1
|
Yang J, Karunarathna SC, Patabendige N, Tarafder E, Lou D, Zhou Y, Hapuarachchi K. Unveiling the Bioactive Compounds and Therapeutic Potential of Russula: A Comprehensive Review. J Fungi (Basel) 2025; 11:341. [PMID: 40422676 DOI: 10.3390/jof11050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/28/2025] Open
Abstract
Russula, a genus of Basidiomycetes with considerable taxonomic diversity, holds significant potential in both traditional and modern medicinal practices. This comprehensive review explores the bioactive compounds identified in various Russula species, detailing their characterization, structural elucidation, and classification. The medicinal properties of these fungi are examined, with a focus on their antioxidant, anti-inflammatory, and immunomodulatory effects, supported by both historical usage and contemporary preclinical pharmacological research. The review also highlights emerging biotechnological applications including environmental remediation, antimicrobial agents, and functional food development. Safety and toxicological considerations are evaluated to provide a balanced perspective on the medicinal use of Russula. The review concludes by summarizing the key findings and emphasizing the importance of Russula in both traditional medicine and future clinically validated innovations.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nimesha Patabendige
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Dengji Lou
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Yuanqing Zhou
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Kalani Hapuarachchi
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Kuratani Y, Abematsu C, Ekino K, Oka T, Shin M, Iwata M, Ohta H, Ando S. Cylindracin, a Cys-rich protein expressed in the fruiting body of Cyclocybe cylindracea, inhibits growth of filamentous fungi but not yeasts or bacteria. FEBS Open Bio 2024; 14:1805-1824. [PMID: 39380157 PMCID: PMC11532979 DOI: 10.1002/2211-5463.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Mushrooms are the fruiting bodies of fungi and are important reproductive structures that produce and disseminate spores. The Pri3 gene was originally reported to be specifically expressed in the primordia (a precursor to the mature fruiting body) of the edible mushroom Cyclocybe aegerita. Here, we cloned a Pri3-related cDNA from Cyclocybe cylindracea, another species in the same genus, and showed that the gene is specifically expressed at the pileus surface of the immature fruiting body but not in the primordia. Immunohistochemistry showed that the translated protein is secreted into a polysaccharide layer of the pileus surface. The recombinant C-terminal Cys-rich domain of the protein showed antifungal activity against three filamentous fungi and inhibited hyphal growth and conidiogenesis. These results suggest that the PRI3-related protein of C. cylindracea, named cylindracin, plays an important role in the defense against pathogens.
Collapse
Affiliation(s)
- Yamato Kuratani
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Chika Abematsu
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Keisuke Ekino
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Takuji Oka
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Masashi Shin
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | | | - Hiroto Ohta
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Shoji Ando
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| |
Collapse
|
3
|
Carminati G, Di Foggia M, Garagozzo L, Di Francesco A. Mushroom By-Products as a Source of Growth Stimulation and Biochemical Composition Added-Value of Pleurotus ostreatus, Cyclocybe cylindracea, and Lentinula edodes. Foods 2024; 13:2789. [PMID: 39272554 PMCID: PMC11395502 DOI: 10.3390/foods13172789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Spent mushroom substrates (SMSs) and mushroom basal bodies (MBBs) are significant by-products because of their nutrient content even after harvesting. This study aimed to evaluate the effect of these two by-products, derived from Agaricus bisporus (Ab) and Cyclocybe cylindracea (Cc) cultivation, as potential growth and biochemical composition add-value enhancers of edible mushroom mycelia such as Pleurotus ostreatus, C. cylindracea, and Lentinula edodes. Fungal growth substrates enriched with SMS and MBB extracts significantly affected the growth of mushroom mycelia. In particular, on P. ostreatus, the MBBs Ab and Cc extracts determined an increase in mycelial weight by 89.5%. Also, by-products influenced mushrooms' mycelial texture, which appeared more floccose and abundant in growth. FT-IR analysis showed that L. edodes mycelium, grown on MBB substrates, showed the highest increase in bands associated with proteins and chitin. Results demonstrated that mushroom by-products enhance mycelial growth and confer an enrichment of compounds that could increase mycelial resistance to pathogens and make a nutraceutical improvement.
