1
|
Chorbacher J, Klopf J, Friedrich A, Fest M, Schneider JS, Engels B, Helten H. Regioregular Poly(p-phenylene iminoborane): A Strictly Alternating BN-Isostere of Poly(p-phenylene vinylene) with Stimuli-Responsive Behavior. Angew Chem Int Ed Engl 2025; 64:e202416088. [PMID: 39614780 DOI: 10.1002/anie.202416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 12/12/2024]
Abstract
Incorporation of BN units into π-conjugated organic compounds, as substitutes for specific CC couples, often leads to new hybrid materials with modified physical and chemical properties. Poly(p-phenylene iminoborane)s are derived from well-known poly(p-phenylene vinylene) (PPV) by replacement of the vinylene groups by B=N linking units. Herein, an unprecedented poly(p-phenylene iminoborane) is presented that features a strictly alternating sequence of BN units along the main chain. The synthesis thereof was achieved by AB-type polymerization of a monomer featuring an N and a B terminus. Monodisperse oligomers with up to three BN units in the chain were additionally prepared and structurally characterized. Associated with the introduction of a dipole in the regioregular backbone structure, they display notable fluorescence already in solution and large Stokes shifts, distinct from their previously reported BBNN-sequenced congeners. All compounds show aggregation-induced emission enhancement (AIEE) properties. Computational studies provided evidence for emission from either locally excited (LE) or twisted intramolecular charge transfer (TICT) states. These processes can be optionally addressed by various stimuli, giving rise to dual emission, solvatochromic, thermochromic, and reversible mechanochromic behavior.
Collapse
Affiliation(s)
- Johannes Chorbacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Maximilian Fest
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Bernd Engels
- Julius-Maximilians-Universität Würzburg, Institute for Physical and Theoretical Chemistry, Emil-Fischer-Strasse 42, 97074, Würzburg, Germany
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Ohtani S, Gon M, Tanaka K, Chujo Y. Synthesis of Regioregular and Random Boron-Fused Azomethine Conjugated Polymers for Film Morphology Control. Chem Asian J 2024; 19:e202301136. [PMID: 38326231 DOI: 10.1002/asia.202301136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Regioregular and random conjugated polymers based on a boron-fused azomethine unit were synthesized by Sonogashira-Hagihara cross coupling reaction. Although these polymers exhibited similar optical properties in the solution states, a distinct difference was observed in the aggregation forming ability in the film states; scanning electron microscope (SEM) observation indicated the existence of fiber-like aggregates in the spin-coated film of the regioregular polymer, while regiorandom polymer showed no aggregate in the film state. Accordingly, the UV-vis absorption spectrum of the regioregular polymer showed an increased shoulder peak due to the aggregate formation, whereas the random one showed no change. Furthermore, an absolute fluorescence quantum efficiency of the regioregular polymer was enhanced in response to the aggregate disassembly via thermal annealing treatment. In this study, we demonstrate that controlling regioregularity of the conjugated polymers can induce the different morphological structures and thermal-responsive behaviors. These findings could be beneficial for the design strategy and potential applications of thin-film optoelectronic devices with stimuli-responsive properties.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
3
|
Gon M, Yaegashi M, Tanaka K, Chujo Y. Near-Infrared Emissive Hypervalent Compounds with Germanium(IV)-Fused Azobenzene π-Conjugated Systems. Chemistry 2023; 29:e202203423. [PMID: 36441133 DOI: 10.1002/chem.202203423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
A novel molecular design for showing near-infrared (NIR) emission is still required for satisfying growing demands for NIR-light technology. In this research, hypervalent compounds with germanium (Ge)-fused azobenzene (GAz) scaffolds were discovered that can exhibit NIR emission (λPL =690∼721 nm, ΦPL =0.03∼0.04) despite compact π-conjugated systems. The unique optical properties are derived from the trigonal bipyramidal geometry of the hypervalent compounds constructed by combination of Ge and azobenzene-based tridentate ligands. Experimental and theoretical calculation results disclosed that the germanium-nitrogen (Ge-N) coordination at the equatorial position strongly reduces the energy level of the LUMO (lowest unoccupied molecular orbital), and the three-center four-electron (3 c-4 e) bond in the apical position effectively rises the energy level of the HOMO (highest occupied molecular orbital). It is emphasized that large narrowing of the HOMO-LUMO energy gap is achieved just by forming the hypervalent bond. In addition, the narrow-energy-gap property can be enhanced by extension of π-conjugation. The obtained π-conjugated polymer shows efficient NIR emission both in solution (λPL =770 nm and ΦPL =0.10) and film (λPL =807 nm and ΦPL =0.04). These results suggest that collaboration of a hypervalent bond and a π-conjugated system is a novel and effective strategy for tuning electronic properties even in the NIR region.