1
|
Shirley Bezerra M, Helle S, Seunarine KK, Arthurs OJ, Eaton S, Williams JE, Clark CA, Wells JCK. Testing the expensive-tissue hypothesis' prediction of inter-tissue competition using causal modelling with latent variables. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e33. [PMID: 39469074 PMCID: PMC11514623 DOI: 10.1017/ehs.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 10/30/2024] Open
Abstract
The expensive-tissue hypothesis (ETH) posited a brain-gut trade-off to explain how humans evolved large, costly brains. Versions of the ETH interrogating gut or other body tissues have been tested in non-human animals, but not humans. We collected brain and body composition data in 70 South Asian women and used structural equation modelling with instrumental variables, an approach that handles threats to causal inference including measurement error, unmeasured confounding and reverse causality. We tested a negative, causal effect of the latent construct 'nutritional investment in brain tissues' (MRI-derived brain volumes) on the construct 'nutritional investment in lean body tissues' (organ volume and skeletal muscle). We also predicted a negative causal effect of the brain latent on fat mass. We found negative causal estimates for both brain and lean tissue (-0.41, 95% CI, -1.13, 0.23) and brain and fat (-0.56, 95% CI, -2.46, 2.28). These results, although inconclusive, are consistent with theory and prior evidence of the brain trading off with lean and fat tissues, and they are an important step in assessing empirical evidence for the ETH in humans. Analyses using larger datasets, genetic data and causal modelling are required to build on these findings and expand the evidence base.
Collapse
Affiliation(s)
| | - Samuli Helle
- INVEST Research Flagship Centre, University of Turku, Turku, Finland
| | - Kiran K. Seunarine
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Owen J. Arthurs
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jane E. Williams
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chris A. Clark
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jonathan C. K. Wells
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
3
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
4
|
Longman DP, Wells JCK, Stock JT. Human energetic stress associated with upregulation of spatial cognition. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:32-44. [PMID: 37494592 DOI: 10.1002/ajpa.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Evolutionary life history theory has a unique potential to shed light on human adaptive capabilities. Ultra-endurance challenges are a valuable experimental model allowing the direct testing of phenotypic plasticity via physiological trade-offs in resource allocation. This enhances our understanding of how the body prioritizes different functions when energetically stressed. However, despite the central role played by the brain in both hominin evolution and metabolic budgeting, cognitive plasticity during energetic deficit remains unstudied. MATERIALS We considered human cognitive plasticity under conditions of energetic deficit by evaluating variability in performance in three key cognitive domains. To achieve this, cognitive performance in a sample of 48 athletes (m = 29, f = 19) was assessed before and after competing in multiday ultramarathons. RESULTS We demonstrate that under conditions of energetic deficit, performance in tasks of spatial working memory (which assessed ability to store location information, promoting landscape navigation and facilitating resource location and calorie acquisition) increased. In contrast, psychomotor speed (reaction time) remained unchanged and episodic memory performance (ability to recall information about specific events) decreased. DISCUSSION We propose that prioritization of spatial working memory performance during conditions of negative energy balance represents an adaptive response due to its role in facilitating calorie acquisition. We discuss these results with reference to a human evolutionary trajectory centred around encephalisation. Encephalisation affords great plasticity, facilitating rapid responses tailored to specific environmental conditions, and allowing humans to increase their capabilities as a phenotypically plastic species.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, UK
- ISSUL, Institute of Sport Science, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, UK
| | - Jay T Stock
- Department of Anthropology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Cao Y, Redd MA, Fang C, Mizikovsky D, Li X, Macdonald PS, King GF, Palpant NJ. New Drug Targets and Preclinical Modelling Recommendations for Treating Acute Myocardial Infarction. Heart Lung Circ 2023:S1443-9506(23)00139-7. [PMID: 37230806 DOI: 10.1016/j.hlc.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/27/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide and the primary underlying risk factor for heart failure. Despite decades of research and clinical trials, there are no drugs currently available to prevent organ damage from acute ischaemic injuries of the heart. In order to address the increasing global burden of heart failure, drug, gene, and cell-based regeneration technologies are advancing into clinical testing. In this review we highlight the burden of disease associated with AMI and the therapeutic landscape based on market analyses. New studies revealing the role of acid-sensitive cardiac ion channels and other proton-gated ion channels in cardiac ischaemia are providing renewed interest in pre- and post-conditioning agents with novel mechanisms of action that may also have implications for gene- and cell-based therapeutics. Furthermore, we present guidelines that couple new cell technologies and data resources with traditional animal modelling pipelines to help de-risk drug candidates aimed at treating AMI. We propose that improved preclinical pipelines and increased investment in drug target identification for AMI is critical to stem the increasing global health burden of heart failure.
