1
|
Zaborniak I, Sroka M, Wilk K, Cieślik A, Raczkowska J, Spilarewicz K, Janiszewska N, Awsiuk K, Wolski K, Pielichowska K, Błoniarz P, Kisiel K, Bednarenko M, Matyjaszewski K, Chmielarz P. Functionalization of Cotton by Thermoresponsive Polymer Brushes for Potential Use as Smart Dressings. ACS APPLIED POLYMER MATERIALS 2025; 7:5646-5660. [PMID: 40370371 PMCID: PMC12070369 DOI: 10.1021/acsapm.5c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025]
Abstract
Cotton is the most widely used dressing material due to its universal availability, affordability, high biodegradability, and ease of recyclability. Modern and advanced techniques for controlled polymer grafting onto its surface enhance and precisely tailor cotton's properties. These improvements contribute to the healing process by preventing adhesion to wounds, facilitating the absorption of body fluids, and enabling the design of innovative dressings capable of the controlled release of active substances. Therefore, this study presents the grafting of thermoresponsive polymer brushes composed of di(ethylene glycol) methyl ether methacrylate (DEGMA) and poly(ethylene glycol) methyl ether methacrylate (OEGMA, Mn ∼ 500) onto a cotton surface using surface-initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA ATRP). By precisely adjusting the composition of DEGMA and OEGMA500, we achieved precise control over the polymer layer's lower critical solution temperature (LCST) behavior. The LCST of the copolymers formed in the reaction mixture in the presence of the functionalized surface was analyzed via transmittance measurements. Furthermore, the thermoresponsive properties of the polymer layer grafted onto the cotton surface were evaluated through water contact angle (WCA) measurements at varying temperatures. In addition, the temperature-dependent protein adsorption of the polymer-functionalized cotton was examined to assess the potential dressing's adherence to wounds. Finally, the resulting materials were tested for residual copper content and cytotoxicity.
Collapse
Affiliation(s)
- Izabela Zaborniak
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Michał Sroka
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland
| | - Kamil Wilk
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland
| | - Anna Cieślik
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Łojasiewicza 11, Kraków 30-348, Poland
- Faculty
of Physics, Astronomy and Applied Computer Science, M. Smoluchowski
Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| | - Joanna Raczkowska
- Faculty
of Physics, Astronomy and Applied Computer Science, M. Smoluchowski
Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| | - Kaja Spilarewicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Natalia Janiszewska
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Łojasiewicza 11, Kraków 30-348, Poland
- Faculty
of Physics, Astronomy and Applied Computer Science, M. Smoluchowski
Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| | - Kamil Awsiuk
- Faculty
of Physics, Astronomy and Applied Computer Science, M. Smoluchowski
Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30-348, Poland
| | - Karol Wolski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Kinga Pielichowska
- Department
of Glass Technology and Amorphous Coatings, Faculty of Materials Science
and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, Kraków 30-059, Poland
| | - Paweł Błoniarz
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland
| | - Katarzyna Kisiel
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland
- Doctoral
School of the Rzeszow University of Technology, Rzeszow University of Technology, al. Powstańców Warszawy 8, Rzeszów 35-959, Poland
| | - Magdalena Bednarenko
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Paweł Chmielarz
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Gutierrez CD, Aranzábal RL, Lechuga AM, Serrano CA, Meza F, Elvira C, Gallardo A, Ludeña MA. A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid: A Pentacyclic Triterpenoid Phytochemical. Gels 2024; 10:602. [PMID: 39330204 PMCID: PMC11431203 DOI: 10.3390/gels10090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, poly(HEMA-PEGxMEM-IA) hydrogels were prepared by radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGxMEM), 2-hydroxyethyl methacrylate (HEMA), and itaconic acid (IA). The reaction was carried out in ethanolic solution using N,N'-methylenebisacrylamide (MBA) as a crosslinking agent and 1-hydroxycyclohexyl phenyl ketone (HCPK) as a photo-initiator. The poly(HEMA-PEGxMEM-IA) hydrogels (HGx) were evaluated as a delivery system for ursolic acid (UA), a phytochemical extracted from the plant Clinopodium revolutum, "flor de arena". The hydrogels were characterized by Fourier-transform infrared spectroscopy (FTIR-ATR), Raman spectroscopy, X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The swelling behavior was studied in buffer solutions from pH 2 to 10, specifically at pH 2.2 (gastric environment) and 7.4 (intestinal environment). It was found that the hydrogels studied showed sensitivity to pH. At pH 2.2, the degree of swelling for HG5 and HG9 hydrogels was 0.45 and 0.93 (g water/g hydrogel), respectively. At pH 7.4, the degree of swelling for HG5 and HG9 hydrogels was 1.97 and 2.64 (g water/g hydrogel), respectively. The SEM images show the variation in pore size as a function of pH, and the UA crystals in the pores of the hydrogels can also be observed. The in vitro UA release data best fit the Korsmeyer-Peppas kinetic model and the diffusion exponent indicates that the release mechanism is governed by Fickian diffusion.
