1
|
Liang S, Kang YJ, Huo M, Yang DC, Ling M, Yue K, Wang Y, Xu LP, Zhang XH, Xia CR, Li JY, Wu N, Liu R, Dong X, Liu J, Gao G, Huang XJ. Systematic mining and quantification reveal the dominant contribution of non-HLA variations to acute graft-versus-host disease. Cell Mol Immunol 2025; 22:501-511. [PMID: 40033084 PMCID: PMC12041598 DOI: 10.1038/s41423-025-01273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Human leukocyte antigen (HLA) disparity between donors and recipients is a key determinant triggering intense alloreactivity, leading to a lethal complication, namely, acute graft-versus-host disease (aGVHD), after allogeneic transplantation. Moreover, aGVHD remains a cause of mortality after HLA-matched allogeneic transplantation. Protocols for HLA-haploidentical hematopoietic cell transplantation (haploHCT) have been established successfully and widely applied, further highlighting the urgency of performing panoramic screening of non-HLA variations correlated with aGVHD. On the basis of our time-consecutive large haploHCT cohort (with a homogenous discovery set and an extended confirmatory set), we first delineated the genetic landscape of 1366 samples to quantitatively model aGVHD risk by assessing the contributions of HLA and non-HLA genes together with clinical factors. In addition to identifying multiple loss-of-function (LoF) risk variations in non-HLA coding genes, our data-driven study revealed that non-HLA genetic variations, independent of HLA disparity, contributed the most to the occurrence of aGVHD. This unexpected major effect was verified in an independent cohort that received HLA-identical sibling HCT. Subsequent functional experiments further revealed the roles of a representative non-HLA LoF gene and LoF gene pair in regulating the alloreactivity of primary human T cells. Our findings highlight the importance of non-HLA genetic risk in the new era of transplantation and propose a new direction to explore the immunogenetic mechanism of alloreactivity and to optimize donor selection strategies for allogeneic transplantation.
Collapse
Affiliation(s)
- Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu-Jian Kang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Mingrui Huo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - De-Chang Yang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing, China
| | - Min Ling
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Keli Yue
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Chen-Rui Xia
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing, China
| | - Jing-Yi Li
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing, China
| | - Ning Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Ruoyang Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xinyu Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China.
| | - Ge Gao
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
2
|
Zhao B, Li R. Methylome and transcriptome analyses reveal HLA-DMB's contribution to periodontitis development. PLoS One 2025; 20:e0319055. [PMID: 40267082 PMCID: PMC12017480 DOI: 10.1371/journal.pone.0319055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Periodontitis is a typical oral disease. Polymorphonuclear neutrophils (PMNs) are crucial immune cells in periodontal tissues, relating to infection, inflammation, and innate immunity. We herein aimed to explore important periodontitis PMN related genes. METHODS Periodontitis and control samples were downloaded from Gene Expression Omnibus database, including GSE173082 (methylation data, n=72), GSE10334 (n=127), GSE43525 (n=23), GSE16134 (n=134). Differential expression analysis and differential methylation analysis was employed to find candidate genes. Receiver operating characteristic analysis was performed to evaluate the diagnostic value of the hub gene. The functional pathways were determined by gene set enrichment analysis. Using CIBERSORT software, the immune cell infiltration landscape of periodontitis tissue was explored. The mRNA and protein levels of target gene in clinical tissue samples were determined employing RT-qPCR and western blotting. All statistical analyses were conducted in R software. RESULTS After integrating DNA methylation with transcriptome profiles, GRASP, HLA-DMB, HLA-DMA, CAB39, NCOA2 and TLE4 were identified as candidate genes in periodontitis PMNs. HLA-DMB showed the highest correlation with core DNA methyltransferase DNMT3B (p < 0.05). Between high and low HLA-DMB expression samples, multiple immune related pathways were enriched, and differential immune cell infiltration was observed (p < 0.05). HLA-DMB exhibited significantly higher expressions in both public database and clinical tissue samples (p < 0.05). HLA-DMB was a diagnostic marker for periodontitis (GSE43525 AUC=0.777 and GSE16134 AUC=0.783). CONCLUSIONS Significantly higher HLA-DMB expression was noticed in PMNs of periodontitis, which probably contributed to the development of periodontitis. HLA-DMB is a promising diagnostic marker for periodontitis.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Ronghua Li