Collapse
Affiliation(s)
- Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Chen Fang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Xichun Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Peter S Macdonald
- Cardiopulmonary Transplant Unit, St Vincent's Hospital, Sydney, NSW, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
6
|
Longman DP, Dolan E, Wells JCK, Stock JT. Patterns of energy allocation during energetic scarcity; evolutionary insights from ultra-endurance events. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111422. [PMID: 37031854 DOI: 10.1016/j.cbpa.2023.111422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Exercise physiologists and evolutionary biologists share a research interest in determining patterns of energy allocation during times of acute or chronic energetic scarcity.. Within sport and exercise science, this information has important implications for athlete health and performance. For evolutionary biologists, this would shed new light on our adaptive capabilities as a phenotypically plastic species. In recent years, evolutionary biologists have begun recruiting athletes as study participants and using contemporary sports as a model for studying evolution. This approach, known as human athletic palaeobiology, has identified ultra-endurance events as a valuable experimental model to investigate patterns of energy allocation during conditions of elevated energy demand, which are generally accompanied by an energy deficit. This energetic stress provokes detectable functional trade-offs in energy allocation between physiological processes. Early results from this modelsuggest thatlimited resources are preferentially allocated to processes which could be considered to confer the greatest immediate survival advantage (including immune and cognitive function). This aligns with evolutionary perspectives regarding energetic trade-offs during periods of acute and chronic energetic scarcity. Here, we discuss energy allocation patterns during periods of energetic stress as an area of shared interest between exercise physiology and evolutionary biology. We propose that, by addressing the ultimate "why" questions, namely why certain traits were selected for during the human evolutionary journey, an evolutionary perspective can complement the exercise physiology literature and provide a deeper insight of the reasons underpinning the body's physiological response to conditions of energetic stress.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3QG, United Kingdom; Department of Anthropology, University of Western Ontario, Ontario, Canada
| |
Collapse
|
7
|
Decrausaz S, Shirley MK, Stock JT, Williams JE, Fewtrell MS, Clark CA, Arthurs OJ, Wells JCK. Evaluation of dual-energy X-ray absorptiometry compared to magnetic resonance imaging for collecting measurements of the human bony pelvis. Am J Hum Biol 2022; 34:e23753. [PMID: 35460113 PMCID: PMC9541267 DOI: 10.1002/ajhb.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Imaging methods to measure the human pelvis in vivo provide opportunities to better understand pelvic variation and adaptation. Magnetic resonance imaging (MRI) provides high-resolution images, but is more expensive than dual-energy X-ray absorptiometry (DXA). We sought to compare pelvic breadth measurements collected from the same individuals using both methods, to investigate if there are systematic differences in pelvic measurement between these imaging methods. METHODS Three pelvic breadth dimensions (bi-iliac breadth, bi-acetabular breadth, medio-lateral inlet breadth) were collected from MRI and DXA scans of a cross-sectional sample of healthy, nulliparous adult women of South Asian ancestry (n = 63). Measurements of MRI and DXA pelvic dimensions were collected four times in total, with one baseline data collection session and three replications. Data collected from these sessions were averaged, used to calculate technical error of measurement and entered into a Bland-Altman analysis. Linear regression models were fitted with a given MRI pelvic measurement regressed on the same measurement collected from DXA scans, as well as MRI mean bias regressed on DXA mean bias. RESULTS Technical error of measurement was higher in DXA measurements of bi-iliac breadth and medio-lateral pelvic inlet breadth and higher for MRI measurements of bi-acetabular breadth. Bland Altman analyses showed no statistically significant relationship between the mean bias of MRI and DXA, and the differences between MRI and DXA pelvic measurements. CONCLUSIONS DXA measurements of pelvic breadth are comparable to MRI measurements of pelvic breadth. DXA is a less costly imaging technique than MRI and can be used to collect measurements of skeletal elements in living people.
