1
|
Meng Z, Li X, Lu S, Hua Y, Yin B, Qian B, Li Z, Zhou Y, Sergeeva I, Fu Y, Ma Y. A comprehensive analysis of m6A/m7G/m5C/m1A-related gene expression and immune infiltration in liver ischemia-reperfusion injury by integrating bioinformatics and machine learning algorithms. Eur J Med Res 2024; 29:326. [PMID: 38867322 PMCID: PMC11170855 DOI: 10.1186/s40001-024-01928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Liver ischemia-reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI and develop effective therapeutic strategies that target immune response. Methylation modifications in mRNA play various crucial roles in different diseases. This study aimed to identify potential methylation-related markers in patients with LIRI and evaluate the corresponding immune infiltration. METHODS Two Gene Expression Omnibus datasets containing human liver transplantation data (GSE12720 and GSE151648) were downloaded for integrated analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to investigate the functional enrichment of differentially expressed genes (DEGs). Differentially expressed methylation-related genes (DEMRGs) were identified by overlapping DEG sets and 65 genes related to N6-methyladenosine (m6A), 7-methylguanine (m7G), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). To evaluate the relationship between DEMRGs, a protein-protein interaction (PPI) network was utilized. The core DEMRGs were screened using three machine learning algorithms: least absolute shrinkage and selection operator, random forest, and support vector machine-recursive feature elimination. After verifying the diagnostic efficacy using the receiver operating characteristic curve, we validated the expression of the core DEMRGs in clinical samples and performed relative cell biology experiments. Additionally, the immune status of LIRI was comprehensively assessed using the single sample gene set enrichment analysis algorithm. The upstream microRNA and transcription factors of the core DEMRGs were also predicted. RESULTS In total, 2165 upregulated and 3191 downregulated DEGs were identified, mainly enriched in LIRI-related pathways. The intersection of DEGs and methylation-related genes yielded 28 DEMRGs, showing high interaction in the PPI network. Additionally, the core DEMRGs YTHDC1, METTL3, WTAP, and NUDT3 demonstrated satisfactory diagnostic efficacy and significant differential expression and corresponding function based on cell biology experiments. Furthermore, immune infiltration analyses indicated that several immune cells correlated with all core DEMRGs in the LIRI process to varying extents. CONCLUSIONS We identified core DEMRGs (YTHDC1, METTL3, WTAP, and NUDT3) associated with immune infiltration in LIRI through bioinformatics and validated them experimentally. This study may provide potential methylation-related gene targets for LIRI immunotherapy.
Collapse
Affiliation(s)
- Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Irina Sergeeva
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Ren H, Chen Y, Zhu Z, Xia J, Liu S, Hu Y, Qin X, Zhang L, Ding Y, Xia S, Wang J. FOXO1 regulates Th17 cell-mediated hepatocellular carcinoma recurrence after hepatic ischemia-reperfusion injury. Cell Death Dis 2023; 14:367. [PMID: 37330523 PMCID: PMC10276824 DOI: 10.1038/s41419-023-05879-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (IRI) is considered as an effecting factor for hepatocellular carcinoma (HCC) recurrence. Th17/Treg cells are a pair of essential components in adaptive immune response in liver IRI, and forkhead box O1 (FOXO1) has the properties of maintaining the function and phenotype of immune cells. Herein, we illuminated the correlation and function between Th17/Treg cell balance and FOXO1 in IRI-induced HCC recurrence. METHODS RNA sequencing was performed on naive CD4+ T cells from normal and IRI model mice to identify relevant transcription factors. Western blotting, qRT-PCR, immunohistochemical staining, and flow cytometry were performed in IRI models to indicate the effect of FOXO1 on the polarization of Th17/Treg cells. Then, transwell assay of HCC cell migration and invasion, clone formation, wound healing assay, and Th17 cells adoptively transfer was utilized to assess the function of Th17 cells in IRI-induced HCC recurrence in vitro and in vivo. RESULTS Owning to the application of RNA sequencing, FOXO1 was screened and assumed to perform a significant function in hepatic IRI. The IRI model demonstrated that up-regulation of FOXO1 alleviated IR stress by attenuating inflammatory stress, maintaining microenvironment homeostasis, and reducing the polarization of Th17 cells. Mechanistically, Th17 cells accelerated IRI-induced HCC recurrence by shaping the hepatic pre-metastasis microenvironment, activating the EMT program, promoting cancer stemness and angiogenesis, while the upregulation of FOXO1 can stabilize the liver microenvironment homeostasis and alleviate the negative effects of Th17 cells. Moreover, the adoptive transfer of Th17 cells in vivo revealed its inducing function in IRI-induced HCC recurrence. CONCLUSIONS These results indicated that FOXO1-Th17/Treg axis exerts a crucial role in IRI-mediated immunologic derangement and HCC recurrence, which could be a promising target for reducing the HCC recurrence after hepatectomy. Liver IRI affects the balance of Th17/Treg cells by inhibiting the expression of FOXO1, and the increase of Th17 cells has the ability to induce HCC recurrence through EMT program, cancer stemness pathway, the formation of premetastatic microenvironment and angiogenesis.
