1
|
Kukendrarajah K, Farmaki AE, Lambiase PD, Schilling R, Finan C, Floriaan Schmidt A, Providencia R. Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies. EBioMedicine 2024; 105:105194. [PMID: 38941956 PMCID: PMC11260865 DOI: 10.1016/j.ebiom.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development. METHODS Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF. FINDINGS 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development. INTERPRETATION Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF. FUNDING KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.
Collapse
Affiliation(s)
- Kishore Kukendrarajah
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom.
| | - Aliki-Eleni Farmaki
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom; Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom
| | - Richard Schilling
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Amand Floriaan Schmidt
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, the Netherlands
| | - Rui Providencia
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| |
Collapse
|
2
|
Lopera-Maya EA, Li S, de Brouwer R, Nolte IM, van Breen J, Jongbloed JDH, Swertz MA, Snieder H, Franke L, Wijmenga C, de Boer RA, Deelen P, van der Zwaag PA, Sanna S. Phenotypic and Genetic Factors Associated with Absence of Cardiomyopathy Symptoms in PLN:c.40_42delAGA Carriers. J Cardiovasc Transl Res 2023; 16:1251-1266. [PMID: 36622581 PMCID: PMC10721704 DOI: 10.1007/s12265-022-10347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
The c.40_42delAGA variant in the phospholamban gene (PLN) has been associated with dilated and arrhythmogenic cardiomyopathy, with up to 70% of carriers experiencing a major cardiac event by age 70. However, there are carriers who remain asymptomatic at older ages. To understand the mechanisms behind this incomplete penetrance, we evaluated potential phenotypic and genetic modifiers in 74 PLN:c.40_42delAGA carriers identified in 36,339 participants of the Lifelines population cohort. Asymptomatic carriers (N = 48) showed shorter QRS duration (- 5.73 ms, q value = 0.001) compared to asymptomatic non-carriers, an effect we could replicate in two different independent cohorts. Furthermore, symptomatic carriers showed a higher correlation (rPearson = 0.17) between polygenic predisposition to higher QRS (PGSQRS) and QRS (p value = 1.98 × 10-8), suggesting that the effect of the genetic variation on cardiac rhythm might be increased in symptomatic carriers. Our results allow for improved clinical interpretation for asymptomatic carriers, while our approach could guide future studies on genetic diseases with incomplete penetrance.
Collapse
Affiliation(s)
- Esteban A Lopera-Maya
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shuang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Remco de Brouwer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Justin van Breen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Serena Sanna
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy.
| |
Collapse
|
3
|
Ciochetti NP, Lugli-Moraes B, da Silva BS, Rovaris DL. Genome-wide association studies: utility and limitations for research in physiology. J Physiol 2023; 601:2771-2799. [PMID: 37208942 PMCID: PMC10527550 DOI: 10.1113/jp284241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Physiological systems are subject to interindividual variation encoded by genetics. Genome-wide association studies (GWAS) operate by surveying thousands of genetic variants from a substantial number of individuals and assessing their association to a trait of interest, be it a physiological variable, a molecular phenotype (e.g. gene expression), or even a disease or condition. Through a myriad of methods, GWAS downstream analyses then explore the functional consequences of each variant and attempt to ascertain a causal relationship to the phenotype of interest, as well as to delve into its links to other traits. This type of investigation allows mechanistic insights into physiological functions, pathological disturbances and shared biological processes between traits (i.e. pleiotropy). An exciting example is the discovery of a new thyroid hormone transporter (SLC17A4) and hormone metabolising enzyme (AADAT) from a GWAS on free thyroxine levels. Therefore, GWAS have substantially contributed with insights into physiology and have been shown to be useful in unveiling the genetic control underlying complex traits and pathological conditions; they will continue to do so with global collaborations and advances in genotyping technology. Finally, the increasing number of trans-ancestry GWAS and initiatives to include ancestry diversity in genomics will boost the power for discoveries, making them also applicable to non-European populations.
