1
|
Donnelly RP. Sorting Out the SOCS Genes and Their Role in Macrophage Activation. J Interferon Cytokine Res 2025; 45:39-42. [PMID: 39866122 DOI: 10.1089/jir.2025.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The suppressors of cytokine signaling (SOCS) genes were first described in a group of articles published in 1997. Since that time, much has been learned about the functional activities mediated by the corresponding proteins encoded by the SOCS genes. The SOCS gene family contains eight members: SOCS1 through SOCS7 and a highly related gene known as CISH (cytokine-inducible SH2-containing protein). Although much is known about the ability of the SOCS proteins to autoregulate responses to individual cytokines, much less is known about the ability of the SOCS proteins to cross-regulate cytokine signaling. The studies described in a new report by Bidgood et al. in this issue of JICR demonstrate that SOCS1 expression induced by one cytokine, interferon (IFN)-γ, can cross-regulate signaling induced by another cytokine, granulocyte macrophage colony-stimulating factor (GM-CSF), in murine bone marrow-derived macrophages. The authors show that the ability of SOCS1 to inhibit cytokine signaling is dose- and time-dependent. SOCS1 must reach a critical threshold level before it can exert a marked inhibitory effect on autocrine signaling through the IFN-γ receptor or paracrine signaling through the GM-CSF receptor.
Collapse
Affiliation(s)
- Raymond P Donnelly
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Ye Z, Yi J, Jiang X, Shi W, Xu H, Cao H, Qin L, Liu L, Wang T, Ma Z, Jiao Z. Gastric cancer-derived exosomal let-7 g-5p mediated by SERPINE1 promotes macrophage M2 polarization and gastric cancer progression. J Exp Clin Cancer Res 2025; 44:2. [PMID: 39748408 PMCID: PMC11694445 DOI: 10.1186/s13046-024-03269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy. OBJECTIVE This study aims to identify a dual-function target in GC cells that drives both malignant phenotypes and M2 macrophage polarization, revealing its molecular mechanisms to provide novel therapeutic targets for selectivly targeting M2-polarized TAMs in GC. METHODS Transcriptomic and clinical data from GC and adjacent tissues were utilized to identify mRNAs associated with high M2 macrophage infiltration and poor prognosis. Single-cell sequencing elucidated cell types expressing the target gene. Transwell co-culture and exosome intervention experiments demonstrated its role in M2 polarization. Small RNA sequencing of exosomes, western blotting, and CoIP assays revealed the molecular mechanisms underlying exosome-mediated M2 polarization. Protein array, ChIP and dual-luciferase reporter assays clarified the molecular mechanisms by which the target gene regulated exosomal miRNA. In vivo validation was performed using xenograft tumor models. RESULTS SERPINE1 was identified as a highly expressed mRNA in GC tissues and cells, significantly associated with advanced clinical stages, worse prognosis, and higher M2 macrophage infiltration in patients with GC. SERPINE1 overexpression in GC cells promoted tumor growth and M2 macrophage polarization. SERPINE1 facilitated the transfer of let-7 g-5p to macrophages via cancer-derived exosomes, inducing M2 polarization. Exosomal let-7 g-5p internalized by macrophages downregulated SOCS7 protein levels, disrupting its interaction with STAT3 and relieving the inhibition of STAT3 phosphorylation, thereby leading to STAT3 hyperactivation, which consequently drove M2 polarization. Additionally, in GC cells, elevated SERPINE1 expression activated JAK2, enhancing STAT3 binding to the let-7 g-5p promoter and promoting its transcription, thereby increasing let-7 g-5p levels in exosomes. CONCLUSION GC cell-derived SERPINE1, functioning as a primary driver of GC growth and TAM M2 polarization, promotes M2 polarization through the regulation of exosomal let-7 g-5p transfer via autocrine activation of the JAK2/STAT3 signaling pathway. These findings elucidate a novel mechanism of SERPINE1-induced M2 polarization and highlight SERPINE1 as a promising target for advancing immunotherapy and targeted treatments in GC.
Collapse
Affiliation(s)
- Zhenzhen Ye
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Research Center of Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jianfeng Yi
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Research Center of Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiangyan Jiang
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wengui Shi
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, 310006, China
| | - Hongtai Cao
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Long Qin
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lixin Liu
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianming Wang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhijian Ma
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zuoyi Jiao
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
4
|
Ouyang M, Yang Y, Yu G, Zhao J, Peng Y. BMSCs-derived Exosome CISH Alleviates Myocardial Infarction by Inactivating the NF-κB Pathway to Stimulate Macrophage M2 Polarization. Cardiovasc Toxicol 2024; 24:422-434. [PMID: 38512651 DOI: 10.1007/s12012-024-09847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/02/2024] [Indexed: 03/23/2024]
Abstract
Current myocardial infarction (MI) treatments are suboptimal, necessitating deeper pathogenesis understanding of MI. This research explored how exosomes (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) contribute to MI mitigation and their therapeutic potential. Isolated BMSCs was identified by microscope, flow cytometry, alizarin red and oil red O staining. Exo were identified by TEM, NTA and western blot. HE staining, masson staining, and cardiac function parameters were used to assess the cardiac function in MI mice. TUNEL staining, western blot and qRT-PCR were used to detect apoptosis, inflammatory factors and M1/M2 markers. The NF-κB pathway activation was detected through western blot assays. Immunofluorescence, qRT-PCR, western blot, and flow cytometry were employed to evaluate macrophage polarization. MI mice showed cardiac injury, increased apoptosis and inflammation, while BMSCs-Exo treatment alleviated these effects. In MI mice, the macrophage M1 polarization was increased and the NF-κB pathway was activated, whereas BMSCs-Exo treatment reversed these changes. Furthermore, CISH expression was reduced in MI mice, but was elevated with BMSCs-Exo treatment. In vitro, LPS shifted RAW264.7 cells to M1 phenotype and activated the NF-κB pathway, yet BMSCs-Exo shifted them to M2 phenotype and inhibited the NF-κB pathway. Mechanistically, BMSCs-Exo induced macrophage M2 polarization by transmitting CISH to inhibit NF-κB activation. BMSCs-Exo mitigates MI by transmitting CISH to inhibit the NF-κB pathway, promoting macrophages to M2 type. This implies BMSCs-Exo could be a useful treatment for MI, and CISH could be a potential therapy target.