Collapse
Affiliation(s)
- Sarah‐Louise Decrausaz
- Department of ArchaeologyUniversity of CambridgeCambridgeUK,Department of AnthropologyUniversity of VictoriaVictoriaCanada
| | - Meghan K. Shirley
- Population, Policy, and Practice Research and Teaching DepartmentChildhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child HealthLondonUK,Division of GI, Hepatology and NutritionThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Jay T. Stock
- Department of ArchaeologyUniversity of CambridgeCambridgeUK,Department of AnthropologyWestern UniversityLondonCanada,Department of ArchaeologyMax Planck Centre for the Science of Human HistoryJenaGermany
| | - Jane E. Williams
- Population, Policy, and Practice Research and Teaching DepartmentChildhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Mary S. Fewtrell
- Population, Policy, and Practice Research and Teaching DepartmentChildhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Chris A. Clark
- Population, Policy, and Practice Research and Teaching DepartmentChildhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Owen J. Arthurs
- Population, Policy, and Practice Research and Teaching DepartmentChildhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Jonathan C. K. Wells
- Population, Policy, and Practice Research and Teaching DepartmentChildhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
8
|
Shirley MK, Arthurs OJ, Seunarine KK, Cole TJ, Eaton S, Williams JE, Clark CA, Wells JCK. Implications of leg length for metabolic health and fitness. Evol Med Public Health 2022; 10:316-324. [PMID: 35903461 PMCID: PMC9326181 DOI: 10.1093/emph/eoac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectives Several studies have linked longer legs with favorable adult metabolic health outcomes and greater offspring birth weight. A recent Mendelian randomization study suggested a causal link between height and cardiometabolic risk; however, the underlying reasons remain poorly understood. Methodology Using a cross-sectional design, we tested in a convenience sample of 70 healthy young women whether birth weight and tibia length as markers of early-life conditions associated more strongly with metabolically beneficial traits like organ size and skeletal muscle mass (SMM) than a statistically derived height-residual variable indexing later, more canalized growth. Results Consistent with the 'developmental origins of health and disease' hypothesis, we found relatively strong associations of tibia length-but not birth weight-with adult organ size, brain size, SMM and resting energy expenditure measured by magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry and indirect calorimetry, respectively. Conclusions and implications Building on prior work, these results suggest that leg length is a sensitive marker of traits directly impacting metabolic and reproductive health. Alongside findings in the same sample relating tibia length and height-residual to MRI-measured pelvic dimensions, we suggest there may exist a degree of coordination in the development of long bone, lean mass and pelvic traits, possibly centered on early, pre-pubertal growth periods. Such phenotypic coordination has important implications for fitness, serving to benefit both adult health and the health of offspring in subsequent generations.