Collapse
Affiliation(s)
- Nicolas Pereira Ciochetti
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Lugli-Moraes
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| | - Bruna Santos da Silva
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diego Luiz Rovaris
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Bhattacharyya S, Kollipara RK, Orquera-Tornakian G, Goetsch S, Zhang M, Perry C, Li B, Shelton JM, Bhakta M, Duan J, Xie Y, Xiao G, Evers BM, Hon GC, Kittler R, Munshi NV. Global chromatin landscapes identify candidate noncoding modifiers of cardiac rhythm. J Clin Invest 2023; 133:e153635. [PMID: 36454649 PMCID: PMC9888383 DOI: 10.1172/jci153635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive cis-regulatory landscapes are essential for accurate enhancer prediction and disease variant mapping. Although cis-regulatory element (CRE) resources exist for most tissues and organs, many rare - yet functionally important - cell types remain overlooked. Despite representing only a small fraction of the heart's cellular biomass, the cardiac conduction system (CCS) unfailingly coordinates every life-sustaining heartbeat. To globally profile the mouse CCS cis-regulatory landscape, we genetically tagged CCS component-specific nuclei for comprehensive assay for transposase-accessible chromatin-sequencing (ATAC-Seq) analysis. Thus, we established a global CCS-enriched CRE database, referred to as CCS-ATAC, as a key resource for studying CCS-wide and component-specific regulatory functions. Using transcription factor (TF) motifs to construct CCS component-specific gene regulatory networks (GRNs), we identified and independently confirmed several specific TF sub-networks. Highlighting the functional importance of CCS-ATAC, we also validated numerous CCS-enriched enhancer elements and suggested gene targets based on CCS single-cell RNA-Seq data. Furthermore, we leveraged CCS-ATAC to improve annotation of existing human variants related to cardiac rhythm and nominated a potential enhancer-target pair that was dysregulated by a specific SNP. Collectively, our results established a CCS-regulatory compendium, identified novel CCS enhancer elements, and illuminated potential functional associations between human genomic variants and CCS component-specific CREs.
Collapse
Affiliation(s)
| | | | | | - Sean Goetsch
- Department of Internal Medicine, Division of Cardiology
| | - Minzhe Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Cameron Perry
- Department of Internal Medicine, Division of Cardiology
| | - Boxun Li
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | | | - Minoti Bhakta
- Department of Internal Medicine, Division of Cardiology
| | - Jialei Duan
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Bret M. Evers
- Department of Internal Medicine, Division of Cardiology
| | - Gary C. Hon
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
- Department of Bioinformatics
- Hamon Center for Regenerative Science and Medicine, and
| | - Ralf Kittler
- McDermott Center for Human Growth and Development
| | - Nikhil V. Munshi
- Department of Internal Medicine, Division of Cardiology
- McDermott Center for Human Growth and Development
- Hamon Center for Regenerative Science and Medicine, and
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Hoffmann TJ, Lu M, Oni-Orisan A, Lee C, Risch N, Iribarren C. A large genome-wide association study of QT interval length utilizing electronic health records. Genetics 2022; 222:iyac157. [PMID: 36271874 PMCID: PMC9713425 DOI: 10.1093/genetics/iyac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022] Open
Abstract
QT interval length is an important risk factor for adverse cardiovascular outcomes; however, the genetic architecture of QT interval remains incompletely understood. We conducted a genome-wide association study of 76,995 ancestrally diverse Kaiser Permanente Northern California members enrolled in the Genetic Epidemiology Research on Adult Health and Aging cohort using 448,517 longitudinal QT interval measurements, uncovering 9 novel variants, most replicating in 40,537 individuals in the UK Biobank and Population Architecture using Genomics and Epidemiology studies. A meta-analysis of all 3 cohorts (n = 117,532) uncovered an additional 19 novel variants. Conditional analysis identified 15 additional variants, 3 of which were novel. Little, if any, difference was seen when adjusting for putative QT interval lengthening medications genome-wide. Using multiple measurements in Genetic Epidemiology Research on Adult Health and Aging increased variance explained by 163%, and we show that the ≈6 measurements in Genetic Epidemiology Research on Adult Health and Aging was equivalent to a 2.4× increase in sample size of a design with a single measurement. The array heritability was estimated at ≈17%, approximately half of our estimate of 36% from family correlations. Heritability enrichment was estimated highest and most significant in cardiovascular tissue (enrichment 7.2, 95% CI = 5.7-8.7, P = 2.1e-10), and many of the novel variants included expression quantitative trait loci in heart and other relevant tissues. Comparing our results to other cardiac function traits, it appears that QT interval has a multifactorial genetic etiology.