Collapse
Affiliation(s)
- Carlos D. Gutierrez
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Rosana L. Aranzábal
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Ana M. Lechuga
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Carlos A. Serrano
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Flor Meza
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Peru;
| | - Carlos Elvira
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (C.E.); (A.G.)
| | - Alberto Gallardo
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (C.E.); (A.G.)
| | - Michael A. Ludeña
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| |
Collapse
|
3
|
Christopoulou A, Kazamiakis C, Iatridi Z, Bokias G. Controlled Amphiphilicity and Thermo-Responsiveness of Functional Copolymers Based on Oligo(Ethylene Glycol) Methyl Ether Methacrylates. Polymers (Basel) 2024; 16:1456. [PMID: 38891403 PMCID: PMC11174388 DOI: 10.3390/polym16111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
In this work, comb homopolymers as well as comb-type copolymers of thermo-responsive oligo(ethylene glycol methyl ether methacrylate)s, OEGMAs, with various chain lengths (DEGMA, PEGMA500, and PEGMA950 containing 2, 9, or 19 repeating ethylene glycol units, respectively) were synthesized through free radical (co)polymerization. For the copolymers, either the functional hydrophobic glycidyl methacrylate (GMA) or the inert hydrophilic N,N-dimethylacrylamide (DMAM) were selected as comonomers. The self-assembly and thermo-responsive behavior of the products was investigated through Nile Red fluorescence probing, turbidimetry, and dynamic light scattering (DLS). Interestingly, it was found that all OEGMA-based homopolymers exhibit a tendency to self-organize in aqueous media, in addition to thermo-responsiveness. The critical aggregation concentration (CAC) increases with the number of repeating ethylene oxide units in the OEGMA macromonomers (CAC was found to be 0.003, 0.01, and 0.03% w/v for the homopolymers PDEGMA, PPEGMA500, and PPEGMA950, respectively). Moreover, the CAC of the copolymers in aqueous media is highly affected by the incorporation of hydrophobic GMA or hydrophilic DMAM units, leading to lower or higher values, respectively. Thus, the CAC decreases down to 0.003% w/v for the GMA-richest copolymer of PEGMA950, whereas CAC increases up to 0.01% w/v for the DMAM-richest copolymer of DEGMA. Turbidimetry and DLS studies proved that the thermo-sensitivity of the polymers is governed by several parameters such as the number of repeating ethylene glycol groups in the side chains of the OEGMAs, the molar percentage of the hydrophobic or hydrophilic comonomers, along with the addition of salts in the aqueous polymer solutions. Thus, the cloud point of the homopolymer PDEGMA was found at 23 °C and it increases to 33.5 °C for the DMAM-richest copolymer of DEGMA. Lastly, the formation of a hydrogel upon heating aqueous mixtures of the GMA-comprising copolymers with silica nanoparticles overnight is strong evidence of the functional character of these polymers.
Collapse
Affiliation(s)
- Aggeliki Christopoulou
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (A.C.); (C.K.); (G.B.)
| | - Charalampos Kazamiakis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (A.C.); (C.K.); (G.B.)
| | - Zacharoula Iatridi
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece
| | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (A.C.); (C.K.); (G.B.)
- Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes, GR-26504 Patras, Greece
| |
Collapse
|
4
|
Ashraf J, Lau S, Akbarinejad A, Evans CW, Williams DE, Barker D, Travas-Sejdic J. Conducting Polymer-Infused Electrospun Fibre Mat Modified by POEGMA Brushes as Antifouling Biointerface. BIOSENSORS 2022; 12:1143. [PMID: 36551110 PMCID: PMC9775683 DOI: 10.3390/bios12121143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting polymers-based biointerfaces have emerged as advanced surfaces for interfacing biological tissues and organs with electronics. Antifouling of such biointerfaces is a challenge. In this study, we fabricated electrospun fibre mats from sulphonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (sSEBS), infused with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) (sSEBS-PEDOT), to produce a conductive (2.06 ± 0.1 S/cm), highly porous, fibre mat that can be used as a biointerface in bioelectronic applications. To afford antifouling, here the poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes were grafted onto the sSEBS-PEDOT conducting fibre mats via surface-initiated atom transfer radical polymerization technique (SI-ATRP). For that, a copolymer of EDOT and an EDOT derivative with SI-ATRP initiating sites, 3,4-ethylenedioxythiophene) methyl 2-bromopropanoate (EDOTBr), was firstly electropolymerized on the sSEBS-PEDOT fibre mat to provide sSEBS-PEDOT/P(EDOT-co-EDOTBr). The POEGMA brushes were grafted from the sSEBS-PEDOT/P(EDOT-co-EDOTBr) and the polymerization kinetics confirmed the successful growth of the brushes. Fibre mats with 10-mers and 30-mers POEGMA brushes were studied for antifouling using a BCA protein assay. The mats with 30-mers grafted brushes exhibited excellent antifouling efficiency, ~82% of proteins repelled, compared to the pristine sSEBS-PEDOT fibre mat. The grafted fibre mats exhibited cell viability >80%, comparable to the standard cell culture plate controls. Such conducting, porous biointerfaces with POEGMA grafted brushes are suitable for applications in various biomedical devices, including biosensors, liquid biopsy, wound healing substrates and drug delivery systems.
Collapse
Affiliation(s)
- Jesna Ashraf
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Sandy Lau
- Hub for Extracellular Vesicles Investigation (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1010, New Zealand
| | - Alireza Akbarinejad
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Clive W. Evans
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - David E. Williams
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Barker
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
5
|
Light activated pulsatile drug delivery for prolonged peripheral nerve block. Biomaterials 2022; 283:121453. [DOI: 10.1016/j.biomaterials.2022.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
|
6
|
Alejo T, Sebastian V, Mendoza G, Arruebo M. Hybrid thermoresponsive nanoparticles containing drug nanocrystals for NIR-triggered remote release. J Colloid Interface Sci 2021; 607:1466-1477. [PMID: 34592544 DOI: 10.1016/j.jcis.2021.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
The on-demand administration of anaesthetic drugs can be a promising alternative for chronic pain management. To further improve the efficacy of drug delivery vectors, high drug loadings combined with a spatiotemporal control on the release can not only relief the pain according to patient's needs, but also improve the drawbacks of conventional burst release delivery systems. In this study, a hybrid nanomaterial was developed by loading bupivacaine nanocrystals (BNCs) into oligo(ethylene glycol) methyl ether methacrylate (OEGMA)-based thermoresponsive nanogels and coupling them to NIR-absorbing biodegradable copper sulphide nanoparticles (CuS NPs). Those CuS NPs were surface modified with polyelectrolytes using layer-by-layer techniques to be efficiently attached to the surface of nanogels by means of supramolecular interactions. The encapsulation of bupivacaine in the form of nanocrystals allowed to achieve CuS@BNC-nanogels having drug loadings as high as 65.5 wt%. The nanocrystals acted as long-lasting drug reservoirs, leading to an elevated localized drug content, which was useful for their application in prolonged pain relief. The CuS@BNC-nanogels exhibited favorable photothermal transducing properties upon NIR-light irradiation. The photothermal effect granted by the CuS NPs triggered the nano-crystallized drug release to be boosted by the collapse of the thermoresponsive nanogels upon heating. Remote control was achieved for on-demand release at a specific time and place, indicating their potential use as an externally activated triggerable drug-delivery system. Furthermore, cell viability tests and flow cytometry analysis were performed showing satisfactory cytocompatibility in the dose-ranging study having a subcytotoxic concentration of 0.05 mg/mL for CuS@BNC-nanogels. This remotely activated nanoplatform is a promising strategy for long-lasting controlled analgesia and a potential alternative for clinical pain management.