Collapse
Affiliation(s)
- Meghan K Shirley
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Owen J Arthurs
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Department of Radiology, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK
| | - Kiran K Seunarine
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Tim J Cole
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jane E Williams
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Chris A Clark
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jonathan C K Wells
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
9
|
Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW, Dash RK. Substrate- and Calcium-Dependent Differential Regulation of Mitochondrial Oxidative Phosphorylation and Energy Production in the Heart and Kidney. Cells 2021; 11:131. [PMID: 35011693 PMCID: PMC8750792 DOI: 10.3390/cells11010131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dehydrogenases are differentially stimulated by Ca2+. Ca2+ has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart. Our objective was, therefore, to elucidate these relationships in isolated mitochondria from the kidney outer medulla (OM) and heart. ADP-induced mitochondrial respiration was measured at different CaCl2 concentrations in the presence of various respiratory substrates, including pyruvate + malate (PM), glutamate + malate (GM), alpha-ketoglutarate + malate (AM), palmitoyl-carnitine + malate (PCM), and succinate + rotenone (SUC + ROT). The results showed that, in both heart and OM mitochondria, and for most complex I substrates, Ca2+ effects are biphasic: small increases in Ca2+ concentration stimulated, while large increases inhibited mitochondrial respiration. Furthermore, significant differences in substrate- and Ca2+-dependent O2 utilization towards ATP production between heart and OM mitochondria were observed. With PM and PCM substrates, Ca2+ showed more prominent stimulatory effects in OM than in heart mitochondria, while with GM and AM substrates, Ca2+ had similar biphasic regulatory effects in both OM and heart mitochondria. In contrast, with complex II substrate SUC + ROT, only inhibitory effects on mitochondrial respiration was observed in both the heart and the OM. We conclude that the regulatory effects of Ca2+ on mitochondrial OxPhos and ATP synthesis are biphasic, substrate-dependent, and tissue-specific.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Sunil M. Kandel
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Said H. Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA;
| | - Allen W. Cowley
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Wahl D, LaRocca TJ. Transcriptomic Effects of Healthspan-Promoting Dietary Interventions: Current Evidence and Future Directions. Front Nutr 2021; 8:712129. [PMID: 34447778 PMCID: PMC8383293 DOI: 10.3389/fnut.2021.712129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Aging is the greatest risk factor most diseases, including cardiovascular disorders, cancers, diabetes, and neurodegeneration, but select nutritional interventions may profoundly reduce the risk for these conditions. These interventions include calorie restriction, intermittent fasting, protein restriction, and reducing intake of certain amino acids. Certain ad libitum diets, including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, and Okinawan diets also promote healthy aging. Evidence indicates that these dietary strategies influence aging and healthspan by acting on the biological "hallmarks of aging" and especially upstream nutrient sensing pathways. Recent advances in "omics" technologies, including RNA-sequencing (transcriptomics), have increased our understanding of how such nutritional interventions may influence gene expression related to these biological mediators of aging, primarily in pre-clinical studies. However, whether these effects are also reflected in the human transcriptome, which may provide insight on other downstream/related cellular processes with aging, is an emerging topic. Broadly, the investigation of how these nutritional interventions influence the transcriptome may provide novel insight into pathways associated with aging, and potential targets to treat age-associated disease and increase healthspan. Therefore, the purpose of this mini review is to summarize what is known about the transcriptomic effects of key dietary/nutritional interventions in both pre-clinical models and humans, address gaps in the literature, and provide insight into future research directions.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| | - Thomas J. LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Wells JC, Davies PS, Hopkins M, Blundell JE. The "drive to eat" hypothesis: energy expenditure and fat-free mass but not adiposity are associated with milk intake and energy intake in 12 week infants. Am J Clin Nutr 2021; 114:505-514. [PMID: 33851194 PMCID: PMC8326050 DOI: 10.1093/ajcn/nqab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent work has challenged the long-held assumption that appetite functions to maintain stable body mass and fat mass (FM), suggesting instead that appetite matches food intake to energy expenditure and its correlate, fat-free mass (FFM). Whether this scenario applies to young infants, in chronic positive energy balance, remains unknown. OBJECTIVES To test associations of components of energy expenditure and body composition with milk intake (MI) and energy intake (EI) in 12-week infants, by reanalyzing published cross-sectional data. METHODS Data were available for 48 infants. In addition to anthropometric measurements, we assessed MI and EI by test-weighing, sleeping metabolic rate (SMR) by indirect calorimetry, and FFM, FM, and total energy expenditure (TEE) by doubly labeled water. Mean parental height was calculated as a marker of infant growth drive. Correlation and multiple regression analyses were applied. RESULTS MI and EI correlated with FFM (r = 0.47 and 0.57, respectively; P < 0.01), but not FM (P > 0.6). MI and EI correlated with SMR (r = 0.42 and 0.53, respectively; P < 0.01) and TEE (r = 0.50 and 0.49, respectively; P < 0.01). SMR and TEE correlated with FFM (r = 0.41 and 0.42, respectively; P < 0.01), but not FM (P > 0.2). In a multiple regression analysis, MI was independently associated with TEE (partial r = 0.39) and FFM (partial r = 0.35). EI showed similar associations. Mean parental height was correlated with weight gain, MI, and EI. CONCLUSIONS As in adults, MI and EI in young infants were strongly associated with FFM and with total and sleeping components of energy expenditure, but not with fatness. The infant's growth drive contributed to these associations. This suggests that appetite is regulated by the rate of energy expenditure, the size of energy-using tissues, and tissue deposition rate, and that the high levels of body fat characteristic of infants may not constrain weight gain.
