1
|
Merz MP, Seal SV, Grova N, Mériaux S, Guebels P, Kanli G, Mommaerts E, Nicot N, Kaoma T, Keunen O, Nazarov PV, Turner JD. Early-life influenza A (H1N1) infection independently programs brain connectivity, HPA AXIS and tissue-specific gene expression profiles. Sci Rep 2024; 14:5898. [PMID: 38467724 PMCID: PMC10928197 DOI: 10.1038/s41598-024-56601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
- Central Biobank Charité, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Snehaa V Seal
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
| | - Nathalie Grova
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Inserm U1256, NGERE, Nutrition-Génétique Et Exposition Aux Risques Environnementaux, Université de Lorraine, 54000, Nancy, France
| | - Sophie Mériaux
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Pauline Guebels
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Georgia Kanli
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Elise Mommaerts
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Olivier Keunen
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
3
|
Nemirovsky A, Ilan K, Lerner L, Cohen-Lavi L, Schwartz D, Goren G, Sergienko R, Greenberg D, Slonim-Nevo V, Sarid O, Friger M, Regev S, Odes S, Hertz T, Monsonego A, on behalf of the Israeli IBD Research Nucleus (IIRN). Brain-immune axis regulation is responsive to cognitive behavioral therapy and mindfulness intervention: Observations from a randomized controlled trial in patients with Crohn's disease. Brain Behav Immun Health 2022; 19:100407. [PMID: 35024638 PMCID: PMC8728050 DOI: 10.1016/j.bbih.2021.100407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is a chronic inflammatory bowel disease associated with psychological stress that is regulated primarily by the hypothalamus-pituitary-adrenal (HPA) axis. Here, we determined whether the psychological characteristics of CD patients associate with their inflammatory state, and whether a 3-month trial of cognitive-behavioral and mindfulness-based stress reduction (COBMINDEX) impacts their inflammatory process. METHODS Circulating inflammatory markers and a wide range of psychological parameters related to stress and well-being were measured in CD patients before and after COBMINDEX. Inflammatory markers in CD patients were also compared to age- and sex-matched healthy controls (HCs). RESULTS CD patients exhibited increased peripheral low-grade inflammation compared with HCs, demonstrated by interconnected inflammatory modules represented by IL-6, TNFα, IL-17, MCP-1 and IL-18. Notably, higher IL-18 levels correlated with higher score of stress and a lower score of wellbeing in CD patients. COBMINDEX was accompanied by changes in inflammatory markers that coincided with changes in cortisol: changes in serum levels of cortisol correlated positively with those of IL-10 and IFNα and negatively with those of MCP-1. Furthermore, inflammatory markers of CD patients at baseline predicted COBMINDEX efficacy, as higher levels of distinct cytokines and cortisol at baseline, correlated negatively with changes in disease activity (by Harvey-Bradshaw Index) and psychological distress (global severity index measure) following COBMINDEX. CONCLUSION CD patients have a characteristic immunological profile that correlates with psychological stress, and disease severity. We suggest that COBMINDEX induces stress resilience in CD patients, which impacts their well-being, and their disease-associated inflammatory process.
Collapse
Affiliation(s)
- Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Karny Ilan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Livnat Lerner
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Liel Cohen-Lavi
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Doron Schwartz
- Dept. of Gastroenterology and Hepatology, Soroka Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ganit Goren
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ruslan Sergienko
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Dan Greenberg
- Department of Health Systems Management, School of Public Health, Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Vered Slonim-Nevo
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Orly Sarid
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Michael Friger
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Shirley Regev
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Shmuel Odes
- Dept. of Gastroenterology and Hepatology, Soroka Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - on behalf of the Israeli IBD Research Nucleus (IIRN)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Health Systems Management, School of Public Health, Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Dept. of Gastroenterology and Hepatology, Soroka Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
4
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
5
|
Merz MP, Turner JD. Is early life adversity a trigger towards inflammageing? Exp Gerontol 2021; 150:111377. [PMID: 33905877 DOI: 10.1016/j.exger.2021.111377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
There are many 'faces' of early life adversity (ELA), such as childhood trauma, institutionalisation, abuse or exposure to environmental toxins. These have been implicated in the onset and severity of a wide range of chronic non-communicable diseases later in life. The later-life disease risk has a well-established immunological component. This raises the question as to whether accelerated immune-ageing mechanistically links early-life adversity to the lifelong health trajectory resulting in either 'poor' or 'healthy' ageing. Here we examine observational and mechanistic studies of ELA and inflammageing, highlighting common and distinct features in these two life stages. Many biological processes appear in common including reduction in telomere length, increased immunosenescence, metabolic distortions and chronic (viral) infections. We propose that ELA shapes the developing immune, endocrine and nervous system in a non-reversible way, creating a distinct phenotype with accelerated immunosenescence and systemic inflammation. We conclude that ELA might act as an accelerator for inflammageing and age-related diseases. Furthermore, we now have the tools and cohorts to be able to dissect the interaction between ELA and later life phenotype. This should, in the near future, allow us to identify the ecological and mechanistic processes that are involved in 'healthy' or accelerated immune-ageing.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|