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, P.R. China
| |
Collapse
|
3
|
Guo Z, Cao B, Hu Z, Wu J, Zhou W, Zhang W, Shi Z. Immunotherapy, prognostic, and tumor biomarker based on pancancer analysis, SMARCD3. Aging (Albany NY) 2024; 16:10074-10107. [PMID: 38862250 PMCID: PMC11210247 DOI: 10.18632/aging.205921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND SMARCD3 has recently been shown to be an important gene affecting cancer, playing an important role in medulloblastoma and pancreatic ductal adenocarcinoma. Therefore, we conducted this research to investigate the potential involvement of SMARCD3 across cancers and to offer recommendations for future studies. METHODS Utilizing information on 33 malignancies in the UCSC Xena database, SMARCD3 expression and its prognostic value were assessed. The tumor microenvironment was evaluated with the "CIBERSORT" and "ESTIMATE" algorithms. SMARCD3 and immune-related genes were analyzed using the TISIDB website. The pathways related to the target genes were examined using GSEA. MSI (microsatellite instability), TMB (tumor mutational burden), and immunotherapy analysis were used to evaluate the impact of target genes on the response to immunotherapy. RESULTS There is heterogeneity in terms of the expression and prognostic value of SMARCD3 among various cancers, but it is a risk factor for many cancers including uterine corpus endometrial cancer (UCEC), renal clear cell carcinoma (KIRC), and gastric adenocarcinoma (STAD). GSEA revealed that SMARCD3 is related to chromatin remodeling and transcriptional activation, lipid metabolism, and the activities of various immune cells. The TMB and MSI analyses suggested that SMARCD3 affects the immune response efficiency of KIRC, LUAD and STAD. Immunotherapy analysis suggested that SMARCD3 may be a potential immunotherapy target. RT-qPCR demonstrated the variation in SMARCD3 expression in KIRC, LUAD, and STAD. CONCLUSION Our study revealed that SMARCD3 affects the prognosis and immunotherapy response of some tumors, providing a direction for further research on this gene.
Collapse
Affiliation(s)
- Zishun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bingji Cao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhihua Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
4
|
Budeus B, Álvaro-Benito M, Crivello P. HLA-DM and HLA-DO interplay for the peptide editing of HLA class II in healthy tissues and leukemia. Best Pract Res Clin Haematol 2024; 37:101561. [PMID: 39098801 DOI: 10.1016/j.beha.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
HLA class II antigen presentation is modulated by the activity of the peptide editor HLA-DM and its antagonist HLA-DO, with their interplay controlling the peptide repertoires presented by normal and malignant cells. The role of these molecules in allogeneic hematopoietic cell transplantation (alloHCT) is poorly investigated. Balanced expression of HLA-DM and HLA-DO can influence the presentation of leukemia-associated antigens and peptides targeted by alloreactive T cells, therefore affecting both anti-leukemia immunity and the potential onset of Graft versus Host Disease. We leveraged on a large collection of bulk and single cell RNA sequencing data, available at different repositories, to comprehensively review the level and distribution of HLA-DM and HLA-DO in different cell types and tissues of the human body. The resulting expression atlas will help future investigations aiming to dissect the dual role of HLA class II peptide editing in alloHCT, and their potential impact on its clinical outcome.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| | - Miguel Álvaro-Benito
- School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute, Madrid, Spain; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
| |
Collapse
|
5
|
Gagliano T, Kerschbamer E, Baccarani U, Minisini M, Di Giorgio E, Dalla E, Weichenberger CX, Cherchi V, Terrosu G, Brancolini C. Changes in chromatin accessibility and transcriptional landscape induced by HDAC inhibitors in TP53 mutated patient-derived colon cancer organoids. Biomed Pharmacother 2024; 173:116374. [PMID: 38447451 DOI: 10.1016/j.biopha.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.