Collapse
Affiliation(s)
- Thomas J Hoffmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Meng Lu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Akinyemi Oni-Orisan
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Neil Risch
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| |
Collapse
|
6
|
Ramírez J, van Duijvenboden S, Young WJ, Tinker A, Lambiase PD, Orini M, Munroe PB. Prediction of Coronary Artery Disease and Major Adverse Cardiovascular Events Using Clinical and Genetic Risk Scores for Cardiovascular Risk Factors. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003441. [PMID: 35861959 PMCID: PMC9584057 DOI: 10.1161/circgen.121.003441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) and major adverse cardiovascular events (MACE) are the leading causes of death in the general population, but risk stratification remains suboptimal. CAD genetic risk scores (GRSs) predict risk independently from clinical tools, like QRISK3. We assessed the added value of GRSs for a variety of cardiovascular traits (CV GRSs) for predicting CAD and MACE and tested their early-life screening potential by comparing against the CAD GRS only. METHODS We used data from 379 581 participants in the UK Biobank without known cardiovascular conditions (follow-up, 11.3 years; 3.3% CAD cases and 5.2% MACE cases). In a training subset (50%) we built 3 scores: QRISK3; QRISK3 and an established CAD GRS; and QRISK3, the CAD GRS and the CV GRSs. In an independent subset (50%), we evaluated each score's performance using the concordance index, odds ratio and net reclassification index. We then repeated the analyses without considering QRISK3. RESULTS For CAD, the combination of QRISK3 and the CAD GRS had a better performance than QRISK3 alone (concordance index, 0.766 versus 0.753; odds ratio, 5.47 versus 4.82; net reclassification index, 7.7%). Adding the CV GRSs did not significantly improve risk stratification. When only looking at genetic information, the combination of CV GRSs and the CAD GRS had a better performance than the CAD GRS alone (concordance index, 0.637 versus 0.625; odds ratio, 2.17 versus 2.07; net reclassification index, 3.3%). Similar results were obtained for MACE. CONCLUSIONS In individuals without known cardiovascular disease, the inclusion of CV GRSs to a clinical tool and an established CAD GRS does not improve CAD or MACE risk stratification. However, their combination only with the CAD GRS increases prediction performance indicating potential use in early-life screening before the advanced development of conventional cardiovascular risk factors.
Collapse
Affiliation(s)
- Julia Ramírez
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- Electronic Engineering and Communications Department, Aragon Institute of Engineering Research, University of Zaragoza, Spain and CIBER's Bioengineering, Biomaterials and Nanomedicine, Spain. (J.R.)
| | - Stefan van Duijvenboden
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- Institute of Cardiovascular Science, University College London, London, United Kingdom (S.v.D., P.D.L., M.O.)
| | - William J. Young
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom (W.J.Y., P.D.L., M.O.)
| | - Andrew Tinker
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T., P.B.M.)
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom (S.v.D., P.D.L., M.O.)
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom (W.J.Y., P.D.L., M.O.)
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom (S.v.D., P.D.L., M.O.)
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom (W.J.Y., P.D.L., M.O.)
| | - Patricia B. Munroe
- Clinical Pharmacology and Precision Medicine Deparment, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (J.R., S.v.D., W.J.Y., A.T., P.B.M.)
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T., P.B.M.)
