collapse
Affiliation(s)
- Xu Liu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Leilei Xu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Junying Li
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Phil Y Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Wanjuan Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Haowei Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Bryce Liao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Biology, Duke University Durham, NC 27708, USA
| | - Zhihong Yang
- Institute of ProteoGenomics, Beijing 100029, China
| | - Tarsha Ward
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ke Ruan
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Jianchun Zhang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Quan Wu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Ping He
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Xia Ding
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Feng Yan
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
42
|
Liu X, Liu X, Wang H, Dou Z, Ruan K, Hill DL, Li L, Shi Y, Yao X. Phase separation drives decision making in cell division. J Biol Chem 2020; 295:13419-13431. [PMID: 32699013 DOI: 10.1074/jbc.rev120.011746] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules drives the formation of subcellular compartments with distinct physicochemical properties. These compartments, free of lipid bilayers and therefore called membraneless organelles, include nucleoli, centrosomes, heterochromatin, and centromeres. These have emerged as a new paradigm to account for subcellular organization and cell fate decisions. Here we summarize recent studies linking LLPS to mitotic spindle, heterochromatin, and centromere assembly and their plasticity controls in the context of the cell division cycle, highlighting a functional role for phase behavior and material properties of proteins assembled onto heterochromatin, centromeres, and central spindles via LLPS. The techniques and tools for visualizing and harnessing membraneless organelle dynamics and plasticity in mitosis are also discussed, as is the potential for these discoveries to promote new research directions for investigating chromosome dynamics, plasticity, and interchromosome interactions in the decision-making process during mitosis.
Collapse
Affiliation(s)
- Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Haowei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama, USA
| | - Lin Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA; Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama, USA; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China.
| |
Collapse
|
43
|
Yu KW, She ZY, Wei YL, Zhong N. Kinesin-7 CENP-E regulates cell division, gastrulation and organogenesis in development. Eur J Cell Biol 2020; 99:151107. [PMID: 32800279 DOI: 10.1016/j.ejcb.2020.151107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Kinesin-7 CENP-E motor protein is essential for chromosome alignment and kinetochore-microtubule attachment in cell division. Human CENP-E has recently identified to be linked with the microcephalic primordial dwarfism syndromes associated with a smaller head, brain malformations and a prominent nose. However, the roles of CENP-E in embryonic development remain largely unknown. In this study, we find that zebrafish CENP-E inhibition results in defects in early zygote cleavage, including asymmetric cell division, cell cycle arrest and the developmental abnormalities. We also demonstrate that CENP-E ablation in cultured cells leads to chromosome misalignment, spindle abnormalities and interruptions of the cell cycle. These observations suggest that CENP-E plays a key role in early cell division and cell cycle progression. Furthermore, we also find that CENP-E inhibition results in the defects in the epiboly, the developmental arrest, the smaller head and the abnormal embryo during zebrafish embryogenesis. Our data demonstrate new functions of CENP-E in development and provide insights into its essential roles in organogenesis.