Collapse
Affiliation(s)
- Teresa Alejo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain.
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Alejo T, Uson L, Landa G, Prieto M, Yus Argón C, Garcia-Salinas S, de Miguel R, Rodríguez-Largo A, Irusta S, Sebastian V, Mendoza G, Arruebo M. Nanogels with High Loading of Anesthetic Nanocrystals for Extended Duration of Sciatic Nerve Block. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17220-17235. [PMID: 33821601 PMCID: PMC8892441 DOI: 10.1021/acsami.1c00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of thermoresponsive nanogels loaded with nanocrystals of the local anesthetic bupivacaine nanocrystals (BNCs) for prolonged peripheral nerve pain relief is reported here. BNCs were prepared using the antisolvent precipitation method from the hydrophobic form of bupivacaine (bupivacaine free base). The as-prepared BNCs were used stand-alone or encapsulated in temperature-responsive poly(ethylene glycol) methyl ether methacrylate (OEGMA)-based nanogels, resulting in bupivacaine NC-loaded nanogels (BNC-nanogels) of monodisperse size. The synthesis protocol has rendered high drug loadings (i.e., 93.8 ± 1.5 and 84.8 ± 1.2 wt % for the NC and BNC-nanogels, respectively) and fast drug dissolution kinetics in the resulting composite material. In vivo tests demonstrated the efficacy of the formulation along with an extended duration of sciatic nerve block in murine models of more than 8 h with a formulation containing only 2 mg of the local anesthetic thanks to the thermoresponsive character of the polymer, which, at body temperature, becomes hydrophobic and acts as a diffusion barrier for the encapsulated drug nanocrystals. The hydrophobicity of the encapsulated bupivacaine free base probably facilitates its pass through cell membranes and also binds strongly to their hydrophobic lipid bilayer, thereby protecting molecules from diffusion to extracellular media and to the bloodstream, reducing their clearance. When using BNC-nanogels, the duration of the anesthetic blockage lasted twice as long as compared to the effect of just BNCs or a conventional bupivacaine hydrochloride solution both containing equivalent amounts of the free drug. Results of the in vivo tests showed enough sensory nerve block to potentially relieve pain, but still having mobility in the limb, which enables motor function when required. The BNC-nanogels presented minimal toxicity in the in vivo study due to their sustained drug release and excellent biocompatibility. The encapsulation of nano-sized crystals of bupivacaine provides a prolonged regional anesthesia with reduced toxicity, which could be advantageous in the management of chronic pain.
Collapse
Affiliation(s)
- Teresa Alejo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Laura Uson
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Guillermo Landa
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Martin Prieto
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Cristina Yus Argón
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Sara Garcia-Salinas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Ricardo de Miguel
- Department
of Animal Pathology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Ana Rodríguez-Largo
- Department
of Animal Pathology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Silvia Irusta
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Pires-Oliveira R, Tang J, Percebom AM, Petzhold CL, Tam KC, Loh W. Effect of Molecular Architecture and Composition on the Aggregation Pathways of POEGMA Random Copolymers in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15018-15029. [PMID: 33275433 DOI: 10.1021/acs.langmuir.0c02538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding of the temperature-induced phase transition of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) random copolymers with varied composition remains largely incomplete. Upon heating they can form either macroscopically phase-separated aggregates or micelles. We examined the effect of polymer architecture by rationally designing and synthesizing various POEGMA copolymer structures via atom transfer radical polymerization using OEGMA monomers of different EO lengths. Micelle formation occurred for copolymers with a small fraction of long side chains counterbalanced by an appropriate number of short side chains, while macroscopic phase separation occurred for other copolymer compositions. In some copolymer compositions and architectures, micelle formation followed by macroscopic phase separation occurred, and the temperature of these phase transitions could be tailored accordingly. This new strategy allows the control over the microstructure and specific transition temperatures enabling, for instance, the preparation of nanocarriers for encapsulating hydrophobic compounds.