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Misao Yaegashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Recent progresses in the mechanistic studies of aggregation-induced emission-active boron complexes and clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Tanaka K, Chujo Y. Frustrated element-blocks: A new platform for constructing unique stimuli-responsive luminescent materials. Polym J 2022. [DOI: 10.1038/s41428-022-00709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Zhu J, Liu Y, Huang S, Wen S, Bao X, Cai M, Li J. Impact of backbone linkage positions on the molecular aggregation behavior of polymer photovoltaic materials. Phys Chem Chem Phys 2022; 24:17462-17470. [PMID: 35670087 DOI: 10.1039/d2cp01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is imperative to advance the structural design of conjugated materials to achieve a practical impact on the performance of photovoltaic devices. However, the effect of the linkage positions (meta-, para-) of the backbone on the molecular packing has been relatively little explored. In this study, we have synthesized two wide-bandgap polymer photovoltaic materials from identical monomers with different linkage positions, using dibenzo[c,h][2,6]-naphthyridine-5,11-(6H,12H)-dione (DBND) as the building block. This study shows that the para-connected polymer exhibits an unexpected 0.2 eV higher ionization potential and a resultant higher open-circuit voltage than the meta-connected counterpart. We found that different linkage positions result in different intermolecular binding energies and molecular aggregation conformations, leading to different HOMO energy levels and photovoltaic performances. Specifically, theoretical calculations and 2D-NMR indicate that P(p-DBND-f-2T) performs a segregated stacking of f-2T and DBND units, while P(m-DBND-f-2T) films form π-overlaps between f-2T and DBND. These results show that linkage position adjustment on the polymeric backbone exerts a profound influence on the molecular aggregation of the materials. Also, the effect of isomerism on the polymer backbone is crucial in designing polymer structures for photovoltaic applications.
Collapse
Affiliation(s)
- Jinyue Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China. .,Research and Development Center of Aluminum-ion Battery, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yanfang Liu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuguang Wen
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Mian Cai
- Research and Development Center of Aluminum-ion Battery, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jingwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
7
|
Suenaga K, Ito S, Tanaka K, Chujo Y. Modulation of Properties by Ion Changing Based on Luminescent Ionic Salts Consisting of Spirobi(boron ketoiminate). Molecules 2022; 27:molecules27113438. [PMID: 35684375 PMCID: PMC9182478 DOI: 10.3390/molecules27113438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
We report development of luminescent ionic salts consisting of the boron ketoiminate structure, which is one of the robust skeletons for expressing aggregation-induced emission (AIE) properties. From the formation of the boron-centered spiro structure with the ketoiminate ligands, we obtained stable ionic salts with variable anions. Since the ionic salts show Tms below 100 °C, it was shown that these salts can be classified as an ionic liquid. By using PF6 anion, the single crystal—which is applicable for X-ray crystallography—was obtained. According to the optical measurements, it was proposed that electronic interaction should occur through the boron center. Moreover, intense emission was observed both in solution and solid. Finally, we demonstrated that the emission color of the PF6 salt was altered from crystal to amorphous by adding mechanical forces. Based on boron complexation and intrinsic solid-state luminescent characters, we achieved obtainment of emissive ionic materials with environmental responsivity.