Collapse
Affiliation(s)
- Kai-Wei Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian, 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| |
Collapse
|
44
|
Du S, Song X, Li Y, Cao Y, Chu F, Durojaye OA, Su Z, Shi X, Wang J, Cheng J, Wang T, Gao X, Chen Y, Zeng W, Wang F, Wang D, Liu X, Ding X. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells. Sci Rep 2020; 10:11273. [PMID: 32647287 PMCID: PMC7347585 DOI: 10.1038/s41598-020-68238-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Progression of hepatocellular carcinoma involves multiple genetic and epigenetic alterations that promote cancer invasion and metastasis. Our recent study revealed that hyperphosphorylation of ezrin promotes intrahepatic metastasis in vivo and cell migration in vitro. Celastrol is a natural product from traditional Chinese medicine which has been used in treating liver cancer. However, the mechanism of action underlying celastrol treatment was less clear. Here we show that ROCK2 is a novel target of celastrol and inhibition of ROCK2 suppresses elicited ezrin activation and liver cancer cell migration. Using cell monolayer wound healing, we carried out a phenotype-based screen of natural products and discovered the efficacy of celastrol in inhibiting cell migration. The molecular target of celastrol was identified as ROCK2 using celastrol affinity pull-down assay. Our molecular docking analyses indicated celastrol binds to the active site of ROCK2 kinase. Mechanistically, celastrol inhibits the ROCK2-mediated phosphorylation of ezrin at Thr567 which harnesses liver cancer cell migration. Our findings suggest that targeting ROCK2-ezrin signaling is a potential therapeutic niche for celastrol-based intervention of cancer progression in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shihao Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaoyu Song
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Yuan Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yalei Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fuhao Chu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Zeqi Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoguang Shi
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Juan Cheng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tangshun Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiang Gao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Chen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wuzhekai Zeng
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - DongMei Wang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xing Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
45
|
Yu R, Wu H, Ismail H, Du S, Cao J, Wang J, Ward T, Yang F, Gui P, Ali M, Chu L, Mo F, Wang Q, Chu Y, Zang J, Zhao Y, Ye M, Fang G, Chen PR, Dou Z, Gao X, Wang W, Liu X, Yao X. Methylation of PLK1 by SET7/9 ensures accurate kinetochore-microtubule dynamics. J Mol Cell Biol 2020; 12:462-476. [PMID: 31863092 PMCID: PMC7333475 DOI: 10.1093/jmcb/mjz107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Faithful segregation of mitotic chromosomes requires bi-orientation of sister chromatids, which relies on the sensing of correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying PLK1 activation have been extensively studied, the regulatory mechanisms that couple PLK1 activity to accurate chromosome segregation are not well understood. In particular, PLK1 is implicated in stabilizing kinetochore-microtubule attachments, but how kinetochore PLK1 activity is regulated to avoid hyperstabilized kinetochore-microtubules in mitosis remains elusive. Here, we show that kinetochore PLK1 kinase activity is modulated by SET7/9 via lysine methylation during early mitosis. The SET7/9-elicited dimethylation occurs at the Lys191 of PLK1, which tunes down its activity by limiting ATP utilization. Overexpression of the non-methylatable PLK1 mutant or chemical inhibition of SET7/9 methyltransferase activity resulted in mitotic arrest due to destabilized kinetochore-microtubule attachments. These data suggest that kinetochore PLK1 is essential for stable kinetochore-microtubule attachments and methylation by SET7/9 promotes dynamic kinetochore-microtubule attachments for accurate error correction. Our findings define a novel homeostatic regulation at the kinetochore that integrates protein phosphorylation and methylation with accurate chromosome segregation for maintenance of genomic stability.
Collapse
Affiliation(s)
- Ruoying Yu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Huihui Wu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shihao Du
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Jianyu Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Tarsha Ward
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Fengrui Yang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mahboob Ali
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingluo Chu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Harvard Medical School, Boston, MA 02115, USA
| | - Fei Mo
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Harvard Medical School, Boston, MA 02115, USA
| | - Qi Wang
- Dalian Institute for Physical Chemistry, Dalian 116023, China
| | - Youjun Chu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Yun Zhao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingliang Ye
- Dalian Institute for Physical Chemistry, Dalian 116023, China
| | - Guowei Fang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
46
|
Barbosa J, Conde C, Sunkel C. RZZ-SPINDLY-DYNEIN: you got to keep 'em separated. Cell Cycle 2020; 19:1716-1726. [PMID: 32544383 PMCID: PMC7469663 DOI: 10.1080/15384101.2020.1780382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022] Open
Abstract
To maintain genome stability, chromosomes must be equally distributed among daughter cells at the end of mitosis. The accuracy of chromosome segregation requires sister-kinetochores to stably attach to microtubules emanating from opposite spindle poles. However, initial kinetochore-microtubule interactions are able to turnover so that defective attachment configurations that typically arise during early mitosis may be corrected. Growing evidence supports a role for the RZZ complex in preventing the stabilization of erroneous kinetochore-microtubule attachments. This inhibitory function of RZZ toward end-on attachments is relieved by DYNEIN-mediated transport of the complex as chromosomes congress and appropriate interactions with microtubules are established. However, it remains unclear how DYNEIN is antagonized to prevent premature RZZ removal. We recently described a new mechanism that sheds new light on this matter. We found that POLO kinase phosphorylates the DYNEIN adaptor SPINDLY to promote the uncoupling between RZZ and DYNEIN. Elevated POLO activity during prometaphase ensures that RZZ is retained at kinetochores to allow the dynamic turnover of kinetochore-microtubule interactions and prevent the stabilization of erroneous attachments. Here, we discuss additional interpretations to explain a model for POLO-dependent regulation of the RZZ-SPINDLY-DYNEIN module during mitosis.