Collapse
Affiliation(s)
| | - Peter S Davies
- Child Health Research Centre, Centre for Children's Health Research, University of Queensland, South Brisbane, Australia
| | - Mark Hopkins
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - John E Blundell
- Appetite Control and Energy Balance Research Group, School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
12
|
Longman DP, Oyama S, Cracknell J, Thompson N, Gordon D, Stock JT, Wells JCK. Fluctuating asymmetry, a marker of poor growth quality, is associated with adult male metabolic rate. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:646-655. [PMID: 33768527 DOI: 10.1002/ajpa.24276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Life history theory, a branch of evolutionary theory, predicts the existence of trade-offs in energetic allocation between competing physiological functions. The core metabolic cost of self-maintenance, measured by resting metabolic rate (RMR), represents a large component of human daily energy expenditure. Despite strong selective pressures for energetic frugality and high observed interindividual variation in RMR, the link between RMR and energetic allocation to life-history traits remains understudied in humans. MATERIALS In a sample of 105 (m = 57, f = 48), we investigated the relationship between adult RMR and investment in growth quality, as measured by fluctuating asymmetry (FA). RESULTS Measurement of RMR and FA in university rowers revealed a significant positive correlation amongst males (n = 57, r = 0.344, p = 0.005, 1-tailed; standardized 95% CI, 0.090 to 0.598). Convincing evidence for a correlation among females was not found (n = 48, r = 0.142, p = 0.169, 1-tailed, standardized 95% CI, -0.152 to 0.435). DISCUSSION The data suggest that low-quality asymmetrical growth is associated with later-life metabolic inefficiencies in males. Energetic investment in processes (likely concerning the stress-response) unrelated to growth during childhood may thereby trade-off against adult metabolic efficiency. We suggest that the presence of a relationship between RMR and FA in males but not females may be explained by the additional metabolic strain associated with larger body size and increased male muscularity, which may amplify the inefficiencies arising from low-quality growth.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Sakura Oyama
- Department of Anthropology, Yale University, New Haven, Connecticut, USA.,Yale School of Medicine, New Haven, Connecticut, USA
| | - James Cracknell
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Nathan Thompson
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Dan Gordon
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Anthropology, University of Western Ontario, Ontario, Canada.,Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, UK
| |
Collapse
|
13
|
Fairoosa P, Lanerolle P, De Lanerolle-Dias M, Wickramasinghe VP, Waidyatilaka I. Development of a New Equation for the Prediction of Resting Metabolic Rate in Sri Lankan Adults. Int J Endocrinol 2021; 2021:4170137. [PMID: 33542730 PMCID: PMC7840262 DOI: 10.1155/2021/4170137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 11/22/2022] Open
Abstract
Resting metabolic rate (RMR) is the key determinant of the energy requirement of an individual. Measurement of RMR by indirect calorimetry is not feasible in field settings and therefore equation-based calculations are used. Since a valid equation is not available for Sri Lankans, it is important to develop a new population-specific equation for field use. The study objective was to develop a new equation for the prediction of RMR in healthy Sri Lankans using a reference method, indirect calorimetry. RMR data were collected from fifty-seven (male 27) adults aged 19 to 60 years. They were randomly assigned to validation (n = 28) and cross-validation (n = 19) groups using the statistical package R (version 3.6.3). Height, weight, and RMR were measured. Multivariable fractional polynomials (MFP) were used to determine explanatory variables and their functional forms for the model. A variable shrinkage method was used to find the best fit predictor coefficients of the equation. The developed equation was cross-validated on an independent group. Weight and sex code (male = 1; female = 0) were identified as reliable independent variables. The new equation developed was RMR (kcal/day) = 284.5 + (13.2 x weight) + (133.0 x sex code). Independent variables of the prediction equation were able to predict 88.5% of the variance. Root mean square error (RMSE) of the prediction equation in validation and cross-validation was 88.11 kcal/day and 79.03 kcal/day, respectively. The equation developed in this study is suitable for predicting RMR in Sri Lankan adults.