Collapse
Affiliation(s)
| | | | - Kazuo Tanaka
- Correspondence: ; Tel.: +81-75-383-2604; Fax: +81-75-383-2605
| | | |
Collapse
|
8
|
Ochi J, Yuhara K, Tanaka K, Chujo Y. Controlling the Dual-Emission Character of Aryl-Modified o-Carboranes by Intramolecular CH⋅⋅⋅O Interaction Sites. Chemistry 2022; 28:e202200155. [PMID: 35170101 DOI: 10.1002/chem.202200155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/18/2023]
Abstract
It is still challenging to realize a dual-emission system, in which two luminescent bands simultaneously appear by photoexcitation, in solid with organic dyes due to the difficulty in regulation of electronic properties in the excited state and concentration quenching. o-Carborane is known to be a versatile platform for constructing solid-state emitters since the sphere boron cluster is favorable for suppressing intermolecular interactions and subsequently concentration quenching. Here, we show solid-state dual-emissive o-carborane derivatives. We prepared 4 types of o-carborane derivatives and found dual-emission behaviors both in solution and solid states. By regulating the rotation at the o-carborane unit with the intramolecular Ccage H⋅⋅⋅O interaction, the dual-emission intensity ratios were changed. Finally, it was demonstrated that the overall photoluminescence spectra can be estimated using the binding energy of intramolecular interactions.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuhiro Yuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
9
|
Gon M, Tanaka K, Chujo Y. Recent Progresses on Designable Hybrids with Stimuli-Responsive Optical Properties Originating from Molecular Assembly Concerning Polyhedral Oligomeric Silsesquioxane. Chem Asian J 2022; 17:e202200144. [PMID: 35322576 DOI: 10.1002/asia.202200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Indexed: 11/10/2022]
Abstract
In this review, we describe recent progresses on the stimuli-responsive hybrid materials based on polyhedral oligomeric silsesquioxane (POSS) and their applications as a chemical sensor. In particular, we explain the unique functions originating from molecular assembly concerning POSS-containing soft materials mainly from our studies. POSS has an inorganic cubic core composed of silicon-oxygen (Si-O) bonds and organic substituents at each vertex. Owing to intrinsic properties of POSS, such as high thermal stability, rigidity, and low chemical reactivity, various robust hybrid materials have been developed. From the numerous numbers of POSS hybrids, we herein focus on the environment-sensitive optical materials in which molecular assembly of POSS itself and functional units connected to POSS should be a key factor for expressing material properties. We also explain the mechanisms of chemical sensors originating from these stimuli-responsive optical properties. Stimuli-responsive excimer emission and pollutant detectors, nanoplastic sensors with the water-dispersive POSS networks, trans fatty acid sensors, turn-on luminescent sensors for aerobic condition and fluoride anion sensors are described. We also mention the mechanochromic polyurethane hybrids and the thermally-durable mechanochromic luminescent materials. The roles of the unique optical properties from soft materials composed of rigid POSS, which doesn't have significant light-absorption and emission properties in the visible region, are surveyed.
Collapse
Affiliation(s)
- Masayuki Gon
- Kyoto University: Kyoto Daigaku, Polymer Chemistry, Kyoto University, Katsura Nishikyo-ku, 615-8510, Kyoto, JAPAN
| | - Kazuo Tanaka
- Kyoto University, Graduate School of Engineering, Department of Polymer Chemistry, Katsura, Nishikyo-ku, 615-8510, Kyoto, JAPAN
| | - Yoshiki Chujo
- Kyoto University: Kyoto Daigaku, Polymer chemistry, Kyoto University, Katsura Nishikyo-ku, 615-8510, Kyoto, JAPAN
| |
Collapse
|
10
|
Iizuka D, Gon M, Tanaka K, Chujo Y. Acceleration of Chemiluminescence Reactions with Coumarin-modified Polyhedral Oligomeric Silsesquioxane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daisuke Iizuka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Iizuka D, Gon M, Tanaka K, Chujo Y. Development of a fluoride-anion sensor based on aggregation of a dye-modified polyhedral oligomeric silsesquioxane. Chem Commun (Camb) 2022; 58:12184-12187. [DOI: 10.1039/d2cc04801a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new concept for a turn-on fluoride sensor based on the aggregation and release of a dye-modified polyhedral oligomeric silsesquioxane.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Development of Long Wavelength Light-Absorptive Homopolymers Based on Pentaazaphenalene by Regioselective Oxidative Polymerization. Polymers (Basel) 2021; 13:polym13224021. [PMID: 34833319 PMCID: PMC8619047 DOI: 10.3390/polym13224021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the generation of structural isomers at the connecting points, which is often observed in this type of reaction. Therefore, we were able to evaluate electronic structures of the synthesized homopolymers. In addition, it was observed that absorption bands were obtained in the longer wavelength region than the monomer. The computer calculation suggests that the highest occupied molecular orbital (HOMO) energy levels could be lowered by electronic interaction through spatially-separated HOMOs of 5AP. Moreover, we can evaluate the extension of the conjugated system through the meta-substituted skeleton and distance dependency of the main-chain conjugation.