Collapse
Affiliation(s)
- Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emanuela Kerschbamer
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Umberto Baccarani
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | | | - Vittorio Cherchi
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine, Italy
| | - Giovanni Terrosu
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy.
| |
Collapse
|
6
|
Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Gooley T, Stevenson P. HLA Haplotypes and Relapse After Hematopoietic Cell Transplantation. J Clin Oncol 2024; 42:886-897. [PMID: 38051980 PMCID: PMC10927336 DOI: 10.1200/jco.23.01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE Recurrence of blood malignancy is the major cause of hematopoietic cell transplant failure. HLA class II molecules play a fundamental role in antitumor responses but the role of class II haplotypes is not known. METHODS HLA-DR, -DQ, -DM, and -DO allele variation was determined in 1,629 related haploidentical transplants to study the clinical significance of individual molecules and haplotypes. RESULTS Outcome correlated with patient and donor variation for HLA-DRβ residue 86 (Gly/Val), HLA-DQ (G1/G2) heterodimers, and donor HLA-DM (DM11,11/nonDM11,11) molecules, and depended on patient-donor mismatching. Risks of relapse were lower for DRβ-86 GlyGly patients when the donor was GlyVal (hazard ratio [HR], 0.46 [95% CI, 0.30 to 0.68]; P < .001); GlyVal patients benefited from HLA-DRB1-matched donors, whereas no donor was superior to another for ValVal patients. G1G2 patients with G1G2-mismatched donors had lower relapse. Transplantation from donors with DMα residue 184 ArgHis was associated with higher risk of relapse (HR, 1.60 [95% CI, 1.09 to 2.36]; P = .02) relative to ArgArg. Relapse and mortality risks differed across HLA-DR-DQ-DM haplotypes. CONCLUSION HLA class II haplotypes may be functional constituents of the transplantation barrier, and their consideration in patients and donors may improve the success of transplantation.
Collapse
Affiliation(s)
- Effie W. Petersdorf
- Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington School of Medicine, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mari Malkki
- Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Theodore Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Philip Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
7
|
Gilles A, Hu L, Virdis F, Sant’Angelo DB, Dimitrova N, Hedrick JA, Denzin LK. The MHC Class II Antigen-Processing and Presentation Pathway Is Dysregulated in Type 1 Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1630-1642. [PMID: 37811896 PMCID: PMC10872857 DOI: 10.4049/jimmunol.2300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Peptide loading of MHC class II (MHCII) molecules is facilitated by HLA-DM (DM), which catalyzes CLIP release, stabilizes empty MHCII, and edits the MHCII-bound peptide repertoire. HLA-DO (DO) binds to DM and modulates its activity, resulting in an altered set of peptides presented at the cell surface. MHCII-peptide presentation in individuals with type 1 diabetes (T1D) is abnormal, leading to a breakdown in tolerance; however, no direct measurement of the MHCII pathway activity in T1D patients has been performed. In this study, we measured MHCII Ag-processing pathway activity in humans by determining MHCII, MHCII-CLIP, DM, and DO levels by flow cytometry for peripheral blood B cells, dendritic cells, and monocytes from 99 T1D patients and 97 controls. Results showed that MHCII levels were similar for all three APC subsets. In contrast, MHCII-CLIP levels, independent of sex, age at blood draw, disease duration, and diagnosis age, were significantly increased for all three APCs, with B cells showing the largest increase (3.4-fold). DM and DO levels, which usually directly correlate with MHCII-CLIP levels, were unexpectedly identical in T1D patients and controls. Gene expression profiling on PBMC RNA showed that DMB mRNA was significantly elevated in T1D patients with residual C-peptide. This resulted in higher levels of DM protein in B cells and dendritic cells. DO levels were also increased, suggesting that the MHCII pathway maybe differentially regulated in individuals with residual C-peptide. Collectively, these studies show a dysregulation of the MHCII Ag-processing pathway in patients with T1D.
