1
|
Raju S, Turner ME, Cao C, Abdul-Samad M, Punwasi N, Blaser MC, Cahalane RM, Botts SR, Prajapati K, Patel S, Wu R, Gustafson D, Galant NJ, Fiddes L, Chemaly M, Hedin U, Matic L, Seidman M, Subasri V, Singh SA, Aikawa E, Fish JE, Howe KL. Multiomics unveils extracellular vesicle-driven mechanisms of endothelial communication in human carotid atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599781. [PMID: 38979218 PMCID: PMC11230219 DOI: 10.1101/2024.06.21.599781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background: Carotid atherosclerosis is orchestrated by cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are cell-derived nanoparticles representing a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque. Methods: EVs were enriched via size exclusion chromatography from human carotid endarterectomy samples dissected into paired plaque and marginal zones (symptomatic n=16, asymptomatic n=13). EV cargos were assessed via whole transcriptome miRNA sequencing and mass spectrometry-based proteomics. EV multi-omics were integrated with bulk and single cell RNA-sequencing (scRNA-seq) datasets to predict EV cellular origin and ligand-receptor interactions, and multi-modal biological network integration of EV-cargo was completed. EV functional impact was assessed with endothelial angiogenesis assays. Results: Carotid plaques contained more EVs than adjacent marginal zones, with differential enrichment for EV-miRNAs and EV-proteins in key atherogenic pathways. EV cellular origin analysis suggested that tissue EV signatures originated from endothelial cells (EC), smooth muscle cells (SMC), and immune cells. Integrated tissue vesiculomics and scRNA-seq indicated complex EV-vascular cell communication that changed with disease progression and plaque vulnerability (i.e., symptomatic disease). Plaques from symptomatic patients, but not asymptomatic patients, were characterized by increased involvement of endothelial pathways and more complex ligand-receptor interactions, relative to their marginal zones. Plaque-EVs were predicted to mediate communication with ECs. Pathway enrichment analysis delineated an endothelial signature with roles in angiogenesis and neovascularization - well-known indices of plaque instability. This was validated functionally, wherein human carotid symptomatic plaque EVs induced sprouting angiogenesis in comparison to their matched marginal zones. Conclusion: Our findings indicate that EVs may drive dynamic changes in plaques through EV- vascular cell communication and effector functions that typify vulnerability to rupture, precipitating symptomatic disease. The discovery of endothelial-directed angiogenic processes mediated by EVs creates new therapeutic avenues for atherosclerosis.
Collapse
|
2
|
Liu X, Xiang R, Fang X, Wang G, Zhou Y. Advances in Metabolic Regulation of Macrophage Polarization State. Immunol Invest 2024; 53:416-436. [PMID: 38206296 DOI: 10.1080/08820139.2024.2302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| |
Collapse
|
3
|
Ong JWJ, Tan KS, Lee JJX, Seet JE, Choi HW, Ler SG, Gunaratne J, Narasaraju T, Sham LT, Patzel V, Chow VT. Differential effects of microRNAs miR-21, miR-99 and miR-145 on lung regeneration and inflammation during recovery from influenza pneumonia. J Med Virol 2023; 95:e29286. [PMID: 38087452 DOI: 10.1002/jmv.29286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
In a mouse model of influenza pneumonia, we previously documented that proliferating alveolar type II (AT2) cells are the major stem cells involved in early lung recovery. Profiling of microRNAs revealed significant dysregulation of specific ones, including miR-21 and miR-99a. Moreover, miR-145 is known to exhibit antagonism to miR-21. This follow-up study investigated the roles of microRNAs miR-21, miR-99a, and miR-145 in the murine pulmonary regenerative process and inflammation during influenza pneumonia. Inhibition of miR-21 resulted in severe morbidity, and in significantly decreased proliferating AT2 cells due to impaired transition from innate to adaptive immune responses. Knockdown of miR-99a culminated in moderate morbidity, with a significant increase in proliferating AT2 cells that may be linked to PTEN downregulation. In contrast, miR-145 antagonism did not impact morbidity nor the proliferating AT2 cell population, and was associated with downregulation of TNF-alpha, IL1-beta, YM1, and LY6G. Hence, a complex interplay exists between expression of specific miRNAs, lung regeneration, and inflammation during recovery from influenza pneumonia. Inhibition of miR-21 and miR-99a (but not miR-145) can lead to deleterious cellular and molecular effects on pulmonary repair and inflammatory processes during influenza pneumonia.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore
| | - Hyung Won Choi
- Department of Medicine, National University of Singapore, Singapore
| | | | | | - Teluguakula Narasaraju
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Karnataka, India
| | - Lok-To Sham
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Volker Patzel
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Vincent T Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