Collapse
|
13
|
Gon M, Ito S, Tanaka K, Chujo Y. Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block π-Conjugated Polymers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
Modulation of
stimuli‐responsiveness
toward acid vapor between
real‐time
and
write‐erase
responses based on conjugated polymers containing azobenzene and Schiff base moieties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Ochi J, Tanaka K, Chujo Y. Dimerization-Induced Solid-State Excimer Emission Showing Consecutive Thermochromic Luminescence Based on Acridine-Modified o-Carboranes. Inorg Chem 2021; 60:8990-8997. [PMID: 34110800 DOI: 10.1021/acs.inorgchem.1c00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although excimer emission is a useful luminescent phenomenon for fabricating optical sensors and probes, it is difficult to apply excimer emission for film sensors due to critical concentration quenching in the solid state. Therefore, robust molecular designs for solid-state excimer emission are still being explored. One of the key examples is the previously reported acridine-ethynyl-o-carborane AcE1, which showed a bright solid-state excimer emission assisted by characteristic CcageH···N interactions. In this paper, we report the newly synthesized acridine-diehynyl-o-carborane AcE2 and comprehensively compare it to AcE1. Both compounds had the same crystalline packing mode based on dimer formation, resulting in an efficient π-overlapping area and solid-state excimer emission. Variable-temperature photoluminescence (VT-PL) measurements revealed the consecutive thermochromic luminescence of these compounds. Finally, on the basis of the easily accessible spray-coating method, we constructed the thermochromic luminescent sensors on quartz substrates. According to the mechanistic studies, it is demonstrated that the design strategy based on a dimer-induced solid-state excimer should have great potential for applications as a molecular thermometer.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
16
|
Gon M, Tanimura K, Yaegashi M, Tanaka K, Chujo Y. PPV-type π-conjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission. Polym J 2021. [DOI: 10.1038/s41428-021-00506-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Gon M, Tanaka K, Chujo Y. Vapochromic Luminescent π-Conjugated Systems with Reversible Coordination-Number Control of Hypervalent Tin(IV)-Fused Azobenzene Complexes. Chemistry 2021; 27:7561-7571. [PMID: 33780065 DOI: 10.1002/chem.202100571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 02/02/2023]
Abstract
The dynamic and reversible changes of coordination numbers between five and six in solution and solid states, based on hypervalent tin(IV)-fused azobenzene (TAz) complexes, are reported. It was found that the TAz complexes showed deep-red emission owing to the hypervalent bond composed of an electron-donating three-center four-electron (3c-4e) bond and an electron-accepting nitrogen-tin (N-Sn) coordination. Furthermore, hypsochromic shifts in optical spectra were observed in Lewis basic solvents because of alteration of the coordination number from five to six. In particular, vapochromic luminescence was induced by attachment of dimethyl sulfoxide (DMSO) vapor to the coordination point at the tin atom accompanied with a crystal-crystal phase transition. Additionally, the color-change mechanism and degree of binding constants were well explained by theoretical calculation. To the best of our knowledge, this is the first example of vapochromic luminescence by using stable and variable coordination numbers of hypervalent bonds.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
18
|
Gon M, Saotome S, Tanaka K, Chujo Y. Paintable Hybrids with Thermally Stable Dual Emission Composed of Tetraphenylethene-Integrated POSS and MEH-PPV for Heat-Resistant White-Light Luminophores. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12483-12490. [PMID: 33656311 DOI: 10.1021/acsami.0c22298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermally stable dual emission followed by white-light luminescence from hybrid materials is reported. Hybrid films were prepared with a spin-coating method with the mixture solution containing tetraphenylethene (TPE)-integrated polyhedral oligomeric silsesquioxane (POSS) and poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV). TPE-tethered POSS (TPE-POSS) showed high compatibility with MEH-PPV. Therefore, homogeneous films with variable concentrations of TPE-POSS were obtained. Owing to good dispersion of rigid silica cubes into matrices, POSS-containing films demonstrated high thermal stability toward molecular rearrangement by annealing as well as pyrolysis, similar to conventional polymer hybrids. Furthermore, it was found that TPE-POSS was able to enhance emission efficiencies, probably by suppressing chain aggregation. By modulating introduction ratios of TPE-POSS, dual-emission properties followed by white-light luminescence composed of cyan and orange emissions from TPE-POSS and MEH-PPV, respectively, were accomplished. It should be noted that these color balances can be preserved even in the high-temperature region (425 K). Finally, white-light luminescent materials with thermal durability were obtained.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoru Saotome