| |
Collapse
|
7
|
Hanscombe KB, Persyn E, Traylor M, Glanville KP, Hamer M, Coleman JRI, Lewis CM. The genetic case for cardiorespiratory fitness as a clinical vital sign and the routine prescription of physical activity in healthcare. Genome Med 2021; 13:180. [PMID: 34753499 PMCID: PMC8579601 DOI: 10.1186/s13073-021-00994-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cardiorespiratory fitness (CRF) and physical activity (PA) are well-established predictors of morbidity and all-cause mortality. However, CRF is not routinely measured and PA not routinely prescribed as part of standard healthcare. The American Heart Association (AHA) recently presented a scientific case for the inclusion of CRF as a clinical vital sign based on epidemiological and clinical observation. Here, we leverage genetic data in the UK Biobank (UKB) to strengthen the case for CRF as a vital sign and make a case for the prescription of PA. METHODS We derived two CRF measures from the heart rate data collected during a submaximal cycle ramp test: CRF-vo2max, an estimate of the participants' maximum volume of oxygen uptake, per kilogram of body weight, per minute; and CRF-slope, an estimate of the rate of increase of heart rate during exercise. Average PA over a 7-day period was derived from a wrist-worn activity tracker. After quality control, 70,783 participants had data on the two derived CRF measures, and 89,683 had PA data. We performed genome-wide association study (GWAS) analyses by sex, and post-GWAS techniques to understand genetic architecture of the traits and prioritise functional genes for follow-up. RESULTS We found strong evidence that genetic variants associated with CRF and PA influenced genetic expression in a relatively small set of genes in the heart, artery, lung, skeletal muscle and adipose tissue. These functionally relevant genes were enriched among genes known to be associated with coronary artery disease (CAD), type 2 diabetes (T2D) and Alzheimer's disease (three of the top 10 causes of death in high-income countries) as well as Parkinson's disease, pulmonary fibrosis, and blood pressure, heart rate, and respiratory phenotypes. Genetic variation associated with lower CRF and PA was also correlated with several disease risk factors (including greater body mass index, body fat and multiple obesity phenotypes); a typical T2D profile (including higher insulin resistance, higher fasting glucose, impaired beta-cell function, hyperglycaemia, hypertriglyceridemia); increased risk for CAD and T2D; and a shorter lifespan. CONCLUSIONS Genetics supports three decades of evidence for the inclusion of CRF as a clinical vital sign. Given the genetic, clinical and epidemiological evidence linking CRF and PA to increased morbidity and mortality, regular measurement of CRF as a marker of health and routine prescription of PA could be a prudent strategy to support public health.
Collapse
Affiliation(s)
- Ken B Hanscombe
- Department of Medical & Molecular Genetics, King's College London, London, UK. .,Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK.
| | - Elodie Persyn
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | | | - Kylie P Glanville
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Mark Hamer
- Institute of Sport Exercise & Health, Division of Surgery and Interventional Science, University College London, London, UK
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Cathryn M Lewis
- Department of Medical & Molecular Genetics, King's College London, London, UK.,Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| |
Collapse
|
8
|
Dittmann S, Kayser A, Schulze-Bahr E. Long, longer, long QT syndrome: what makes the difference? Cardiovasc Res 2021; 117:637-639. [PMID: 33616670 DOI: 10.1093/cvr/cvab025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Anne Kayser
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
9
|
Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats. Genes (Basel) 2021; 12:genes12071087. [PMID: 34356103 PMCID: PMC8305224 DOI: 10.3390/genes12071087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/− on male rats vs. their wild-type Nme7+/+ controls. Nme7+/− animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/− male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.
Collapse
|
10
|
Young WJ, Warren HR, Mook-Kanamori DO, Ramírez J, van Duijvenboden S, Orini M, Tinker A, van Heemst D, Lambiase PD, Jukema JW, Munroe PB, Noordam R. Genetically Determined Serum Calcium Levels and Markers of Ventricular Repolarization: A Mendelian Randomization Study in the UK Biobank. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003231. [PMID: 33887147 PMCID: PMC8208093 DOI: 10.1161/circgen.120.003231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND ECG markers of ventricular depolarization and repolarization are associated with an increased risk of arrhythmia and sudden cardiac death. Our prior work indicated lower serum calcium concentrations are associated with longer QT and JT intervals in the general population. Here, we investigate whether serum calcium is a causal risk factor for changes in ECG measures using Mendelian randomization (MR). METHODS Independent lead variants from a newly performed genome-wide association study for serum calcium in >300 000 European-ancestry participants from UK Biobank were used as instrumental variables. Two-sample MR analyses were performed to approximate the causal effect of serum calcium on QT, JT, and QRS intervals using an inverse-weighted method in 76 226 participants not contributing to the serum calcium genome-wide association study. Sensitivity analyses including MR-Egger, weighted-median estimator, and MR pleiotropy residual sum and outlier were performed to test for the presence of horizontal pleiotropy. RESULTS Two hundred five independent lead calcium-associated variants were used as instrumental variables for MR. A decrease of 0.1 mmol/L serum calcium was associated with longer QT (3.01 ms [95% CI, 2.03 to 3.99]) and JT (2.89 ms [1.91 to 3.87]) intervals. A weak association was observed for QRS duration (secondary analyses only). Results were concordant in all sensitivity analyses. CONCLUSIONS These analyses support a causal effect of serum calcium levels on ventricular repolarization, in a middle-aged population of European-ancestry where serum calcium concentrations are likely stable and chronic. Modulation of calcium concentration may, therefore, directly influence cardiovascular disease risk.
