1
|
Xiong Y, Tao K, Li T, Zhou Y, Zhang Z, Ou W, Wang Z, Wang S, Hou Y, Cao P, Ji J. Both chebulagic acid and punicalagin inhibit respiratory syncytial virus entry via multi-targeting glycoprotein and fusion protein. J Virol 2024; 98:e0153624. [PMID: 39508604 PMCID: PMC11650974 DOI: 10.1128/jvi.01536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections, with no currently available small-molecule drugs that are both safe and effective. A major obstacle in antiviral drug development is the rapid emergence of drug-resistant viral strains. Targeting multiple viral compounds may help mitigate the development of resistance. Herein, we conducted a drug screening using the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to identify compounds that simultaneously target the RSV fusion (F) protein, glycoprotein (G), and the host heparan sulfate proteoglycans (HSPGs). From this screening, 10 candidate compounds were identified for their ability to interact with all three targets. Among these 10 candidates, chebulagic acid (CHLA) and punicalagin (PUG) demonstrated the most potent inhibition of RSV replication. In vitro dose-response assays confirmed the antiviral efficacy of CHLA (IC50: 0.07864 µM) and PUG (IC50: 0.08065 µM). Further experiments revealed both CHLA and PUG disrupt RSV attachment and membrane fusion by targeting the RSV-F and G proteins, rather than HSPG. Notably, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with docking assays predicting their binding sites at cysteines 176 and 182. Additionally, CHLA enhanced the conformational stability of the RSV-F protein before fusion. In an in vivo study, both CHLA and PUG were shown to alleviate RSV-induced pulmonary pathology by reducing viral titers, mitigating lung injury, and suppressing the inflammatory responses in the lungs. Our findings suggest that CHLA and PUG hold potential as therapeutic agents for RSV infection.IMPORTANCEA significant challenge in developing anti-respiratory syncytial virus (RSV) agents is the rapid emergence of resistant viral strains. Designing drugs that target multiple viral components can effectively reduce the likelihood of developing resistant strains. In this study, we screened compounds from the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to simultaneously targe the RSV fusion (F) protein, glycoprotein (G), and host heparan sulfate proteoglycans (HSPGs). Our findings revealed that chebulagic acid (CHLA) and punicalagin (PUG) significantly inhibited RSV replication both in vitro and in vivo and interacted with all three targets. Both CHLA and PUG were able to disrupt RSV attachment and membrane fusion. Mechanistically, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with CHLA also enhancing the conformational stability of the RSV-F protein before fusion. In conclusion, our study suggests that CHLA and PUG hold promise as therapeutic agents against RSV infection.
Collapse
Affiliation(s)
- Yingcai Xiong
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keyu Tao
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Li
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinghui Zhou
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaowei Zhang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiying Ou
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Afliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Liu CH, Kuo YT, Lin CJ, Lin LT. Involvement of cell surface glycosaminoglycans in chebulagic acid's and punicalagin's antiviral activities against Coxsackievirus A16 infection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155047. [PMID: 37690230 DOI: 10.1016/j.phymed.2023.155047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Coxsackievirus A16 (CVA16) is responsible for several recent outbreaks of Hand, Foot, and Mouth Disease in the Asia-Pacific region, and there are currently no vaccines or specific treatments available. We have previously identified two tannins, chebulagic acid (CHLA) and punicalagin (PUG), as efficient entry inhibitors against multiple viruses known to engage cell surface glycosaminoglycans (GAGs). Interestingly, these two phytochemicals could also block enterovirus infection by directly inactivating CVA16 virions, which were recently reported to utilize GAGs to mediate its entry. PURPOSE The aim of this study is to evaluate the involvement of GAGs in the anti-CVA16 activities of CHLA and PUG. METHODS To explore a potential mechanistic link, the role of GAGs in promoting CVA16 entry was first confirmed by treating human rhabdomyosarcoma (RD) cells with soluble heparin or GAG lyases including heparinase and chondroitinase. We then performed a combination treatment of CHLA or PUG with the GAG interaction inhibitors to assess whether CHLA's and PUG's anti-CVA16 activities were related to GAG competition. Molecular docking and surface plasmon resonance (SPR) were conducted to analyze the interactions between CHLA, PUG, and CVA16 capsid. Lastly, CRISPR/Cas9 knockout (KO) of the Exostosin glycosyltransferase 1 (EXT1) gene, which encodes a transmembrane glycosyltransferase involved in heparan sulfate biosynthesis, was used to validate the importance of GAGs in CHLA's and PUG's antiviral effects. RESULTS Intriguingly, combining GAG inhibition via heparin/GAG lyases treatments with CHLA and PUG revealed that their inhibitory activities against CVA16 infection were overlapping. Further molecular docking analysis indicated that the predicted binding sites of CHLA and PUG on the CVA16 capsid are in proximity to the putative residues recognized for GAG interaction, thus pointing to potential interference with the CVA16-GAG association. SPR analysis also confirmed the direct binding of CHLA and PUG to CVA16 capsid. Finally, RD cells with EXT1 KO decreased CHLA's and PUG's antiviral effect on CVA16 infection. CONCLUSION Altogether, our results suggest that CHLA and PUG bind to CVA16 capsid and prevent the virus' interaction with heparan sulfate and chondroitin sulfate for its entry. This study provides mechanistic insight into the antiviral activity of CHLA and PUG against CVA16, which may be helpful for the development of antiviral strategies against the enterovirus.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
