1
|
Smith HS, Regier DA, Goranitis I, Bourke M, IJzerman MJ, Degeling K, Montgomery T, Phillips KA, Wordsworth S, Buchanan J, Marshall DA. Approaches to Incorporation of Preferences into Health Economic Models of Genomic Medicine: A Critical Interpretive Synthesis and Conceptual Framework. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025; 23:337-358. [PMID: 39832089 DOI: 10.1007/s40258-025-00945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Genomic medicine has features that make it preference sensitive and amenable to model-based health economic evaluation. Preferences of patients, caregivers, and clinicians related to the uptake and delivery of genomic medicine technologies and services that are not captured in health state utility weights can affect the intervention's cost-effectiveness and budget impact. However, there is currently no established or agreed-on approach for integrating preference information into economic evaluations. The objective of this study was to explore approaches for incorporating preferences into model-based economic evaluations of genomic medicine and to develop a conceptual framework to consider preferences in health economic models. METHODS We conducted a critical interpretive synthesis of published literature guided by the following question: how have preferences been incorporated into model-based economic evaluations of genomic medicine interventions? We integrated findings from the literature and expert opinion to develop a conceptual framework of ways in which preferences influence economic value in the context of genomic medicine. RESULTS Our synthesis included 14 articles. Revealed and stated preference data were used to estimate choice probabilities and to value outcomes. Our conceptual framework situates preference data in the context of health system, patient, clinician, and family characteristics. Preference data were sourced from clinicians, patients and families impacted by a condition or intervention, and the general public. Evaluations employed various types of models, including discrete event simulation, microsimulation, Markov, and decision tree models. CONCLUSION When evaluating the broad benefits and costs of implementing new interventions, sufficiently accounting for preferences in the form of model inputs and valuation of outcomes in economic evaluations is important to avoid biased implementation decisions. Incorporation of preference data may improve alignment between predicted and real-world uptake and more accurately estimate welfare impacts, and this study provides critical insights to support researchers who seek to incorporate preference information into model-based health economic evaluations.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 401 Park Drive Suite 401, Boston, MA, USA, 02215.
| | - Dean A Regier
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Ilias Goranitis
- Melbourne Health Economics, Centre for Health Policy, University of Melbourne, Melbourne, Australia
| | - Mackenzie Bourke
- Melbourne Health Economics, Centre for Health Policy, University of Melbourne, Melbourne, Australia
| | - Maarten J IJzerman
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Erasmus School of Health Policy and Management, Rotterdam, The Netherlands
| | - Koen Degeling
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Taylor Montgomery
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 401 Park Drive Suite 401, Boston, MA, USA, 02215
| | - Kathryn A Phillips
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Fransisco, CA, USA
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - James Buchanan
- Health Economics and Policy Research Unit (HEPRU), Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | |
Collapse
|
2
|
Abbott M, Ryan M, Hernández R, Heidenreich S, Miedzybrodzka Z. Beyond the Diagnosis: Valuing Genome-Wide Sequencing for Rare Disease Diagnosis Using Contingent Valuation. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025; 23:425-439. [PMID: 40082384 PMCID: PMC12052812 DOI: 10.1007/s40258-025-00948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND OBJECTIVE The utility of genome-wide sequencing is often quantified in terms of its diagnostic yield. Although obtaining a diagnosis is a fundamental aspect of value, service users also value broader clinical, informational, process and psychological factors in the provision of genomic testing. This study aims to value genome-wide sequencing from the user perspective in Scotland. METHODS A survey was developed and administered to 1014 patients and families with experience of genome-wide sequencing to diagnose a rare condition in Scotland. Participants' willingness to pay for genomic testing was elicited using a contingent valuation payment card. The survey included two genomic-related patient-reported outcome measures: (i) the Personal Utility Scale (PrU) to generate scores for the personal utility of genome-wide sequencing; and (ii) a subscale of the Feelings About Genomic Testing Results (FACTOR) questionnaire to measure negative psychological outcomes. Data were also collected on participants' prior experiences of genomic testing services. A double-hurdle regression model investigated the predictors of patients' willingness to pay for genomic testing. RESULTS Of the 1014 invitations sent, 171 contingent valuation questionnaires were returned. Diagnosed participants reported higher personal utility on PrU than undiagnosed participants. However, both groups reported similar negative psychological outcomes on FACTOR. Diagnosed participants were willing to pay £2043 for genome-wide sequencing, compared with £835 for undiagnosed participants. Diagnostic status, waiting time for results and FACTOR scores (negative psychological outcomes) influenced users' valuations of genome-wide sequencing. CONCLUSIONS Obtaining a diagnosis is a fundamental component of utility in the provision of genomic testing. However, there is still value to those who do not receive a diagnosis. These results have implications for service delivery, such as providing targeted pre-test and post-test genetic counselling, and investing in efficient genome sequencing pipelines to reduce waiting times. Valuing the user experience of genomic testing aligns with patient-centred approaches to the provision of healthcare.