Collapse
Affiliation(s)
- Ambroise Gilles
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, Current address: Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Lan Hu
- Oncology Informatics & Genomics, Philips North America, Cambridge, MA, 02141
| | - Francesca Virdis
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, Current address: Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
| | - Derek B. Sant’Angelo
- Child Health Institute of New Jersey, Department of Pediatrics and Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and Graduate School of Biomedical Sciences, The State University of NJ, New Brunswick, NJ, 08901
| | - Nevenka Dimitrova
- Oncology Informatics and Genomics, Philips North America, Valhalla, NY 10598, Current address: Memorial Sloan-Kettering Cancer Center, New York, NY, 10065
| | | | - Lisa K. Denzin
- Child Health Institute of New Jersey, Department of Pediatrics and Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and Graduate School of Biomedical Sciences, The State University of NJ, New Brunswick, NJ, 08901
| |
Collapse
|
8
|
Wang S, Liu H, Yang P, Wang Z, Ye P, Xia J, Chen S. A role of inflammaging in aortic aneurysm: new insights from bioinformatics analysis. Front Immunol 2023; 14:1260688. [PMID: 37744379 PMCID: PMC10511768 DOI: 10.3389/fimmu.2023.1260688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Aortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation. Methods The transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the "Limma" package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs. Results 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of "Limma" and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result. Discussion Our research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Gabibov AG. MHC Class II Presentation in Autoimmunity. Cells 2023; 12:314. [PMID: 36672249 PMCID: PMC9856717 DOI: 10.3390/cells12020314] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Life Sciences, Higher School of Economics, 101000 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Natural variation of ncHLAII molecules: challenges and perspectives. Cell Mol Immunol 2022; 19:1432-1434. [DOI: 10.1038/s41423-022-00910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
|
11
|
He J, Chen J, Han X, Gu Q, Liang J, Sun M, Liu S, Yao Y, Shi L. Association of HLA-DM and HLA class II Genes with Antibody Response Induced by Inactivated Japanese Encephalitis Vaccine. HLA 2022; 99:357-367. [PMID: 35118816 DOI: 10.1111/tan.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
HLA (HLA) class II molecules, HLA-DR, DP, and DQ, together with HLA II-like protein DM, play a dominant role in the processing and presentation of antigens, which may influence vaccine effectiveness. We previously demonstrated that variations in the HLA-DRB1, DPB1, and DQB1 genes may affect the neutralising antibody (NAb) response induced by the inactivated Japanese encephalitis vaccine (IJEV). In the present study, we genotyped HLA-DPA1, DQA1, DMA, and DMB genes and used previous HLA-DRB1, DPB1, and DQB1 data to evaluate the association of these genes with IJEV-induced NAbs, at both the seroconversion and geometric mean titres (GMTs). We confirmed the seropositive association of DQB1*02:01 and NAbs (0.156 vs. 0.075, Padj = 0.018; OR = 2.270; 95% CI = 1.285-3.999) and seronegative association of DQB1*02:02 (0.014 vs. 0.09, Padj = 0.0002; OR = 0.130; 95% CI = 0.047-0.400). Furthermore, the DMB*01:03-DMA*01:01-DPA1*01:03-DPB1*04:01 haplotype was associated with a negative response (0.020 vs. 0.074; Padj = 0.03; OR = 0.250; 95% CI = 0.097-0.649), whereas DRB1*15:02-DMB*01:01-DMA*01:01 was associated with a positive response (0.034 vs. 0; Padj = 0.044). In addition, DRB1*12:02, DRB1*13:02, DPB1*04:01, DPB1*05:01, DPB1*09:01, DQA1*06:01, and DQA1*01:02 were associated with a higher GMT of NAbs, whereas DRB1*11:01, DPB1*13:01, and DQA1*05:05 were associated with a lower GMT of NAbs. In conclusion, the present study suggests that variations in the HLA-DM and HLA class II genes, as well as their combined allotypes, may influence the IJEV NAbs at seroconversion and GMT levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jihong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jun Chen
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
12
|