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
19
|
Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Controlling Energy Gaps of π-Conjugated Polymers by Multi-Fluorinated Boron-Fused Azobenzene Acceptors for Highly Efficient Near-Infrared Emission. Chem Asian J 2021; 16:696-703. [PMID: 33527711 DOI: 10.1002/asia.202100037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Indexed: 11/09/2022]
Abstract
We demonstrate that multi-fluorinated boron-fused azobenzene (BAz) complexes can work as a strong electron acceptor in electron donor-acceptor (D-A) type π-conjugated polymers. Position-dependent substitution effects were revealed, and the energy level of the lowest unoccupied molecular orbital (LUMO) was critically decreased by fluorination. As a result, the obtained polymers showed near-infrared (NIR) emission (λPL =758-847 nm) with high absolute photoluminescence quantum yield (ΦPL =7-23%) originating from low-lying LUMO energy levels of the BAz moieties (-3.94 to -4.25 eV). Owing to inherent solid-state emissive properties of the BAz units, deeper NIR emission (λPL =852980 nm) was detected in film state. Clear solvent effects prove that the NIR emission is from a charge transfer state originating from a strong D-A interaction. The effects of fluorination on the frontier orbitals are well understandable and predictable by theoretical calculation with density functional theory. This study demonstrates the effectiveness of fluorination to the BAz units for producing a strong electron-accepting unit through fine-tuning of energy gaps, which can be the promising strategy for designing NIR absorptive and emissive materials.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Junko Wakabayashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masashi Nakamura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
20
|
Tanaka K, Chujo Y. New Idea for Narrowing an Energy Gap by Selective Perturbation of One Frontier Molecular Orbital. CHEM LETT 2021. [DOI: 10.1246/cl.200756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
Gon M, Tanaka K, Chujo Y. Discovery of Functional Luminescence Properties Based on Flexible and Bendable Boron-Fused Azomethine/Azobenzene Complexes with O,N,O-Type Tridentate Ligands. CHEM REC 2021; 21:1358-1373. [PMID: 33394567 DOI: 10.1002/tcr.202000156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Azomethine (C=N) and azo (N=N) scaffolds are a part of structural units in poly(p-phenylene azomethine) (PAM) and poly(p-phenylene azo) (PAZ), respectively. Poly(p-phenylene vinylene) (PPV) is known to be one of luminescent π-conjugated polymers, meanwhile PAM and PAZ, which are the aza-substituted PPV analogues, are regarded as weak or no emissive materials. However, by the boron complexation, intense emission can be induced. Furthermore, environment-sensitivity and stimuli-responsivity were also observed. In this review, we demonstrate unique and versatile luminescent properties based on "flexible and bendable" π-conjugated systems composed of the boron-fused azomethine and azobenzene complexes (BAm and BAz) with the O,N,O-type tridentate ligands. The "flexible and bendable" luminophores showed intriguing optical behaviors, such as thermosalient effect, aggregation-induced emission (AIE) and crystallized-induced emission (CIE). Moreover, highly efficient emissions both in solution and film states were observed from the polymers. We illustrate the results and mechanisms on these luminescent properties from the series of our recent studies with BAm and BAz complexes and polymers.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
22
|
Ito S, Gon M, Tanaka K, Chujo Y. Recent developments in stimuli-responsive luminescent polymers composed of boron compounds. Polym Chem 2021. [DOI: 10.1039/d1py01170g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review summarizes recent developments in stimuli-responsive luminescent polymers with boron chromophores, including three- and four-coordinated compounds. Sensing mechanisms based on the features of boron and polymer structures are described.