Collapse
Affiliation(s)
- Michael Abbott
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK.
| | - Mandy Ryan
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | - Rodolfo Hernández
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
3
|
Abbott M, Ryan M, Hernández R, McKenzie L, Heidenreich S, Hocking L, Clark C, Ansari M, Moore D, Lampe A, McGowan R, Berg J, Miedzybrodzka Z. Should Scotland provide genome-wide sequencing for the diagnosis of rare developmental disorders? A cost-effectiveness analysis. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2025; 26:503-512. [PMID: 39249625 PMCID: PMC11937054 DOI: 10.1007/s10198-024-01717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
AIMS This study aims to evaluate the cost effectiveness of genetic and genomic testing strategies for the diagnosis of rare developmental disorders in NHS Scotland. METHODS Six genetic and genomic testing strategies were evaluated using a decision tree model. First-line, second-line and last-resort trio genome sequencing (GS), and second-line and last-resort trio exome sequencing (ES) were compared with standard genetic testing. The cost effectiveness of each strategy was expressed in terms of incremental cost per additional diagnosis. The impact of uncertainty on cost-effectiveness results was explored using deterministic and probabilistic sensitivity analysis. RESULTS 2nd-line ES was a cost-saving option, increasing diagnostic yield by 13.9% and decreasing cost by £1027 per trio compared to standard genetic testing. Compared to ES, strategies involving GS increased costs significantly, with only a moderate or zero improvement in diagnostic yield. Sensitivity analysis indicated that significant reductions in cost or improvements in diagnostic yield are required before 1st-line GS becomes cost effective. CONCLUSION 2nd-line ES (after chromosomal microarray; replacing gene panel testing) for the diagnosis of developmental disorders is a cost-saving option for the Scottish NHS. Ongoing economic evaluation is required to monitor the evolving cost and diagnostic yield of GS and ES over time.
Collapse
Affiliation(s)
- Michael Abbott
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK.