Collapse
Affiliation(s)
- Minzhi Ouyang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, No 139 Renmin East Road, Furong District, Changsha City, 410011, Hunan Province, People's Republic of China
| | - Yang Yang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, No 139 Renmin East Road, Furong District, Changsha City, 410011, Hunan Province, People's Republic of China
| | - Guolong Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, People's Republic of China
| | - Jiling Zhao
- Cardiovascular Medicine Centre, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, 445000, Hubei Province, China
| | - Yi Peng
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, No 139 Renmin East Road, Furong District, Changsha City, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Muhammad W, Zhang Y, Zhu J, Xie J, Wang S, Wang R, Feng B, Zhou J, Chen W, Xu Y, Yao Q, Yu Y, Cao H, Gao C. Co-delivery of azithromycin and ibuprofen by ROS-responsive polymer nanoparticles synergistically attenuates the acute lung injury. BIOMATERIALS ADVANCES 2023; 154:213621. [PMID: 37714042 DOI: 10.1016/j.bioadv.2023.213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Bacterial infection causes lung inflammation and recruitment of several inflammatory factors that may result in acute lung injury (ALI). During bacterial infection, reactive oxygen species (ROS) and other signaling pathways are activated, which intensify inflammation and increase ALI-related mortality and morbidity. To improve the ALI therapy outcome, it is imperative clinically to manage bacterial infection and excessive inflammation simultaneously. Herein, a synergistic nanoplatform (AZI+IBF@NPs) constituted of ROS-responsive polymers (PFTU), and antibiotic (azithromycin, AZI) and anti-inflammatory drug (ibuprofen, IBF) was developed to enable an antioxidative effect, eliminate bacteria, and modulate the inflammatory milieu in ALI. The ROS-responsive NPs (PFTU NPs) loaded with dual-drugs (AZI and IBF) scavenged excessive ROS efficiently both in vitro and in vivo. The AZI+IBF@NPs eradicated Pseudomonas aeruginosa (PA) bacterial strain successfully. To imitate the entry of bacterial-derived compounds in body, a lipopolysaccharide (LPS) model was adopted. The administration of AZI+IBF@NPs via the tail veins dramatically reduced the number of neutrophils, significantly reduced cell apoptosis and total protein concentration in vivo. Furthermore, nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3) and Interleukin-1 beta (IL-1β) expressions were most effectively inhibited by the AZI+IBF@NPs. These findings present a novel nanoplatform for the effective treatment of ALI.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yiru Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
6
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Yuan J, Feng T, Guo Y, Luo K, Wu Q, Yu S, Zhou H. Global scientific trends update on macrophage polarization in rheumatoid arthritis: A bibliometric and visualized analysis from 2000 to 2022. Heliyon 2023; 9:e19761. [PMID: 37809950 PMCID: PMC10559075 DOI: 10.1016/j.heliyon.2023.e19761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The goal of this work was to use bibliometric analysis to help guide future research on macrophage polarization in RA. We looked for studies on macrophage polarization in RA published between January 1, 2000, and December 31, 2022, in the WoSCC database. Research trends and hotspots were shown and assessed using VOSviewer and CiteSpace. A total of 181 articles were gathered. Belgium was among the early adopters of the field. Chinese institutes have produced the most research. Researchers such as Angel Luis Corb, Amaya Puig-Kröger, and Lizbeth Estrada-Capetillo have made major contributions to the field. Frontiers in Immunology has published the most study findings. According to VOSviewer, the most investigated immune cells, biomarkers, and signaling pathways in the previous three years have been "T cells", "gm-csf", and "nf-κb" in that order. We discovered that the most often used terms in the previous three years were "pathway", "oxidative stress", "extracellular capsule" and "nlrp3 inflammasome" using Citespace. We emphasize these concepts in our findings, presenting the exact mechanisms of pathophysiology related to macrophage polarization in RA, as well as current breakthroughs in therapy strategies.
Collapse
Affiliation(s)
- Jun Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tong Feng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanding Guo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Kun Luo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qiaofeng Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuguang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haiyan Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|