Collapse
Grants
- the National Natural Science Foundation of China (82270646),the Fundamental Research Funds for the Central Universities (0214-14380510), the Nanjing health science and technology development project for Distinguished Young Scholars,the Nanjing health science and technology development project for Distinguished Young Scholars (JQX19002),Project of Modern Hospital Management and Development Institute, Nanjing University and Aid project of Nanjing Drum Tower Hospital Health, Education & Research Foundation(NDYG2022057),fundings for Clinical Trials from the Affiliated Drum Tower Hospital, Medical School of Nanjing University(2022-LCYJ-PY-35),the Chen Xiao-ping Foundation for the Development of Science and Technology of Hubei Province, China (CXPJJH121001-2021073)
Collapse
Affiliation(s)
- Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Yuyan Chen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhengyi Zhu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinkun Xia
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shujun Liu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yingzhe Hu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xueqian Qin
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lu Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yitao Ding
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Senzhe Xia
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China.
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Wang J, Xia S, Ren H, Shi X. The role and function of CD4+ T cells in hepatic ischemia-reperfusion injury. Expert Rev Gastroenterol Hepatol 2022; 16:5-11. [PMID: 34931553 DOI: 10.1080/17474124.2022.2020642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hepatic ischemia-reperfusion injury (IRI) is a severe complication frequently encountered in liver surgery, seriously affecting the therapeutic effects, tissue function. Various immune cells are involved in hepatic IRI, including macrophages, NKT cells, DCs, CD4 + T cells, and CD8 + T cells, among which CD4 + T cells play a critical role in this process. This article aims to summarize the functions and changes in various CD4 + T cell type counts and related cytokine levels in hepatic IRI and to review the possible mechanisms of mutual conversion between T cell types. AREAS COVERED We have covered the functions and changes that occur in Th1, Th17, and Treg cells in liver IRI, as well as the pathways and factors associated with them. We also discuss the prospects of clinical application and future directions for therapeutic advances. EXPERT OPINION This section explores the current clinical trials involving CD4 + T cells, especially Tregs, explains the limitations of their application, and summarizes the future development trends of cell engineering and their combination with the CAT technology. We also provide new ideas and therapeutic targets for alleviating liver IRI or other liver inflammatory diseases.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
| | - Senzhe Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Zheng J, Lu T, Zhou C, Cai J, Zhang X, Liang J, Sui X, Chen X, Chen L, Sun Y, Zhang J, Chen W, Zhang Y, Yao J, Chen G, Yang Y. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect Liver Ischemia/Reperfusion Injury by Reducing CD154 Expression on CD4+ T Cells via CCT2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903746. [PMID: 32999825 PMCID: PMC7509664 DOI: 10.1002/advs.201903746] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/14/2020] [Indexed: 05/07/2023]
Abstract
As a cause of postoperative complications and early hepatic failure after liver transplantation, liver ischemia/reperfusion injury (IRI) still has no effective treatment during clinical administration. Although the therapeutic potential of mesenchymal stem cells (MSCs) for liver IRI has been previously shown, the underlying mechanisms are not completely clear. It is accepted that MSC-derived extracellular vesicles (MSC-EVs) are newly uncovered messengers for intercellular communication. Herein, it is reported that umbilical cord-derived MSCs (UC-MSCs) improve liver IRI in mice through their secreted EVs. It is also visualized that UC-MSC-EVs mainly concentrate in liver after 6 h of reperfusion. Furthermore, UC-MSC-EVs are found to significantly modulate the membranous expression of CD154 of intrahepatic CD4+ T cells, which is an initiation of inflammatory response in liver and can aggravate liver IRI. Mechanistically, protein mass spectrum analysis is performed and it is revealed that Chaperonin containing TCP1 subunit 2 (CCT2) enriches in UC-MSC-EVs, which regulates the calcium channels to affect Ca2+ influx and suppress CD154 synthesis in CD4+ T cells. In conclusion, these results highlight the therapeutic potential of UC-MSC-EVs in attenuating liver IRI. This finding suggests that CCT2 from UC-MSC-EVs can modulate CD154 expression of intrahepatic CD4+ T cells during liver IRI through the Ca2+-calcineurin-NFAT1 signaling pathway.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