| | - Mandy Ryan
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | - Rodolfo Hernández
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | - Lynda McKenzie
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Lynne Hocking
- Department of Medical Genetics, University of Aberdeen, Aberdeen, UK
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Caroline Clark
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Morad Ansari
- South East Scotland Genetic Service, NHS Lothian, Edinburgh, UK
| | - David Moore
- South East Scotland Genetic Service, NHS Lothian, Edinburgh, UK
| | - Anne Lampe
- South East Scotland Genetic Service, NHS Lothian, Edinburgh, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, QEUH, Glasgow, UK
| | | | - Zosia Miedzybrodzka
- Department of Medical Genetics, University of Aberdeen, Aberdeen, UK
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
4
|
Cacoub E, Lefebvre NB, Milunov D, Sarkar M, Saha S. Quantifying hope: an EU perspective of rare disease therapeutic space and market dynamics. Front Public Health 2025; 13:1520467. [PMID: 39963479 PMCID: PMC11830808 DOI: 10.3389/fpubh.2025.1520467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Rare diseases, affecting millions globally, pose a significant healthcare burden despite impacting a small population. While approximately 70% of all rare diseases are genetic and often begin in childhood, diagnosis remains slow and only 5% have approved treatments. The UN emphasizes improved access to primary care (diagnostic and potentially therapeutic) for these patients and their families. Next-generation sequencing (NGS) offers hope for earlier and more accurate diagnoses, potentially leading to preventative measures and targeted therapies. In here, we explore the therapeutic landscape for rare diseases, analyzing drugs in development and those already approved by the European Medicines Agency (EMA). We differentiate between orphan drugs with market exclusivity and repurposed existing drugs, both crucial for patients. By analyzing market size, segmentation, and publicly available data, this comprehensive study aims to pave the way for improved understanding of the treatment landscape and a wider knowledge accessibility for rare disease patients.
Collapse
|
5
|
Ayoub S, De Clercq E, Cytrynbaum C, Steiner LA, Elger BS. Like milk on the stove: Healthcare professionals navigating uncertainty when caring for families with 22q11DS. PLoS One 2025; 20:e0313845. [PMID: 39787142 PMCID: PMC11717309 DOI: 10.1371/journal.pone.0313845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION 22q11 deletion syndrome (22q11DS) results from a microdeletion on chromosome 22 and is the most common microdeletion disorder in humans, affecting 1 in 2148 live births. Clinical manifestations vary widely among individuals and across different life stages. Effective management requires the involvement of a specialized multidisciplinary team. This study aims to explore the experiences of healthcare professionals in caring for the families of children with 22q11DS, focusing on their challenges, rewards, and coping strategies. METHODS Data for this interview study were collected as part of a broader mixed methods research project aimed at enhancing the psychosocial well-being of children aged 3-15 years with 22q11DS and their families. The qualitative aspect of this study focused on capturing the experiences of healthcare professionals involved in their care, recruited purposively through collaborators and snowball sampling methods. Reflexive thematic analysis of semi-structured interviews was performed after verbatim transcription. RESULTS Twenty healthcare providers from different specialties were interviewed. The majority had a working experience of more than 10 years and were part of a 22q11DS clinic. After data analysis, four themes (and many sub-themes) were identified that were all related to the topic of uncertainty: acknowledging uncertainty, sharing uncertainty, acting on uncertainty and coping with uncertainty. Many experts showed a sense of humbleness when caring for the families and most of the participants emphasized the role of peer support and multidisciplinary teams. CONCLUSION Our study reveals how healthcare professionals manage the uncertainty associated with 22q11DS, highlighting the importance of peer support and multidisciplinary team collaboration. Providers recognize the limits of their medical expertise and value the perspectives of families living with the condition. Their coping strategies play a critical role in handling uncertainty and suggest a need for further emphasis in the literature on the experiences of healthcare professionals dealing with rare diseases.