Wu W, Syed F, Simpson E, Lee CC, Liu J, Chang G, Dong C, Seitz C, Eizirik DL, Mirmira RG, Liu Y, Evans-Molina C. The Impact of Pro-Inflammatory Cytokines on Alternative Splicing Patterns in Human Islets. Diabetes 2021; 71:db200847. [PMID: 34697029 PMCID: PMC8763875 DOI: 10.2337/db20-0847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Alternative splicing (AS) within the β cell has been proposed as one potential pathway that may exacerbate autoimmunity and unveil novel immunogenic epitopes in type 1 diabetes (T1D). We employed a computational strategy to prioritize pathogenic splicing events in human islets treated with IL-1β + IFN-γ as an ex vivo model of T1D and coupled this analysis with a k-mer based approach to predict RNA binding proteins involved in AS. In total, 969 AS events were identified in cytokine-treated islets, with the majority (44.8%) involving a skipped exon. ExonImpact identified 129 events predicted to impact protein structure. AS occurred with high frequency in MHC Class II-related mRNAs, and targeted qPCR validated reduced inclusion of Exon5 in the MHC Class II gene HLA-DMB. Single molecule RNA FISH confirmed increased HLA-DMB splicing in pancreatic sections from human donors with established T1D and autoantibody positivity. Serine and Arginine Rich Splicing Factor 2 was implicated in 37.2% of potentially pathogenic events, including Exon5 exclusion in HLA-DMB. Together, these data suggest that dynamic control of AS plays a role in the β cell response to inflammatory signals during T1D evolution.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Simpson
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Chuanpeng Dong
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, USA
| | - Clayton Seitz
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Universitê Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute (IBRI), Indianapolis, Indiana, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indiana University School of Informatics and Computing, Indianapolis, IN, USA
| |
Collapse
|
13
|
Partnering for the major histocompatibility complex class II and antigenic determinant requires flexibility and chaperons. Curr Opin Immunol 2021; 70:112-121. [PMID: 34146954 DOI: 10.1016/j.coi.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Cytotoxic, or helper T cells recognize antigen via T cell receptors (TCRs) that can see their target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. For MHC class II epitope selection from exogenous pathogens or self-antigens, participation of several accessory proteins, molecular chaperons, processing enzymes within multiple vesicular compartments is necessary. A major contributing factor is the MHC class II structure itself that uniquely offers a dynamic and flexible groove essential for epitope selection. In this review, I have taken a historical perspective focusing on the flexibility of the MHC II molecules as the driving force in determinant selection and interactions with the accessory molecules in antigen processing, HLA-DM and HLA-DO.
Collapse
|
14
|
Sticht J, Álvaro-Benito M, Konigorski S. Type 1 Diabetes and the HLA Region: Genetic Association Besides Classical HLA Class II Genes. Front Genet 2021; 12:683946. [PMID: 34220961 PMCID: PMC8248358 DOI: 10.3389/fgene.2021.683946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with rising incidence in high-income countries. Genetic and environmental predisposing factors contribute to the etiology of the disease, although their interaction is not sufficiently understood to allow for preventive action. Strongest known associations with genetic variation map to classical HLA class II genes. Because of its genetic complexity, the HLA region has been under-represented in genome-wide association studies, having potentially hindered the identification of relevant associations underlying the etiology of the disease. Here, we performed a comprehensive HLA-wide genetic association analysis of type 1 diabetes including multi-allelic and rare variants. We used high-density whole-exome sequencing data of the HLA region in the large UK Biobank dataset to apply gene-based association tests with a carefully defined type 1 diabetes phenotype (97 cases and 48,700 controls). Exon-based and single-variant association tests were used to complement the analysis. We replicated the known association of type 1 diabetes with the classical HLA-DQ gene. Tailoring the analysis toward rare variants, we additionally identified the lysine methyl transferase EHMT2 as associated. Deeper insight into genetic variation associated with disease as presented and discussed in detail here can help unraveling mechanistic details of the etiology of type 1 diabetes. More specifically, we hypothesize that genetic variation in EHMT2 could impact autoimmunity in type 1 diabetes development.