- The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510630China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaomei Zhang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jinliang Liang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xin Sui
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaoyan Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yao Sun
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Wenjie Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| |
Collapse
|
5
|
Gan X, Zhang R, Gu J, Ju Z, Wu X, Wang Q, Peng H, Qiu J, Zhou J, Cheng F, Lu L. Acidic Microenvironment Regulates the Severity of Hepatic Ischemia/Reperfusion Injury by Modulating the Generation and Function of Tregs via the PI3K-mTOR Pathway. Front Immunol 2020; 10:2945. [PMID: 31998287 PMCID: PMC6962105 DOI: 10.3389/fimmu.2019.02945] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (HIRI) is a major cause of liver dysfunction and even liver failure after liver transplantation and hepatectomy. One of the critical mechanisms that lead to HIRI is an acidic microenvironment, which develops due to the accumulation of high acid-like substances such as lactic acid and ketone bodies. Previous studies have shown that the adoptive transfer of induced regulatory T cells (iTregs) attenuates HIRI; however, little is known about the function of Tregs in the acidic microenvironment of a HIRI model. In the present study, we examined the effect of acidic microenvironment on Tregs in vitro and in vivo. Here, we report that microenvironment acidification and dysfunction of the liver is induced during HIRI in humans and mice and that an acidic microenvironment can inhibit the generation and function of CD4+CD25+Foxp3+ iTregs via the PI3K/Akt/mTOR signaling pathway. By contrast, the reversal of the acidic microenvironment restored Foxp3 expression and iTreg function. In addition, the results of cell culture in vitro indicated that the proton pump inhibitor omeprazole improves decreased iTreg differentiation caused by the acidic microenvironment, suggesting the potential clinical use of proton pump inhibitors as immunoregulatory therapy in the treatment of HIRI. Furthermore, our findings demonstrate that buffering the acidic microenvironment to attenuate HIRI in mice has an inseparable relationship with Tregs. Thus, an acidic microenvironment is a key regulator in HIRI, involved in modulating the generation and function of Tregs.
Collapse
Affiliation(s)
- Xiaojie Gan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Rongsheng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Zheng Ju
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Xiao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Hao Peng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Jiannan Qiu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Living Donor Liver Transplantation, National Health Commission (NHC), Nanjing, China
| |
Collapse
|
6
|
Xie K, Liu L, Chen J, Liu F. Exosomal miR-1246 derived from human umbilical cord blood mesenchymal stem cells attenuates hepatic ischemia reperfusion injury by modulating T helper 17/regulatory T balance. IUBMB Life 2019; 71:2020-2030. [PMID: 31433911 DOI: 10.1002/iub.2147] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to explore the mechanism by which human umbilical cord blood mesenchymal stem cells (hUCB-MSCs)-derived exosomes exerted protective effect in hepatic ischemia/reperfusion injury (IRI). hUCB-MSCs-derived exosomes were administrated into hepatic IRI mice or cocultured with naïve CD4+ T cells exposed to hepatic hypoxia/reoxygenation microenvironment. Hepatic function was assessed by determining serum transaminases. Histological changes were observed using hematoxylin and eosin staining. The proportion of T helper 17 (Th17) and regulatory T (Treg) cells were analyzed by flow cytometry. The concentration of inflammatory cytokines was determined by enzyme-linked immunosorbent assay. The interaction between miR-1246 and interleukin 6 (IL-6) signal transducer (also known as gp130) was verified by luciferase activity assay. The miR-1246 expression, Th17/Treg-related genes, and gp130-signal transducer and activator of transcription 3 (STAT3) pathway were detected by quantitative real-time polymerase chain reaction and western blotting. hUCB-MSCs-derived exosomes ameliorated IRI-induced hepatic dysfunction and decreased Th17/Treg ratio in CD4+ T cells in vitro, whereas treatment of hUCB-MSCs with miR-1246 inhibitor showed opposite effects, which was mediated via the IL-6-gp130-STAT3 pathway. hUCB-MSCs-derived exosomes could alleviate hepatic IRI through modulating the balance between Tregs and Th17 cells via miR-1246-mediated IL-6-gp130-STAT3 axis.
Collapse
Affiliation(s)
- Kun Xie
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiangming Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fubao Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|