Collapse
Affiliation(s)
- William J. Young
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS trust (W.J.Y., M.O., P.D.L.)
| | - Helen R. Warren
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- NIHR Barts Cardiovascular Biomedical Research Unit (H.R.W., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology (D.O.M.-K.), Leiden University Medical Center, the Netherlands
- Department of Public Health and Primary Care (D.O.M.-K.), Leiden University Medical Center, the Netherlands
| | - Julia Ramírez
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - Stefan van Duijvenboden
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - Michele Orini
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS trust (W.J.Y., M.O., P.D.L.)
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - Andrew Tinker
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- NIHR Barts Cardiovascular Biomedical Research Unit (H.R.W., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Diana van Heemst
- Department of Internal Medicine (D.v.H., R.N.), Leiden University Medical Center, the Netherlands
| | - Pier D. Lambiase
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS trust (W.J.Y., M.O., P.D.L.)
- Institute of Cardiovascular Sciences, University of College London, United Kingdom (J.R., S.v.D., M.O., P.D.L.)
| | - J. Wouter Jukema
- Department of Cardiology (J.W.J.), Leiden University Medical Center, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands (J.W.J.)
| | - Patricia B. Munroe
- Clinical Pharmacology Department, William Harvey Research Institute (W.J.Y., H.R.W., J.R., S.v.D., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
- NIHR Barts Cardiovascular Biomedical Research Unit (H.R.W., A.T., P.B.M.), Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Raymond Noordam
- Department of Internal Medicine (D.v.H., R.N.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
11
|
Šedová L, Buková I, Bažantová P, Petrezsélyová S, Prochazka J, Školníková E, Zudová D, Včelák J, Makovický P, Bendlová B, Šeda O, Sedlacek R. Semi-Lethal Primary Ciliary Dyskinesia in Rats Lacking the Nme7 Gene. Int J Mol Sci 2021; 22:ijms22083810. [PMID: 33916973 PMCID: PMC8067621 DOI: 10.3390/ijms22083810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7−/− pups died prior to weaning. The most prominent phenotypes in surviving SDNme7−/− animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/− rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.
Collapse
Affiliation(s)
- Lucie Šedová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
- Correspondence:
| | - Ivana Buková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Pavla Bažantová
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Silvia Petrezsélyová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Elena Školníková
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Dagmar Zudová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Josef Včelák
- Department of Molecular Endocrinology, Institute of Endocrinology, 116 94 Prague, Czech Republic; (J.V.); (B.B.)
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Selye University, 945 01 Komarno, Slovakia;
| | - Běla Bendlová
- Department of Molecular Endocrinology, Institute of Endocrinology, 116 94 Prague, Czech Republic; (J.V.); (B.B.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| |
Collapse
|
12
|
Vincentz JW, Firulli BA, Toolan KP, Osterwalder M, Pennacchio LA, Firulli AB. HAND transcription factors cooperatively specify the aorta and pulmonary trunk. Dev Biol 2021; 476:1-10. [PMID: 33757801 DOI: 10.1016/j.ydbio.2021.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Congenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Kevin P Toolan
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; U.S. Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA; Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
13
|
van de Leur RR, Taha K, Bos MN, van der Heijden JF, Gupta D, Cramer MJ, Hassink RJ, van der Harst P, Doevendans PA, Asselbergs FW, van Es R. Discovering and Visualizing Disease-Specific Electrocardiogram Features Using Deep Learning: Proof-of-Concept in Phospholamban Gene Mutation Carriers. Circ Arrhythm Electrophysiol 2021; 14:e009056. [PMID: 33401921 PMCID: PMC7892204 DOI: 10.1161/circep.120.009056] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND ECG interpretation requires expertise and is mostly based on physician recognition of specific patterns, which may be challenging in rare cardiac diseases. Deep neural networks (DNNs) can discover complex features in ECGs and may facilitate the detection of novel features which possibly play a pathophysiological role in relatively unknown diseases. Using a cohort of PLN (phospholamban) p.Arg14del mutation carriers, we aimed to investigate whether a novel DNN-based approach can identify established ECG features, but moreover, we aimed to expand our knowledge on novel ECG features in these patients. METHODS A DNN was developed on 12-lead median beat ECGs of 69 patients and 1380 matched controls and independently evaluated on 17 patients and 340 controls. Differentiating features were visualized using Guided Gradient Class Activation Mapping++. Novel ECG features were tested for their diagnostic value by adding them to a logistic regression model including established ECG features. RESULTS The DNN showed excellent discriminatory performance with a c-statistic of 0.95 (95% CI, 0.91-0.99) and sensitivity and specificity of 0.82 and 0.93, respectively. Visualizations revealed established ECG features (low QRS voltages and T-wave inversions), specified these features (eg, R- and T-wave attenuation in V2/V3) and identified novel PLN-specific ECG features (eg, increased PR-duration). The logistic regression baseline model improved significantly when augmented with the identified features (P<0.001). CONCLUSIONS A DNN-based feature detection approach was able to discover and visualize disease-specific ECG features in PLN mutation carriers and revealed yet unidentified features. This novel approach may help advance diagnostic capabilities in daily practice.