Collapse
Affiliation(s)
- Gaia Carminati
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, UD, Italy
| | - Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, BO, Italy
| | - Luca Garagozzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, BO, Italy
| | - Alessandra Di Francesco
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, UD, Italy
| |
Collapse
|
4
|
Qi J, Wu J, Kang S, Gao J, Hirokazu K, Liu H, Liu C. The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: a review. Chin J Nat Med 2024; 22:676-698. [PMID: 39197960 DOI: 10.1016/s1875-5364(24)60590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 09/01/2024]
Abstract
Fungal phytochemicals derived from higher fungi, particularly those from the culinary-medicinal genus Hericium, have gained significant attention in drug discovery and healthcare. This review aims to provide a comprehensive analysis of the chemical structures, biosynthetic pathways, biological activities, and pharmacological properties of monomeric compounds isolated from Hericium species. Over the past 34 years, 253 metabolites have been identified from various Hericium species, including cyathane diterpenes, alkaloids, benzofurans, chromenes, phenols, pyrones, steroids, and other miscellaneous compounds. Detailed investigations into the biosynthesis of erinacines, a type of cyathane diterpene, have led to the discovery of novel cyathane diterpenes. Extensive research has highlighted the biological activities and pharmacological properties of Hericium-derived compounds, with particular emphasis on their neuroprotective and neurotrophic effects, immunomodulatory capabilities, anti-cancer activity, antioxidant properties, and antimicrobial actions. Erinacine A, in particular, has been extensively studied. Genomic, transcriptomic, and proteomic analyses of Hericium species have facilitated the discovery of new compounds and provided insights into enzymatic reactions through genome mining. The diverse chemical structures and biological activities of Hericium compounds underpin their potential applications in medicine and as dietary supplements. This review not only advances our understanding of Hericium compounds but also encourages further research into Hericium species within the realms of medicine, health, functional foods, and agricultural microbiology. The broad spectrum of compound types and their diverse biological activities present promising opportunities for the development of new pharmaceuticals and edible products.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shijie Kang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jingming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | | | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Qi JS, Duan Y, Li ZC, Gao JM, Qi J, Liu C. The alkynyl-containing compounds from mushrooms and their biological activities. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:50. [PMID: 37946001 PMCID: PMC10636002 DOI: 10.1007/s13659-023-00416-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.
Collapse
Affiliation(s)
- Ji-Shuang Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yingce Duan
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhao-Chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Doğan B, Yıldız Z, Aksöz N, Eninanç AB, Dağ İ, Yıldız A, Doğan HH, Yamaç M. Flask and reactor scale production of plant growth regulators by Inonotus hispidus: optimization, immobilization and kinetic parameters. Prep Biochem Biotechnol 2023; 53:1210-1223. [PMID: 37405401 DOI: 10.1080/10826068.2023.2185636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The aims of the presented study are to compare submerged, static, and solid-state fermentation in the production of gibberellic acid (GA3), indole acetic acid (IAA), and abscisic acid (ABA) by Inonotus hispidus, to optimize with a statistical approach, and to determine the kinetic parameters under flask and reactor conditions. The maximum concentrations of GA3, (2478.85 ± 68.53 mg/L), ABA, (273.26 ± 6.17 mg/L) and IAA (30.67 ± 0.19 mg/L) were obtained in submerged conditions. After optimization, these values reached 2998.85 ± 28.85, 339.47 ± 5.50, and 34.56 ± 0.25 mg/L, respectively. Immobilization of fungal cells on synthetic fiber, polyurethane foam, and alginate beads resulted in an increase in plant growth regulators (PGR) production by 5.53%- 5.79% under optimized conditions. At the reactor scale, a significant increase was observed for GA3 concentration, 5441.54 mg/L, which was 2.14 and 1.45 times higher than non-optimized and optimized conditions in the flask scale, respectively. The maximum values for ABA and IAA were 390.39 and 44.79 mg/L, respectively. Although the specific growth rate (µ) decreases relatively from non-optimized flask conditions to optimized reactor conditions, it was observed that the PGR amounts produced per liter medium (rp) and per gram biomass (Qp) increased significantly. This is the first report on the synthesis of PGR by Inonotus hispidus which could be crucial for sustainable agriculture.
Collapse
Affiliation(s)
| | - Zeki Yıldız
- Department of Statistics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Nilüfer Aksöz
- Professor Emeritus, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | | | - İlknur Dağ
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Türkiye
- Vocational Health Services High School, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Abdunnasır Yıldız
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Türkiye
| | - Hasan Hüseyin Doğan
- Department of Biology, Faculty of Science, Selcuk University, Konya, Türkiye
| | - Mustafa Yamaç
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Türkiye
| |
Collapse
|
7
|
Wu J, Ohura T, Ogura R, Wang J, Choi JH, Kobori H, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Takikawa Y, Hirai H, Kawagishi H. Bioactive Compounds from the Mushroom-Forming Fungus Chlorophyllum molybdites. Antibiotics (Basel) 2023; 12:596. [PMID: 36978462 PMCID: PMC10044768 DOI: 10.3390/antibiotics12030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
A novel compound (1) along with two known compounds (2 and 3) were isolated from the culture broth of Chlorophyllum molybdites, and three known compounds (4-6) were isolated from its fruiting bodies. The planar structure of 1 was determined by the interpretation of spectroscopic data. By comparing the specific rotation of the compound with that of the analog compound, the absolute configuration of 1 was determined to be R. This is the first time that compounds 2-4 were isolated from a mushroom-forming fungus. Compound 2 showed significant inhibition activity against Axl and immune checkpoints (PD-L1, PD-L2). In the bioassay to examine growth inhibitory activity against the phytopathogenic bacteria Peptobacterium carotovorum, Clavibacter michiganensis and Burkholderia glumae, compounds 2 and 3 inhibited the growth of P. carotovorum and C. michiganensis. In the bioassay to examine plant growth regulatory activity, compounds 1-4 showed a significant regulatory activity on lettuce growth.