Collapse
Affiliation(s)
- João Barbosa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Claudio Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|
47
|
Tang R, Jiang Z, Chen F, Yu W, Fan K, Tan J, Zhang Z, Liu X, Li P, Yuan K. The Kinase Activity of Drosophila BubR1 Is Required for Insulin Signaling-Dependent Stem Cell Maintenance. Cell Rep 2020; 31:107794. [PMID: 32579921 DOI: 10.1016/j.celrep.2020.107794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/29/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a core component of the mitotic checkpoint complex, BubR1 has a modular organization of molecular functions, with KEN box and other motifs at the N terminus inhibiting the anaphase-promoting complex/cyclosome, and a kinase domain at the C terminus, whose function remains unsettled, especially at organismal levels. We generate knock-in BubR1 mutations in the Drosophila genome to separately disrupt the KEN box and the kinase domain. All of the mutants are homozygously viable and fertile and show no defects in mitotic progression. The mutants without kinase activity have an increased lifespan and phenotypic changes associated with attenuated insulin signaling, including reduced InR on the cell membrane, weakened PI3K and AKT activity, and elevated expression of dFoxO targets. The BubR1 kinase-dead mutants have a reduced cap cell number in female germaria, which can be rescued by expressing a constitutively active InR. We conclude that one major physiological role of BubR1 kinase in Drosophila is to modulate insulin signaling.
Collapse
Affiliation(s)
- Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weiyu Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Kaijing Fan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Pishun Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; Center for Clinical Biorepositories and Biospecimens, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
48
|
The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases. Cells 2019; 9:cells9010049. [PMID: 31878213 PMCID: PMC7016623 DOI: 10.3390/cells9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022] Open
Abstract
Regulators of mitotic division, when dysfunctional or expressed in a deregulated manner (over- or underexpressed) in somatic cells, cause chromosome instability, which is a predisposing condition to cancer that is associated with unrestricted proliferation. Genes encoding mitotic regulators are growingly implicated in neurodevelopmental diseases. Here, we briefly summarize existing knowledge on how microcephaly-related mitotic genes operate in the control of chromosome segregation during mitosis in somatic cells, with a special focus on the role of kinetochore factors. Then, we review evidence implicating mitotic apparatus- and kinetochore-resident factors in the origin of congenital microcephaly. We discuss data emerging from these works, which suggest a critical role of correct mitotic division in controlling neuronal cell proliferation and shaping the architecture of the central nervous system.
Collapse
|
49
|
Pseudokinases: From Allosteric Regulation of Catalytic Domains and the Formation of Macromolecular Assemblies to Emerging Drug Targets. Catalysts 2019. [DOI: 10.3390/catal9090778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pseudokinases are a member of the kinase superfamily that lack one or more of the canonical residues required for catalysis. Protein pseudokinases are widely distributed across species and are present in proteins that perform a great diversity of roles in the cell. They represent approximately 10% to 40% of the kinome of a multicellular organism. In the human, the pseudokinase subfamily consists of approximately 60 unique proteins. Despite their lack of one or more of the amino acid residues typically required for the productive interaction with ATP and metal ions, which is essential for the phosphorylation of specific substrates, pseudokinases are important functional molecules that can act as dynamic scaffolds, competitors, or modulators of protein–protein interactions. Indeed, pseudokinase misfunctions occur in diverse diseases and represent a new therapeutic window for the development of innovative therapeutic approaches. In this contribution, we describe the structural features of pseudokinases that are used as the basis of their classification; analyse the interactome space of human pseudokinases and discuss their potential as suitable drug targets for the treatment of various diseases, including metabolic, neurological, autoimmune, and cell proliferation disorders.
Collapse
|
50
|
Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett 2019; 593:2889-2907. [PMID: 31469407 DOI: 10.1002/1873-3468.13591] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|