Collapse
Affiliation(s)
- Rutger R. van de Leur
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
- Netherlands Heart Institute, Utrecht (R.R.v.d.L., K.T., P.A.D.)
| | - Karim Taha
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
- Netherlands Heart Institute, Utrecht (R.R.v.d.L., K.T., P.A.D.)
| | - Max N. Bos
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
- Informatics Institute, University of Amsterdam, the Netherlands (M.N.B., D.G.)
| | - Jeroen F. van der Heijden
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
| | - Deepak Gupta
- Informatics Institute, University of Amsterdam, the Netherlands (M.N.B., D.G.)
| | - Maarten J. Cramer
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
| | - Rutger J. Hassink
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
- Netherlands Heart Institute, Utrecht (R.R.v.d.L., K.T., P.A.D.)
- Central Military Hospital, Utrecht, the Netherlands (P.A.D.)
| | - Folkert W. Asselbergs
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, United Kingdom (F.W.A.)
| | - René van Es
- Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.)
| |
Collapse
|
14
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
15
|
Streeten EA, See VY, Jeng LBJ, Maloney KA, Lynch M, Glazer AM, Yang T, Roden D, Pollin TI, Daue M, Ryan KA, Van Hout C, Gosalia N, Gonzaga-Jauregui C, Economides A, Perry JA, O'Connell J, Beitelshees A, Palmer K, Mitchell BD, Shuldiner AR. KCNQ1 and Long QT Syndrome in 1/45 Amish: The Road From Identification to Implementation of Culturally Appropriate Precision Medicine. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e003133. [PMID: 33141630 PMCID: PMC7748050 DOI: 10.1161/circgen.120.003133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. In population-based research exome sequencing, the path from variant discovery to return of results is not well established. Variants discovered by research exome sequencing have the potential to improve population health.
Collapse
Affiliation(s)
- Elizabeth A Streeten
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Vincent Y See
- Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine.,Division of Cardiolovascular Medicine (V.Y.S., T.I.P., K.P.), University of Maryland School of Medicine
| | - Linda B J Jeng
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Kristin A Maloney
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Megan Lynch
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Andrew M Glazer
- Division of Clinical Pharmacology, Department of Medicine (A.M.G., T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Tao Yang
- Division of Clinical Pharmacology, Department of Medicine (A.M.G., T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN.,Department of Pharmacology (T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Dan Roden
- Division of Clinical Pharmacology, Department of Medicine (A.M.G., T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN.,Department of Pharmacology (T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN.,Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Toni I Pollin
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine.,Division of Cardiolovascular Medicine (V.Y.S., T.I.P., K.P.), University of Maryland School of Medicine
| | - Melanie Daue
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Kathleen A Ryan
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Cristopher Van Hout
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | - Nehal Gosalia
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | | | - Aris Economides
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | - James A Perry
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Jeffrey O'Connell
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Amber Beitelshees
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Kathleen Palmer
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Division of Cardiolovascular Medicine (V.Y.S., T.I.P., K.P.), University of Maryland School of Medicine
| | - Braxton D Mitchell
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine.,Baltimore Veterans Administration Medical Center Geriatrics Research and Education Clinical Center, Baltimore, MD (B.D.M.)
| | - Alan R Shuldiner
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | | |
Collapse
|
16
|
Honigberg MC, Chaffin M, Aragam K, Bhatt DL, Wood MJ, Sarma AA, Scott NS, Peloso GM, Natarajan P. Genetic Variation in Cardiometabolic Traits and Medication Targets and the Risk of Hypertensive Disorders of Pregnancy. Circulation 2020; 142:711-713. [PMID: 32804569 DOI: 10.1161/circulationaha.120.047936] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael C Honigberg
- Cardiology Division (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Medicine (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA (M.C.H., M.C., K.A., P.N.)