Collapse
Affiliation(s)
- Jana Sticht
- Digital Health and Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany.,Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stefan Konigorski
- Digital Health and Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
| |
Collapse
|
15
|
Permissive HLA-DPB1 mismatches in HCT depend on immunopeptidome divergence and editing by HLA-DM. Blood 2021; 137:923-928. [DOI: 10.1182/blood.2020008464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract
In hematopoietic cell transplantation (HCT), permissive HLA-DPB1 mismatches between patients and their unrelated donors are associated with improved outcomes compared with nonpermissive mismatches, but the underlying mechanism is incompletely understood. Here, we used mass spectrometry, T-cell receptor-β (TCRβ) deep sequencing, and cellular in vitro models of alloreactivity to interrogate the HLA-DP immunopeptidome and its role in alloreactive T-cell responses. We find that permissive HLA-DPB1 mismatches display significantly higher peptide repertoire overlaps compared with their nonpermissive counterparts, resulting in lower frequency and diversity of alloreactive TCRβ clonotypes in healthy individuals and transplanted patients. Permissiveness can be reversed by the absence of the peptide editor HLA-DM or the presence of its antagonist, HLA-DO, through significant broadening of the peptide repertoire. Our data establish the degree of immunopeptidome divergence between donor and recipient as the mechanistic basis for the clinically relevant permissive HLA-DPB1 mismatches in HCT and show that permissiveness is dependent on HLA-DM–mediated peptide editing. Its key role for harnessing T-cell alloreactivity to HLA-DP highlights HLA-DM as a potential novel target for cellular and immunotherapy of leukemia.
Collapse
|
16
|
Álvaro-Benito M, Freund C. Revisiting nonclassical HLA II functions in antigen presentation: Peptide editing and its modulation. HLA 2020; 96:415-429. [PMID: 32767512 DOI: 10.1111/tan.14007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
The nonclassical major histocompatibility complex of class II molecules (ncMHCII) HLA-DM (DM) and HLA-DO (DO) feature essential functions for the selection of the peptides that are displayed by classical MHCII proteins (MHCII) for CD4+ Th cell surveillance. Thus, although the binding groove of classical MHCII dictates the main features of the peptides displayed, ncMHCII function defines the preferential loading of peptides from specific cellular compartments and the extent to which they are presented. DM acts as a chaperone for classical MHCII molecules facilitating peptide exchange and thereby favoring the binding of peptide-MHCII complexes of high kinetic stability mostly in late endosomal compartments. DO on the other hand binds to DM blocking its peptide-editing function in B cells and thymic epithelial cells, limiting DM activity in these cellular subsets. DM and DO distinct expression patterns therefore define specific antigen presentation profiles that select unique peptide pools for each set of antigen presenting cell. We have come a long way understanding the mechanistic underpinnings of such distinct editing profiles and start to grasp the implications for ncMHCII biological function. DM acts as filter for the selection of immunodominant, pathogen-derived epitopes while DO blocks DM activity under certain physiological conditions to promote tolerance to self. Interestingly, recent findings have shown that the unexplored and neglected ncMHCII genetic diversity modulates retroviral infection in mouse, and affects human ncMHCII function. This review aims at highlighting the importance of ncMHCII function for CD4+ Th cell responses while integrating and evaluating what could be the impact of distinct editing profiles because of natural genetic variations.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Graves AM, Virdis F, Morrison E, Álvaro-Benito M, Khan AA, Freund C, Golovkina TV, Denzin LK. Human Hepatitis B Viral Infection Outcomes Are Linked to Naturally Occurring Variants of HLA-DOA That Have Altered Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:923-935. [PMID: 32690655 PMCID: PMC7415708 DOI: 10.4049/jimmunol.2000476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