4
|
Hou Y, Wang Y, Tang K, Yang Y, Wang Y, Liu R, Wu B, Chen X, Fu Z, Zhao F, Chen L. CD226 deficiency attenuates cardiac early pathological remodeling and dysfunction via decreasing inflammatory macrophage proportion and macrophage glycolysis in STZ-induced diabetic mice. FASEB J 2023; 37:e23047. [PMID: 37392373 DOI: 10.1096/fj.202300424rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications in type I diabetic patients. Activated macrophage is critical for directing the process of inflammation during the development of DCM. The present study focused on the roles of CD226 on macrophage function during the DCM progression. It has been found that the number of cardiac macrophages in the hearts of streptozocin (STZ)-induced diabetes mice was significantly increased compared with that in non-diabetes mice, and the expression level of CD226 on cardiac macrophages in STZ-induced diabetes mice was higher than that in non-diabetes mice. CD226 deficiency attenuated the diabetes-induced cardiac dysfunction and decreased the proportion of CD86+ F4/80+ macrophages in the diabetic hearts. Notably, adoptive transfer of Cd226-/- - bone marrow derived macrophages (BMDMs) alleviated diabetes-induced cardiac dysfunction, which may be due to the attenuated migration capacity of Cd226-/- -BMDM under high glucose stimulation. Furthermore, CD226 deficiency decreased the macrophage glycolysis accompanying by the downregulated hexokinase 2 (HK2) and lactate dehydrogenase A (LDH-A) expression. Taken together, these findings revealed the pathogenic roles of CD226 played in the process of DCM and provided a basis for the treatment of DCM.
Collapse
Affiliation(s)
- Yongli Hou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yazhen Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Kang Tang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yan Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yiwei Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ruiyan Liu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Bin Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xutao Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zhaoyue Fu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Feng Zhao
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Gharib AF, Eed EM, Khalifa AS, Raafat N, Shehab-Eldeen S, Alwakeel HR, Darwiesh E, Essa A. Value of Serum miRNA-96-5p and miRNA-99a-5p as Diagnostic Biomarkers for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2427-2436. [PMID: 35264879 PMCID: PMC8901257 DOI: 10.2147/ijgm.s354842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Circulatory microRNAs (miRNAs) have the potential to be employed as markers for cancer detection and as prognostic tools for disease management. As a result, our goal was to explore the effectiveness of serum miRNA-96-5p and miRNA-99a-5p as diagnostic tools in hepatocellular carcinoma (HCC). Patients and methods Blood samples were collected from 55 patients with HCV-induced HCC, 55 patients with HCV-induced liver cirrhosis, and 55 healthy controls. The expression levels of miRNA-96-5p and miRNA-99a-5p were measured using quantitative RT-PCR. Results miRNA-96-5p expression levels were increased in HCC patient sera, while miRNA-99a-5p levels were reduced. According to ROC curve analysis, using a combination of circulating miRNA-96-5p, miRNA-99a-5-, and alpha-fetoprotein (AFP) improves the accuracy of diagnoses for HCC, with an area under the curve (AUC) of 0.97, compared to AUCs of 0.82, 0.86, and 0.73, respectively, for the individual biomarkers. Furthermore, the present data suggested that higher serum miRNA-96-5p levels were linked to larger tumors and metastasis, whereas lower serum miRNA-99a-5p levels were exclusively linked to HCC metastasis. Conclusion Using miRNA-96-5p and miRNA-99a-5p in combination with AFP increased both sensitivity and specificity for the diagnosis of HCC. Furthermore, serum levels were linked to tumor size and metastasis. These findings suggested that serum miRNA-96-5p and miRNA-99a-5p could be used as non-invasive biomarkers for the diagnosis of HCC.
Collapse
Affiliation(s)
- Amal F Gharib
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Emad M Eed
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Amany S Khalifa
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Nermin Raafat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Somaia Shehab-Eldeen
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
- Department of Internal Medicine, College of Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia
- Correspondence: Somaia Shehab-Eldeen, Tropical Medicine Department, Faculty of Medicine, Menoufia University, Yassen Abd Al Ghafar Street, Shebin El-Kom, 32511, Egypt, Tel +20 1117251523, Email
| | - Hany R Alwakeel
- Department of Hepatology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Ehab Darwiesh
- Department of Tropical Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abdallah Essa
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
- Department of Internal Medicine, College of Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia
| |
Collapse
|