- Cardiovascular Research Center and Center for Genomic Medicine (M.C.H., K.A., P.N.), Massachusetts General Hospital, Boston
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA (M.C.H., M.C., K.A., P.N.)
| | - Krishna Aragam
- Cardiology Division (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Medicine (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, MA (D.L.B.)
| | - Malissa J Wood
- Cardiology Division (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Medicine (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Corrigan Women's Heart Health Program (M.C.H., M.J.W., A.A.S., N.S.S.), Massachusetts General Hospital, Boston
| | - Amy A Sarma
- Cardiology Division (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Medicine (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Corrigan Women's Heart Health Program (M.C.H., M.J.W., A.A.S., N.S.S.), Massachusetts General Hospital, Boston
| | - Nandita S Scott
- Cardiology Division (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Medicine (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Corrigan Women's Heart Health Program (M.C.H., M.J.W., A.A.S., N.S.S.), Massachusetts General Hospital, Boston
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, MA (G.M.P.)
| | - Pradeep Natarajan
- Cardiology Division (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Medicine (M.C.H., K.A., M.J.W., A.A.S., N.S.S., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston
- Cardiovascular Research Center and Center for Genomic Medicine (M.C.H., K.A., P.N.), Massachusetts General Hospital, Boston
| |
Collapse
|
17
|
Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach. Sci Rep 2020; 10:11831. [PMID: 32678143 PMCID: PMC7367351 DOI: 10.1038/s41598-020-68567-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 µM ivabradine—an open channel blocker of HCNs—for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).
Collapse
|
18
|
Villar D, Frost S, Deloukas P, Tinker A. The contribution of non-coding regulatory elements to cardiovascular disease. Open Biol 2020; 10:200088. [PMID: 32603637 PMCID: PMC7574544 DOI: 10.1098/rsob.200088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease collectively accounts for a quarter of deaths worldwide. Genome-wide association studies across a range of cardiovascular traits and pathologies have highlighted the prevalence of common non-coding genetic variants within candidate loci. Here, we review genetic, epigenomic and molecular approaches to investigate the contribution of non-coding regulatory elements in cardiovascular biology. We then discuss recent insights on the emerging role of non-coding variation in predisposition to cardiovascular disease, with a focus on novel mechanistic examples from functional genomics studies. Lastly, we consider the clinical significance of these findings at present, and some of the current challenges facing the field.
Collapse
Affiliation(s)
- Diego Villar
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stephanie Frost
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Panos Deloukas
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Tinker
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
19
|
Scholman KT, Meijborg VMF, Gálvez-Montón C, Lodder EM, Boukens BJ. From Genome-Wide Association Studies to Cardiac Electrophysiology: Through the Maze of Biological Complexity. Front Physiol 2020; 11:557. [PMID: 32536879 PMCID: PMC7267057 DOI: 10.3389/fphys.2020.00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Genome Wide Association Studies (GWAS) have provided an enormous amount of data on genomic loci associated with cardiac electrophysiology and arrhythmias. Clinical relevance, however, remains unclear since GWAS do not provide a mechanistic explanation for this association. Determining the electrophysiological relevance of variants for arrhythmias would aid development of risk stratification models for patients with arrhythmias. In this review, we give an overview of genetic variants related to ECG intervals and arrhythmogenic pathologies and discuss how these variants may influence cardiac electrophysiology and the occurrence of arrhythmias.