Collapse
Affiliation(s)
- Rafael Pires-Oliveira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13084-970, Brazil
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Juntao Tang
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Ana Maria Percebom
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Gávea, Rio de Janeiro 22541-041, Brazil
| | - Cesar L Petzhold
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Kam C Tam
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Watson Loh
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| |
Collapse
|
9
|
Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, Vasheghani-Farahani E, Jabbari E. Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels 2020; 6:E20. [PMID: 32635573 PMCID: PMC7559285 DOI: 10.3390/gels6030020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nanogels, or nanostructured hydrogels, are one of the most interesting materials in biomedical engineering. Nanogels are widely used in medical applications, such as in cancer therapy, targeted delivery of proteins, genes and DNAs, and scaffolds in tissue regeneration. One salient feature of nanogels is their tunable responsiveness to external stimuli. In this review, thermosensitive nanogels are discussed, with a focus on moieties in their chemical structure which are responsible for thermosensitivity. These thermosensitive moieties can be classified into four groups, namely, polymers bearing amide groups, ether groups, vinyl ether groups and hydrophilic polymers bearing hydrophobic groups. These novel thermoresponsive nanogels provide effective drug delivery systems and tissue regeneration constructs for treating patients in many clinical applications, such as targeted, sustained and controlled release.
Collapse
Affiliation(s)
- Sobhan Ghaeini-Hesaroeiye
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Hossein Razmi Bagtash
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Soheil Boddohi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
10
|
Abstract
Introduction: The development of more efficacious vaccines, especially subunit vaccines administered via non-invasive routes, is a priority in vaccinology. Nanogels are materials that can meet the requirements to serve as efficient vaccine delivery vehicles (in terms of thermo-sensitivity, biocompatibility, and pH-responsiveness; among others); thus there is a growing interest in exploring the potential of nanogels for vaccine development. Areas covered: Herein, a critical analysis of nanogel synthesis methodologies is presented and nanogel-based vaccines under development are summarized and placed in perspective. Promising vaccine candidates based on nanogels have been reported for cancer, obesity, and infectious diseases (mainly respiratory diseases). Some of the candidates were administered by mucosal routes which are highly attractive in terms of simple administration and induction of protective responses at both mucosal and systemic levels. Expert opinion: The most advanced models of nanogel-based vaccines comprise candidates against cancer, based on cholesteryl pullulan nanogels evaluated in clinical trials with promising findings; as well as some vaccines against respiratory pathogens tested in mice thus far. Nonetheless, the challenge for this field is advancing in clinical trials and proving the protective potential in test animals for many other candidates. Implementing green synthesis approaches for nanogels is also required.
Collapse
|
11
|
Santos WG, Mattiucci F, Ribeiro SJL. Polymerization Rate Modulated by Tetraarylborate Anion Structure: Direct Correlation of Hammett Substituent Constant with Polymerization Kinetics of 2-Hydroxyethyl Methacrylate. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Willy G. Santos
- Institute of Chemistry, São Paulo State University - UNESP, CP 355, Araraquara, SP 14801-970, Brazil
| | - Fernando Mattiucci
- Instituto de Quı́mca de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Sidney J. L. Ribeiro
- Institute of Chemistry, São Paulo State University - UNESP, CP 355, Araraquara, SP 14801-970, Brazil
| |
Collapse
|
12
|
Chi H, Wang M, Xiao Y, Wang F, K S J. Self-Assembly and Applications of Amphiphilic Hybrid POSS Copolymers. Molecules 2018; 23:E2481. [PMID: 30262758 PMCID: PMC6222655 DOI: 10.3390/molecules23102481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
Understanding the mechanism of molecular self-assembly to form well-organized nanostructures is essential in the field of supramolecular chemistry. Particularly, amphiphilic copolymers incorporated with polyhedral oligomeric silsesquioxanes (POSSs) have been one of the most promising materials in material science, engineering, and biomedical fields. In this review, new ideas and research works which have been carried out over the last several years in this relatively new area with a main focus on their mechanism in self-assembly and applications are discussed. In addition, insights into the unique role of POSSs in synthesis, microphase separation, and confined size were encompassed. Finally, perspectives and challenges related to the further advancement of POSS-based amphiphilics are discussed, followed by the proposed design considerations to address the challenges that we may face in the future.
Collapse
Affiliation(s)
- Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingyue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yiting Xiao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuke Wang
- Polymeric Materials Department, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | - Joshy K S
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India.
| |
Collapse
|