Collapse
Affiliation(s)
- Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Ohtani S, Yamada N, Gon M, Tanaka K, Chujo Y. The effect of alkyl chain lengths on the red-to-near-infrared emission of boron-fused azomethine conjugated polymers and their film-state stimuli-responsivities. Polym Chem 2021. [DOI: 10.1039/d1py00213a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present systematic studies of the dependence of the red-to-near-infrared emission and stimuli-responsive properties of boron-fused azomethine conjugated copolymers on the lengths of the alkyl chains.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Natsumi Yamada
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Masayuki Gon
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
24
|
Ochi J, Tanaka K, Chujo Y. Experimental proof for emission annihilation through bond elongation at the carbon-carbon bond in o-carborane with fused biphenyl-substituted compounds. Dalton Trans 2020; 50:1025-1033. [PMID: 33367426 DOI: 10.1039/d0dt03618h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of their unique luminescence properties, such as aggregation-induced emission (AIE), intense solid-state luminescence and stimuli-responsive luminochromism, aryl-substituted o-carboranes have attracted attention as a platform for developing functional optoelectronic materials. However, there still remains one fundamental issue with the detailed mechanism of solution quenching in AIE behaviors. Aryl-modified o-carboranes with AIE properties exhibit intense emission not in solution but in the solid state. According to quantum calculations and many experimental results, the elongation at the carbon-carbon bond in o-carborane in the excited state, followed by nonradiative decay, has been proposed as a main path for emission annihilation in solution. However, intramolecular rotation would simultaneously occur, and there is a possibility that emission annihilation could be induced by the combination of both bond elongation and rotation. In this study, we designed two types of biphenyl-substituted o-carboranes having fused structures at the neighbor carbon and boron atoms for fixing molecular conformation. In these molecules, bond elongation is allowed, while rotation would be prohibited. From the series of optical measurements and theoretical investigations, we proved that emission annihilation can occur through bond elongation in the absence of rotation. Moreover, we show that bond elongation could be suppressed by introducing a bulky substituent at the adjacent carbon, and emission color tuning was achieved. This is the first example, to the best of our knowledge, to prove that excitation decay can proceed only through bond elongation without electronic perturbation caused by rotation.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
25
|
Ohtani S, Takeda Y, Gon M, Tanaka K, Chujo Y. Facile strategy for obtaining luminescent polymorphs based on the chirality of a boron-fused azomethine complex. Chem Commun (Camb) 2020; 56:15305-15308. [PMID: 33216068 DOI: 10.1039/d0cc06383e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A chloro-substituted boron-fused azomethine complex (BAmCl) having a stereogenic boron center was synthesized for obtaining a luminescent chiral crystal. We succeeded in isolating the (R)- and (S)-enantiomers of BAmCl and preparing the homochiral polymorphic crystal, while we obtained the racemic crystal with rac-BAmCl. Single crystal X-ray diffraction analyses suggest that a variety of intermolecular interaction patterns and intrinsic flexibility of the molecular framework should play a significant role in stabilizing the homochiral crystal. We found the difference in molecular arrangements between the racemic and the homochiral crystals, and we observed distinctly different emission colors. In particular, we observed heat-initiated homogeneous racemization without the need for a solvent or catalyst in the molten state of the homochiral crystal (R)-BAmCl. Our results mean that chiral resolution of a flexible fused-skeleton having a stereogenic boron center can be a platform for creating luminescent polymorphic materials.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | |
Collapse
|
26
|
Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Preparation of Near‐Infrared Emissive π‐Conjugated Polymer Films Based on Boron‐Fused Azobenzene Complexes with Perpendicularly Protruded Aryl Substituents. Macromol Rapid Commun 2020; 42:e2000566. [DOI: 10.1002/marc.202000566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Junko Wakabayashi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Masashi Nakamura