3
|
Zhou J, Zhao Y, Yang R, Zhang Z, Jin Y, Wang L, Huang M. Structure-based virtual screening and fragment replacement to design novel inhibitors of Coxsackievirus A16 (CVA16). J Biomol Struct Dyn 2023; 42:11677-11689. [PMID: 37811547 DOI: 10.1080/07391102.2023.2263890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
Numerous studies have shown that hand, foot and mouth disease (HFMD) pathogen Coxsackievirus A16 (CVA16) can also cause severe neurological complications and even death. Currently, there is no effective drugs and vaccines for CVA16. Therefore, developing a drug against CVA16 has become critical. In this study, we conducted two strategies-virtual screening (VS) and fragment replacement to obtain better candidates than the known drug GPP3. Through VS, 37 candidate drugs were screened (exhibiting a lower binding energy than GPP3). After toxicity evaluations, we obtained five candidates, analysed their binding modes and found that four candidates could enter the binding pocket of the GPP3. In another strategy, we analysed the four positions in GPP3 structures by the FragRep webserver and obtained a large number of candidates after replacing different functional groups, we obtained eight candidates (that target the four positions above) with the combined binding score and synthetic accessibility evaluations. AMDock software was uniformly utilized to perform molecular docking evaluation of the candidates with binding activity superior to that of GPP3. Finally, the selected top three molecules (Lapatinib, B001 and C001) and its interaction with CAV16 were validated by molecular dynamics (MD) simulation. The results indicated that all three molecules retain inside the pocket of CAV16 receptor throughout the simulation process, and he binding energy calculated from the MD simulation trajectories also support the strong affinity of the top three molecules towards the CVA16. These results will provide new ideas and technical guidance for designing and applying CVA16 therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yangyang Zhao
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhe Yang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong Zhang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Jin
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Wang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Min Huang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Zhao J, Shi Y, Ma Y, Pan L, Wang Y, Yuan L, Dong J, Ying J. Chebulagic acid suppresses gastric cancer by inhibiting the AURKA/β-catenin/Wnt pathway. Front Pharmacol 2023; 14:1143427. [PMID: 36937887 PMCID: PMC10014572 DOI: 10.3389/fphar.2023.1143427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is a prevalent malignant neoplasm that poses a serious threat to human health. Overexpression of Aurora A (AURKA) is frequently associated with the self-renewal and tumorigenicity of various cancers. Chebulagic acid (CA) has been examined as a potential tumor suppressor based on its ability against numerous tumor biological activities. However, the possible mechanisms of CA inhibition of the progression of GC by mediating the AURKA/β-catenin/Wnt signaling pathway have not been investigated. The present study investigated the level of AURKA expression in GC. We further examined the effect of CA on cell proliferation, migration, and apoptosis in the MKN1 and NUGC3 GC cell lines, and its efficacy in suppressing tumor growth was assessed in tumor bearing mice model. We demonstrated that AURKA was highly expressed in GC and associated with poor prognosis. We demonstrated that treatment with CA significantly inhibited the proliferation and migration of GC cells and induced apoptosis. Compared to the vehicle group, CA treatment severely diminished the volume and weight and the metastasis of tumors. CA also inhibited the expression of AURKA and the AURKA/β-catenin/Wnt signaling pathway in vitro and in vivo. Collectively, the present results demonstrated that high expression of AURKA may be an independent factor of poor prognosis in patients with GC, and CA significantly suppressed the tumor biological functions of GC and inhibited the AURKA/β-catenin/Wnt pathway.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yunfu Shi
- Oncology Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yubo Ma
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Libin Pan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yanan Wang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- *Correspondence: Li Yuan, ; Jinyun Dong, ; Jieer Ying,
| | - Jinyun Dong
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Li Yuan, ; Jinyun Dong, ; Jieer Ying,
| | - Jieer Ying
- Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- *Correspondence: Li Yuan, ; Jinyun Dong, ; Jieer Ying,
| |
Collapse
|
5
|
The Methanolic Extract of Perilla frutescens Robustly Restricts Ebola Virus Glycoprotein-Mediated Entry. Viruses 2021; 13:v13091793. [PMID: 34578374 PMCID: PMC8473196 DOI: 10.3390/v13091793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.