Collapse
Affiliation(s)
- Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Nam JM, Lim JE, Ha TW, Oh B, Kang JO. Cardiac-specific inactivation of Prdm16 effects cardiac conduction abnormalities and cardiomyopathy-associated phenotypes. Am J Physiol Heart Circ Physiol 2020; 318:H764-H777. [PMID: 32083975 DOI: 10.1152/ajpheart.00647.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variant in the PRDM16 locus has been correlated with QRS duration in an electrocardiogram genome-wide association study, and the deletion of PRDM16 has been implicated as a causal factor of the dilated cardiomyopathy that is linked to 1p36 deletion syndrome. We aimed to determine how a null mutation of Prdm16 affects cardiac function and study the underlying mechanism of the resulting phenotype in an appropriate mouse model. We used cardiac-specific Prdm16 conditional knockout mice to examine cardiac function by electrocardiography. QRS duration and QTc interval increased significantly in cardiac-specific Prdm16 knockout animals compared with wild-type mice. Further, we assessed cardiomyopathy-associated features by trichrome staining, densitometry, and hydroxyproline assay. Prdm16-null hearts showed greater fibrosis and cardiomyocyte hypertrophy. By quantitative real-time PCR, Prdm16-null hearts upregulated extracellular matrix-related genes (Ctgf, Timp1) and α-smooth muscle actin (Acta2), a myofibroblast marker. Moreover, TGF-β signaling was activated in Prdm16-null hearts, as evidenced by increased Tgfb1-3 transcript levels and phosphorylated Smad2. However, the inhibition of TGF-β receptor did not reverse the aberrations in conduction in cardiac-specific Prdm16 knockout mice. To determine the underlying mechanisms, we performed RNA-seq using mouse left ventricular tissue. By functional analysis, Prdm16-null hearts experienced dysregulated expression of ion channel genes, including Kcne1, Scn5a, Cacna1h, and Cacna2d2. Mice with Prdm16-null hearts develop abnormalities in cardiac conduction and cardiomyopathy-associated phenotypes, including fibrosis and cellular hypertrophy. Further, the RNA-seq findings suggest that impairments in ion homeostasis (Ca2+, K+, and Na+) may at least partially underlie the abnormal conduction in cardiac-specific Prdm16 knockout mice.NEW & NOTEWORTHY This is the first study that describes aberrant cardiac function and cardiomyopathy-associated phenotypes in an appropriate murine genetic model with cardiomyocyte-specific Prdm16-null mutation. It is noteworthy that the correlation of PRDM16 with QRS duration is replicated in a murine animal model and the potential underlying mechanism may be the impairment of ion homeostasis.
Collapse
Affiliation(s)
- Jeong Min Nam
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Woong Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
21
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
22
|
Spitali P, Zaharieva I, Bohringer S, Hiller M, Chaouch A, Roos A, Scotton C, Claustres M, Bello L, McDonald CM, Hoffman EP, Koeks Z, Eka Suchiman H, Cirak S, Scoto M, Reza M, 't Hoen PAC, Niks EH, Tuffery-Giraud S, Lochmüller H, Ferlini A, Muntoni F, Aartsma-Rus A. TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy. Eur J Hum Genet 2020; 28:815-825. [PMID: 31896777 PMCID: PMC7253478 DOI: 10.1038/s41431-019-0563-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene leading to the lack of dystrophin. Variability in the disease course suggests that other factors influence disease progression. With this study we aimed to identify genetic factors that may account for some of the variability in the clinical presentation. We compared whole-exome sequencing (WES) data in 27 DMD patients with extreme phenotypes to identify candidate variants that could affect disease progression. Validation of the candidate SNPs was performed in two independent cohorts including 301 (BIO-NMD cohort) and 109 (CINRG cohort of European ancestry) DMD patients, respectively. Variants in the Tctex1 domain containing 1 (TCTEX1D1) gene on chromosome 1 were associated with age of ambulation loss. The minor alleles of two independent variants, known to affect TCTEX1D1 coding sequence and induce skipping of its exon 4, were associated with earlier loss of ambulation. Our data show that disease progression of DMD is affected by a new locus on chromosome 1 and demonstrate the possibility to identify genetic modifiers in rare diseases by studying WES data in patients with extreme phenotypes followed by multiple layers of validation.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - Stefan Bohringer
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Monika Hiller
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Amina Chaouch
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK.,Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, Salford, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Chiara Scotton
- Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Mireille Claustres
- Laboratory of Genetics of Rare Diseases (LGMR - EA7402), University of Montpellier, Montpellier, France
| | - Luca Bello
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA.,Department of Neuroscience, University of Padova, Padova, Italy
| | - Craig M McDonald
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | | | - Zaida Koeks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Eka Suchiman
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Pediatrics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Mojgan Reza
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sylvie Tuffery-Giraud
- Laboratory of Genetics of Rare Diseases (LGMR - EA7402), University of Montpellier, Montpellier, France
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Alessandra Ferlini
- Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|