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| |
Collapse
|
27
|
Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material screening to the combination with data science. Polym J 2020; 52:1307-1321. [PMID: 32873989 PMCID: PMC7453374 DOI: 10.1038/s41428-020-00399-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/08/2022]
Abstract
Light is a form of energy that can be converted to electric and chemical energies. Thus, organic photovoltaics (OPVs), perovskite solar cells (PSCs), photocatalysts, and photodetectors have evolved as scientific and commercial enterprises. However, the complex photochemical reactions and multicomponent materials involved in these systems have hampered rapid progress in their fundamental understanding and material design. This review showcases the evaluation-oriented exploration of photo energy conversion materials by using electrodeless time-resolved microwave conductivity (TRMC) and materials informatics (MI). TRMC with its unique options (excitation sources, environmental control, frequency modulation, etc.) provides not only accelerated experimental screening of OPV and PSC materials but also a versatile route toward shedding light on their charge carrier dynamics. Furthermore, MI powered by machine learning is shown to allow extremely high-throughput exploration in the large molecular space, which is compatible with experimental screening and combinatorial synthesis.
Collapse
|
28
|
The Design Strategy for an Aggregation- and Crystallization-Induced Emission-Active Molecule Based on the Introduction of Skeletal Distortion by Boron Complexation with a Tridentate Ligand. CRYSTALS 2020. [DOI: 10.3390/cryst10070615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe here a new design strategy for obtaining boron complexes with aggregation- and crystallization-induced emission (AIE and CIE, respectively) properties based on the introduction of skeletal distortion. According to our recent results, despite the fact that an almost planar structure and robust conjugation were obtained, the boron azomethine complex provided a slight emission in solution and an enhanced emission in aggregation and crystal. Quantum calculation results propose that unexpected emission annihilation in solution could be caused through intramolecular bending in the excited state. Herein, to realize this unique molecular motion and obtain AIE and CIE molecules, the phenyl quinoline-based boron complexes BPhQ and BPhQm with distorted and planar structures were designed and synthesized, respectively. BPhQm showed emission in solution and aggregation-caused quenching (ACQ, BPhQm: ΦF,sol. = 0.21, ΦF,agg. = 0.072, ΦF,cryst. = 0.051), while BPhQ exhibited a typical AIE and CIE (BPhQ: ΦF,sol. = 0.008, ΦF,agg. = 0.014, ΦF,cryst. = 0.017). The optical data suggest that a large degree of molecular motion should occur in BPhQ after photo-excitation because of the intrinsic skeletal distortion. Furthermore, single-crystal X-ray diffraction data indicate that the distorted π-conjugated system plays a positive role in presenting solid-state emission by inhibiting consecutive π–π interactions. We demonstrate in this paper that the introduction of the distorted structure by boron complexation should be a new strategy for realizing AIE and CIE properties.
Collapse
|
29
|
Wakabayashi J, Gon M, Tanaka K, Chujo Y. Near-Infrared Absorptive and Emissive Poly(p-phenylene vinylene) Derivative Containing Azobenzene–Boron Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Junko Wakabayashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
30
|
Ohtani S, Nakamura M, Gon M, Tanaka K, Chujo Y. Synthesis of fully-fused bisboron azomethine complexes and their conjugated polymers with solid-state near-infrared emission. Chem Commun (Camb) 2020; 56:6575-6578. [DOI: 10.1039/d0cc02301a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe herein a robust π-conjugated molecules with solid-state emission in the near-infrared (NIR) region (ΦF = 0.03–0.06).
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University Katsura
- Nishikyo-ku
- Japan
| | - Masashi Nakamura
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University Katsura
- Nishikyo-ku
- Japan
| | - Masayuki Gon
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University Katsura
- Nishikyo-ku
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University Katsura
- Nishikyo-ku
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University Katsura
- Nishikyo-ku
- Japan
| |
Collapse
|