1
|
Patel S, Naik L, Rai A, Palit K, Kumar A, Das M, Nayak DK, Dandsena PK, Mishra A, Singh R, Dhiman R, Das S. Diversity of secondary metabolites from marine Streptomyces with potential anti-tubercular activity: a review. Arch Microbiol 2025; 207:64. [PMID: 39961874 DOI: 10.1007/s00203-024-04233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
The bacterial genus Streptomyces is known for the prolific production of secondary metabolites, which exhibit remarkable structural diversity and potent biological activities. Tuberculosis (TB) remains a formidable global health challenge exacerbated by the emergence of antimicrobial resistance (AMR), necessitating the discovery of novel therapeutic agents. The untapped potential of marine Streptomyces-derived secondary metabolites offers a promising avenue for screening anti-tubercular (anti-TB) compounds with unique chemical structures and potential bioactive properties. The review emphasizes the diverse marine habitats and Streptomyces with novel anti-TB bioactive metabolites. It discusses fermentation and bioprocessing strategies for screening anti-TB drugs. This review also covers the chemical diversity, potency, mechanism of action, and structures of about seventy anti-TB compounds discovered from marine Streptomyces. These compounds span various chemical classes, including quinones, macrolactams, macrolides, phenols, esters, anthracyclines, peptides, glycosides, alkaloids, piperidones, thiolopyrrolones, nucleosides, terpenes, flavonoids, polyketides, and actinomycins. It emphasizes the need to explore marine ecosystems to discover more novel anti-TB natural products.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ankita Rai
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
2
|
Zhan C, Lee N, Lan G, Dan Q, Cowan A, Wang Z, Baidoo EEK, Kakumanu R, Luckie B, Kuo RC, McCauley J, Liu Y, Valencia L, Haushalter RW, Keasling JD. Improved polyketide production in C. glutamicum by preventing propionate-induced growth inhibition. Nat Metab 2023; 5:1127-1140. [PMID: 37443355 DOI: 10.1038/s42255-023-00830-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Corynebacterium glutamicum is a promising host for production of valuable polyketides. Propionate addition, a strategy known to increase polyketide production by increasing intracellular methylmalonyl-CoA availability, causes growth inhibition in C. glutamicum. The mechanism of this inhibition was unclear before our work. Here we provide evidence that accumulation of propionyl-CoA and methylmalonyl-CoA induces growth inhibition in C. glutamicum. We then show that growth inhibition can be relieved by introducing methylmalonyl-CoA-dependent polyketide synthases. With germicidin as an example, we used adaptive laboratory evolution to leverage the fitness advantage of polyketide production in the presence of propionate to evolve improved germicidin production. Whole-genome sequencing revealed mutations in germicidin synthase, which improved germicidin titer, as well as mutations in citrate synthase, which effectively evolved the native glyoxylate pathway to a new methylcitrate pathway. Together, our results show that C. glutamicum is a capable host for polyketide production and we can take advantage of propionate growth inhibition to drive titers higher using laboratory evolution or to screen for production of polyketides.
Collapse
Affiliation(s)
- Chunjun Zhan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
| | - Namil Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
| | - Guangxu Lan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qingyun Dan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Aidan Cowan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Zilong Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bridget Luckie
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rita C Kuo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua McCauley
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Luis Valencia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert W Haushalter
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA.
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark.
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|