Collapse
|
6
|
Tienaho J, Reshamwala D, Karonen M, Silvan N, Korpela L, Marjomäki V, Sarjala T. Field-Grown and In Vitro Propagated Round-Leaved Sundew ( Drosera rotundifolia L.) Show Differences in Metabolic Profiles and Biological Activities. Molecules 2021; 26:3581. [PMID: 34208192 PMCID: PMC8230826 DOI: 10.3390/molecules26123581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Drosera rotundifolia L. is a carnivorous plant used in traditional medicine for its therapeutic properties. Because of its small size, its collection in nature is laborious and different cultivation methods have been studied to ensure availability. However, only a few studies exist where the lab-grown sundew tissue and field-grown sundew would have been compared in their functionality or metabolic profiles. In this study, the antioxidant and antiviral activities of lab-grown and field-grown sundew extracts and their metabolic profiles are examined. The effect of drying methods on the chromatographic profile of the extracts is also shown. Antioxidant activity was significantly higher (5-6 times) in field-grown sundew but antiviral activity against enterovirus strains coxsackievirus A9 and B3 was similar in higher extract concentrations (cell viability ca. 90%). Metabolic profiles showed that the majority of the identified compounds were the same but field-grown sundew contained higher numbers and amounts of secondary metabolites. Freeze-drying, herbal dryer, and oven or room temperature drying of the extract significantly decreased the metabolite content from -72% up to -100%. Freezing was the best option to preserve the metabolic composition of the sundew extract. In conclusion, when accurately handled, the lab-grown sundew possesses promising antiviral properties, but the secondary metabolite content needs to be higher for it to be considered as a good alternative for the field-grown sundew.
Collapse
Affiliation(s)
- Jenni Tienaho
- Biomass Characterization and Properties Group, Production Systems Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00791 Helsinki, Finland; (N.S.); (T.S.)
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, University of Jyväskylä, Seminaarinkatu 15, FI-40014 Jyväskylä, Finland; (D.R.); (V.M.)
| | - Maarit Karonen
- Natural Chemistry Research Group, University of Turku, FI-20014 Turku, Finland;
| | - Niko Silvan
- Biomass Characterization and Properties Group, Production Systems Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00791 Helsinki, Finland; (N.S.); (T.S.)
| | - Leila Korpela
- Forest Health and Biodiversity Group, Natural Resources Unit, Natural Resources Institute Finland, FI-00791 Helsinki, Finland;
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, University of Jyväskylä, Seminaarinkatu 15, FI-40014 Jyväskylä, Finland; (D.R.); (V.M.)
| | - Tytti Sarjala
- Biomass Characterization and Properties Group, Production Systems Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00791 Helsinki, Finland; (N.S.); (T.S.)
| |
Collapse
|
7
|
Virtual Screening Identifies Chebulagic Acid as an Inhibitor of the M2(S31N) Viral Ion Channel and Influenza A Virus. Molecules 2020; 25:molecules25122903. [PMID: 32599753 PMCID: PMC7356874 DOI: 10.3390/molecules25122903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.
Collapse
|
8
|
Li YP, Wang MQ, Deng HL, Li M, Zhang X, Dang SS, Zhai S. Association of polymorphisms in the vitamin D receptor gene with susceptibility to and severity of hand, foot, and mouth disease caused by coxsackievirus A16. J Med Virol 2020; 92:271-278. [PMID: 31587312 DOI: 10.1002/jmv.25603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Coxsackievirus A16 (CA16) remains the most common causative agent of hand, foot, and mouth disease (HFMD), and is related to high incidence and critical complications. Vitamin D receptor (VDR) activity might affect the outcome of CA16 infection. Our case-control research aims to evaluate the relationship between VDR polymorphisms in the gene encoding and susceptibility to and severity of HFMD due to CA16. Three single-nucleotide polymorphisms (SNPs) of VDR gene were selected according to functional prediction and linkage disequilibrium, and were examined utilizing the SNPscan method to identify possible associations with HFMD caused by CA16. A significant relationship was found in the HFMD cases of polymorphism rs11574129 (GA vs GG: odds ratio (OR) = 0.068, 95% confidence interval (CI) = 0.007-0.693, P = .023; GA + AA vs GG: OR = 0.322, 95%CI = 0.106-0.984, P = .047), and vitamin D levels in genotype AA were significantly higher than those in genotype GG (P < .05). These results suggest that VDR rs11574129 may influence genetic susceptibility to CA16-associated HFMD.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Hui-Ling Deng
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Mei Li
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Xin Zhang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Song Zhai
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| |
Collapse
|
9
|
Wen X, Sun D, Guo J, Elgner F, Wang M, Hildt E, Cheng A. Multifunctionality of structural proteins in the enterovirus life cycle. Future Microbiol 2019; 14:1147-1157. [PMID: 31368347 DOI: 10.2217/fmb-2019-0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Members of the genus Enterovirus have a significant effect on human health, especially in infants and children. Since the viral genome has limited coding capacity, Enteroviruses subvert a range of cellular processes for viral infection via the interaction of viral proteins and numerous cellular factors. Intriguingly, the capsid-receptor interaction plays a crucial role in viral entry and has significant implications in viral pathogenesis. Moreover, interactions between structural proteins and host factors occur directly or indirectly in multiple steps of viral replication. In this review, we focus on the current understanding of the multifunctionality of structural proteins in the viral life cycle, which may constitute valuable targets for antiviral and therapeutic interventions.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.,Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jinlong Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|