Collapse
Affiliation(s)
- Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takeru Ohura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ryuhei Ogura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Junhong Wang
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hajime Kobori
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Iwade Research Institute of Mycology Co., Ltd., Suehirocho 1-9, Tsu 514-0012, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yuichi Takikawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
8
|
Impact of Agro-Industrial Side-Streams on Sesquiterpene Production by Submerged Cultured Cerrena unicolor. Foods 2023; 12:foods12030668. [PMID: 36766196 PMCID: PMC9914794 DOI: 10.3390/foods12030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The quality and harvest of essential oils depend on a large number of factors, most of which are hard to control in an open-field environment. Therefore, Basidiomycota have gained attention as a source for biotechnologically produced terpenoids. The basidiomycete Cerrena unicolor (Cun) was cultivated in submerged culture, and the production of sesquiterpenoids was analyzed via stir bar sorptive extraction (SBSE), followed by thermo-desorption gas chromatography coupled with mass spectrometry (TDS-GC-MS). Identification of aroma-active sesquiterpenoids was supported by GC, coupled with an olfactory detection port (ODP). Following the ideal of a circular bioeconomy, Cun was submerged (up-scalable) cultivated, and supplemented with a variety of food industrial side-streams. The effects of the different supplementations and of pure fatty acids were evaluated by liquid extraction and analysis of the terpenoids via GC-MS. As sesquiterpenoid production was enhanced by the most by lipid-rich side-streams, a cultivation with 13C-labeled acetate was conducted. Data confirmed that lipid-rich side-streams enhanced the sesquiterpene production through an increased acetyl-CoA pool.
Collapse
|
9
|
Wu J, Yang X, Duan Y, Wang P, Qi J, Gao JM, Liu C. Biosynthesis of Sesquiterpenes in Basidiomycetes: A Review. J Fungi (Basel) 2022; 8:913. [PMID: 36135638 PMCID: PMC9501842 DOI: 10.3390/jof8090913] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Sesquiterpenes are common small-molecule natural products with a wide range of promising applications and are biosynthesized by sesquiterpene synthase (STS). Basidiomycetes are valuable and important biological resources. To date, hundreds of related sesquiterpenoids have been discovered in basidiomycetes, and the biosynthetic pathways of some of these compounds have been elucidated. This review summarizes 122 STSs and 2 fusion enzymes STSs identified from 26 species of basidiomycetes over the past 20 years. The biological functions of enzymes and compound structures are described, and related research is discussed.
Collapse
Affiliation(s)
- Jiajun Wu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaoran Yang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingce Duan
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
10
|
Inoue C, Yasuma T, D’Alessandro-Gabazza CN, Toda M, Fridman D’Alessandro V, Inoue R, Fujimoto H, Kobori H, Tharavecharak S, Takeshita A, Nishihama K, Okano Y, Wu J, Kobayashi T, Yano Y, Kawagishi H, Gabazza EC. The Fairy Chemical Imidazole-4-Carboxamide Inhibits the Expression of Axl, PD-L1, and PD-L2 and Improves Response to Cisplatin in Melanoma. Cells 2022; 11:cells11030374. [PMID: 35159184 PMCID: PMC8834508 DOI: 10.3390/cells11030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of death worldwide is cancer. Many reports have proved the beneficial effect of mushrooms in cancer. However, the precise mechanism is not completely clear. In the present study, we focused on the medicinal properties of biomolecules released by fairy ring-forming mushrooms. Fairy chemicals generally stimulate or inhibit the growth of surrounding vegetation. In the present study, we evaluated whether fairy chemicals (2-azahypoxanthine, 2-aza-8-oxohypoxanthine, and imidazole-4-carboxamide) exert anticancer activity by decreasing the expression of Axl and immune checkpoint molecules in melanoma cells. We used B16F10 melanoma cell lines and a melanoma xenograft model in the experiments. Treatment of melanoma xenograft with cisplatin combined with imidazole-4-carboxamide significantly decreased the tumor volume compared to untreated mice or mice treated cisplatin alone. In addition, mice treated with cisplatin and imidazole-4-carboxamide showed increased peritumoral infiltration of T cells compared to mice treated with cisplatin alone. In vitro studies showed that all fairy chemicals, including imidazole-4-carboxamide, inhibit the expression of immune checkpoint molecules and Axl compared to controls. Imidazole-4-carboxamide also significantly blocks the cisplatin-induced upregulation of PD-L1. These observations point to the fairy chemical imidazole-4-carboxamide as a promising coadjuvant therapy with cisplatin in patients with cancer.
Collapse
Affiliation(s)
- Chisa Inoue
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Ryo Inoue
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Hajime Kobori
- Iwade—Research Institute of Mycology Co., Ltd., Tsu 514-0012, Japan;
| | - Suphachai Tharavecharak
- Department of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Yuko Okano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Correspondence:
| |
Collapse
|