Collapse
Affiliation(s)
- Pathima Fairoosa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, PO Box 271, Kynsey Road, Colombo 8, Sri Lanka
| | - Pulani Lanerolle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, PO Box 271, Kynsey Road, Colombo 8, Sri Lanka
| | - Maduka De Lanerolle-Dias
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, PO Box 271, Kynsey Road, Colombo 8, Sri Lanka
| | - V. Pujitha Wickramasinghe
- Department of Paediatrics, Faculty of Medicine, University of Colombo, PO Box 271, Kynsey Road, Colombo 8, Sri Lanka
| | - Indu Waidyatilaka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, PO Box 271, Kynsey Road, Colombo 8, Sri Lanka
| |
Collapse
|
14
|
Beneficial Effects of Melatonin in the Ovarian Transport Medium on In Vitro Embryo Production of Iberian Red Deer ( Cervus elaphus hispanicus). Animals (Basel) 2020; 10:ani10050763. [PMID: 32349425 PMCID: PMC7278470 DOI: 10.3390/ani10050763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/25/2023] Open
Abstract
Simple Summary The development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, can become a daunting challenge since prolonged ovary transport times to the laboratory are often unavoidable. This may have detrimental effects on the quality and developmental capacity of oocytes. We evaluated the effect of supplementing the ovary transport medium with the antioxidant melatonin and observed an increased level of oocyte intracellular reduced glutathione content. Moreover, melatonin enhanced cleavage and blastocyst rates and had a positive effect on embryo quality in terms of the expression of essential embryo development-related genes. In conclusion, the addition of melatonin to the ovary storage medium could mitigate the negative impacts that long transport times may have on oocyte developmental competence and quality of the resulting blastocysts in Iberian red deer. Abstract A major limiting factor for the development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, compared to livestock animals is the poor availability and limited access to biological material. Thus, the use of post-mortem ovaries from slaughtered animals represent a source of oocytes for the large scale production of embryos needed for research and to improve the efficiency of IVP. However, these oocytes are not as developmentally competent as their in vivo counterparts. Moreover, oocytes are usually obtained from ovaries that have been transported for long distances, which may also affect their quality. In order to overcome the issues associated with prolonged storage times of post-mortem material, in this study we examined the effect of melatonin supplementation to the ovary transport medium on oocyte quality, embryo yield, and blastocyst quality in Iberian red deer. When necessary, sheep was used as an experimental model due to the large number of samples required for analysis of oocyte quality parameters. Oocytes were in vitro matured and assessed for early apoptosis; DNA fragmentation; reactive oxygen species (ROS); reduced glutathione (GSH) content, mitochondrial membrane potential, and distribution; and relative abundance of mRNA transcript levels. After in vitro fertilization, embryo rates and blastocyst quality were also investigated. The results revealed that melatonin treatment significantly increased intracellular level of GSH in sheep oocytes. Moreover, the percentage of cleavage and blastocyst yield in red deer was greater compared to the Control group and there was lower abundance of oxidative stress- and apoptosis-related SHC1, TP53, and AKR1B1 mRNA transcripts in blastocysts for the Melatonin group. In conclusion, the supplementation of melatonin to the ovary storage medium had a positive effect on the developmental competence and quality of resulting blastocysts in Iberian red deer.