HLA molecules of the MHC class II (MHCII) bind and present pathogen-derived peptides for CD4 T cell activation. Peptide loading of MHCII in the endosomes of cells is controlled by the interplay of the nonclassical MHCII molecules, HLA-DM (DM) and HLA-DO (DO). DM catalyzes peptide loading, whereas DO, an MHCII substrate mimic, prevents DM from interacting with MHCII, resulting in an altered MHCII-peptide repertoire and increased MHCII-CLIP. Although the two genes encoding DO (DOA and DOB) are considered nonpolymorphic, there are rare natural variants. Our previous work identified DOB variants that altered DO function. In this study, we show that natural variation in the DOA gene also impacts DO function. Using the 1000 Genomes Project database, we show that ∼98% of individuals express the canonical DOA*0101 allele, and the remaining individuals mostly express DOA*0102, which we found was a gain-of-function allele. Analysis of 25 natural occurring DOα variants, which included the common alleles, identified three null variants and one variant with reduced and nine with increased ability to modulate DM activity. Unexpectedly, several of the variants produced reduced DO protein levels yet efficiently inhibited DM activity. Finally, analysis of associated single-nucleotide polymorphisms genetically linked the DOA*0102 common allele, a gain-of-function variant, with human hepatitis B viral persistence. In contrast, we found that the DOα F114L null allele was linked with viral clearance. Collectively, these studies show that natural variation occurring in the human DOA gene impacts DO function and can be linked to specific outcomes of viral infections.
Collapse
Affiliation(s)
- Austin M Graves
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Francesca Virdis
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Eliot Morrison
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | - Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | - Aly A Khan
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Christian Freund
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | | | - Lisa K Denzin
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901;
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901; and
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
18
|
Ebner F, Morrison E, Bertazzon M, Midha A, Hartmann S, Freund C, Álvaro-Benito M. CD4 + T h immunogenicity of the Ascaris spp. secreted products. NPJ Vaccines 2020; 5:25. [PMID: 32218997 PMCID: PMC7083960 DOI: 10.1038/s41541-020-0171-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Ascaris spp. is a major health problem of humans and animals alike, and understanding the immunogenicity of its antigens is required for developing urgently needed vaccines. The parasite-secreted products represent the most relevant, yet complex (>250 proteins) antigens of Ascaris spp. as defining the pathogen-host interplay. We applied an in vitro antigen processing system coupled to quantitative proteomics to identify potential CD4+ Th cell epitopes in Ascaris-secreted products. This approach considerably restricts the theoretical list of epitopes using conventional CD4+ Th cell epitope prediction tools. We demonstrate the specificity and utility of our approach on two sets of candidate lists, allowing us identifying hits excluded by either one or both computational methods. More importantly, one of the candidates identified experimentally, clearly demonstrates the presence of pathogen-reactive T cells in healthy human individuals against these antigens. Thus, our work pipeline identifies the first human T cell epitope against Ascaris spp. and represents an easily adaptable platform for characterization of complex antigens, in particular for those pathogens that are not easily amenable for in vivo experimental validation.
Collapse
Affiliation(s)
- Friederike Ebner
- 1Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Eliot Morrison
- 2Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Miriam Bertazzon
- 2Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Ankur Midha
- 1Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Susanne Hartmann
- 1Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Christian Freund
- 2Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Miguel Álvaro-Benito
- 2Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
19
|
Freund C, Höfer T. A Missing Switch in Peptide Exchange for MHC Class II Molecules. Front Immunol 2019; 10:2513. [PMID: 31708929 PMCID: PMC6820466 DOI: 10.3389/fimmu.2019.02513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|