1
|
Rahimi Kahmini A, Valera IC, Crawford RQ, Samarah L, Reis G, Elsheikh S, Kanashiro-Takeuchi RM, Mohammadipoor N, Olateju BS, Matthews AR, Parvatiyar MS. Aging reveals a sex-dependent susceptibility of sarcospan-deficient mice to cardiometabolic disease. Am J Physiol Heart Circ Physiol 2024; 327:H1067-H1085. [PMID: 39120469 PMCID: PMC11482229 DOI: 10.1152/ajpheart.00702.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.
Collapse
Affiliation(s)
- Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isela C Valera
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Gisienne Reis
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Salma Elsheikh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nazanin Mohammadipoor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bolade S Olateju
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Aaron R Matthews
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
2
|
Schilder BM, Humphrey J, Raj T. echolocatoR: an automated end-to-end statistical and functional genomic fine-mapping pipeline. Bioinformatics 2022; 38:536-539. [PMID: 34529038 PMCID: PMC10060715 DOI: 10.1093/bioinformatics/btab658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY echolocatoR integrates a diverse suite of statistical and functional fine-mapping tools to identify, test enrichment in, and visualize high-confidence causal consensus variants in any phenotype. It requires minimal input from users (a summary statistics file), can be run in a single R function, and provides extensive access to relevant datasets (e.g. reference linkage disequilibrium panels, quantitative trait loci, genome-wide annotations, cell-type-specific epigenomics), thereby enabling rapid, robust and scalable end-to-end fine-mapping investigations. AVAILABILITY AND IMPLEMENTATION echolocatoR is an open-source R package available through GitHub under the GNU General Public License (Version 3) license: https://github.com/RajLabMSSM/echolocatoR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Brian M Schilder
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| |
Collapse
|
3
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|