Collapse
|
15
|
Shirley MK, Cole TJ, Arthurs OJ, Clark CA, Wells JC. Developmental origins of variability in pelvic dimensions: Evidence from nulliparous South Asian women in the United Kingdom. Am J Hum Biol 2020; 32:e23340. [PMID: 31755611 PMCID: PMC7154657 DOI: 10.1002/ajhb.23340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Pelvic growth may be sensitive to early-life nutrition, with implications for maternal risk of obstructed labor. However, the "developmental origins" of adult pelvic variability require further investigation. We tested whether adult pelvic dimensions are associated with two components of height, indexing different periods of linear growth: tibia length, a proxy for early postnatal growth, and height-residual (height regressed on tibia length), a proxy for later growth. We also tested whether adult pelvic dimensions are associated with birth weight, a marker of nutritional investment in utero. METHODS In this cross-sectional study, data were obtained on 68 nulliparous young women of South Asian ancestry. Pelvic dimensions (bi-iliac and bi-acetabular breadth, anteroposterior pelvic inlet and outlet, interspinous and intertuberous diameter) were measured using magnetic resonance imaging. Height and tibia length were measured manually. Birth weight and gestational age were obtained by recall. Multivariable regression models were fitted with a given pelvic dimension regressed on height-residual, tibia, and birth weight, with the latter adjusted for gestational age. RESULTS Controlling for birth weight, height-residual was predictive of bi-acetabular breadth, bi-iliac breadth, and the pelvic inlet, while tibia length significantly predicted all dimensions except interspinous diameter. Controlling for the linear growth variables, birth weight was predictive of bi-iliac breadth only. CONCLUSIONS Markers of linear growth during both early and later development were associated with adult pelvic dimensions, whereas size at birth was poorly predictive. Efforts to reduce stunting in early life may facilitate the attainment of maximum potential growth for both height and the pelvis.
Collapse
Affiliation(s)
- Meghan K. Shirley
- UCL Great Ormond Street Institute of Child HealthLondonUK
- School of Public HealthUniversity of São PauloSão PauloBrazil
| | - Tim J. Cole
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Owen J. Arthurs
- UCL Great Ormond Street Institute of Child HealthLondonUK
- Department of RadiologyGreat Ormond Street HospitalLondonUK
| | - Chris A. Clark
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | | |
Collapse
|
16
|
Wells JC, Saunders MA, Lea AS, Cortina-Borja M, Shirley MK. Beyond Bergmann's rule: Global variability in human body composition is associated with annual average precipitation and annual temperature volatility. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:75-87. [PMID: 31318051 DOI: 10.1002/ajpa.23890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Human populations exhibit substantial geographical variability in body size and shape. However, the ecological stresses underlying this morphological variability remain poorly understood. The prevailing evolutionary explanation, "Bergmann's rule" assumes that morphological variability represents an adaptive response to average thermal conditions. We hypothesized that other climate factors-annual average precipitation, a marker of ecological productivity and inter-annual temperature volatility, a marker of infectious disease spikes-may also contribute to variability in body composition. MATERIALS AND METHODS We explored this hypothesis by examining associations between these climate factors and geographic variability in body composition across 133 male and 105 female populations from nonindustrialized settings. We used monthly climate data over 113 years (1901-2013) to develop new climate indices for all worldwide land areas. We stratified our analyses by hot/cold setting (>/<20°C). RESULTS In hot environments, lean mass increased as predicted in association with ecological productivity, and decreased in association with ecological volatility. Conversely, levels of body fat increased in association with temperature volatility and precipitation. However, in cold settings, equivalent associations were only partially consistent with our hypotheses, and there was suggestive evidence of sex differences in these associations. DISCUSSION Beyond associations with mean annual temperature predicted by Bergmann's rule, variability in human body composition is also associated with mean annual temperature and inter-annual temperature volatility, with these associations further differing between hot and cold settings. Collectively, our results suggest that associations of human body composition with climate are complex for both physique (fat-free mass) and energy stores (adiposity).
Collapse
Affiliation(s)
- Jonathan C Wells
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mark A Saunders
- Department of Space and Climate Physics, University College London, Surrey, UK
| | - Adam S Lea
- Department of Space and Climate Physics, University College London, Surrey, UK
| | - Mario Cortina-Borja
- Population, Policy & Practice Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Meghan K Shirley
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Nutrition Department, University of São Paulo, São Paulo, Brazil
| |
Collapse
|