Collapse
Affiliation(s)
- Sophie Ayoub
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Eva De Clercq
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Cheryl Cytrynbaum
- Division of Clinical & Metabolic Genetics and the Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Luzius A. Steiner
- Department of Anesthesiology, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Bernice S. Elger
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- Center for Legal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Weymann D, Buckell J, Fahr P, Loewen R, Ehman M, Pollard S, Friedman JM, Stockler-Ipsiroglu S, Elliott AM, Wordsworth S, Buchanan J, Regier DA. Health Care Costs After Genome-Wide Sequencing for Children With Rare Diseases in England and Canada. JAMA Netw Open 2024; 7:e2420842. [PMID: 38985473 PMCID: PMC11238031 DOI: 10.1001/jamanetworkopen.2024.20842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Importance Etiologic diagnoses for rare diseases can involve a diagnostic odyssey, with repeated health care interactions and inconclusive diagnostics. Prior studies reported cost savings associated with genome-wide sequencing (GWS) compared with cytogenetic or molecular testing through rapid genetic diagnosis, but there is limited evidence on whether diagnosis from GWS is associated with reduced health care costs. Objective To measure changes in health care costs after diagnosis from GWS for Canadian and English children with suspected rare diseases. Design, Setting, and Participants This cohort study was a quasiexperimental retrospective analysis across 3 distinct English and Canadian cohorts, completed in 2023. Mixed-effects generalized linear regression was used to estimate associations between GWS and costs in the 2 years before and after GWS. Difference-in-differences regression was used to estimate associations of genetic diagnosis and costs. Costs are in 2019 US dollars. GWS was conducted in a research setting (Genomics England 100 000 Genomes Project [100KGP] and Clinical Assessment of the Utility of Sequencing and Evaluation as a Service [CAUSES] Research Clinic) or clinical outpatient setting (publicly reimbursed GWS in British Columbia [BC], Canada). Participants were children with developmental disorders, seizure disorders, or both undergoing GWS between 2014 and 2019. Data were analyzed from April 2021 to September 2023. Exposures GWS and genetic diagnosis. Main Outcomes and Measures Annual health care costs and diagnostic costs per child. Results Study cohorts included 7775 patients in 100KGP, among whom 788 children had epilepsy (mean [SD] age at GWS, 11.6 [11.1] years; 400 female [50.8%]) and 6987 children had an intellectual disability (mean [SD] age at GWS, 8.2 [8.4] years; 2750 female [39.4%]); 77 patients in CAUSES (mean [SD] age at GWS, 8.5 [4.4] years; 33 female [42.9%]); and 118 publicly reimbursed GWS recipients from BC (mean [SD] age at GWS, 5.5 [5.2] years; 58 female [49.2%]). GWS diagnostic yield was 143 children (18.1%) for those with epilepsy and 1323 children (18.9%) for those with an intellectual disability in 100KGP, 47 children (39.8%) in the BC publicly reimbursed setting, and 42 children (54.5%) in CAUSES. Mean annual per-patient spending over the study period was $5283 (95% CI, $5121-$5427) for epilepsy and $3373 (95% CI, $3322-$3424) for intellectual disability in the 100KGP, $724 (95% CI, $563-$886) in CAUSES, and $1573 (95% CI, $1372-$1773) in the BC reimbursed setting. Receiving a genetic diagnosis from GWS was not associated with changed costs in any cohort. Conclusions and Relevance In this study, receiving a genetic diagnosis was not associated with cost savings. This finding suggests that patient benefit and cost-effectiveness should instead drive GWS implementation.
Collapse
Affiliation(s)
- Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John Buckell
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Patrick Fahr
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rosalie Loewen
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Morgan Ehman
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Samantha Pollard
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sylvia Stockler-Ipsiroglu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Biochemical Genetics, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Alison M. Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - James Buchanan
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Dean A. Regier
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Marshall DA, Hua N, Buchanan J, Christensen KD, Frederix GWJ, Goranitis I, Ijzerman M, Jansen JP, Lavelle TA, Regier DA, Smith HS, Ungar WJ, Weymann D, Wordsworth S, Phillips KA. Paving the path for implementation of clinical genomic sequencing globally: Are we ready? HEALTH AFFAIRS SCHOLAR 2024; 2:qxae053. [PMID: 38783891 PMCID: PMC11115369 DOI: 10.1093/haschl/qxae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Despite the emerging evidence in recent years, successful implementation of clinical genomic sequencing (CGS) remains limited and is challenged by a range of barriers. These include a lack of standardized practices, limited economic assessments for specific indications, limited meaningful patient engagement in health policy decision-making, and the associated costs and resource demand for implementation. Although CGS is gradually becoming more available and accessible worldwide, large variations and disparities remain, and reflections on the lessons learned for successful implementation are sparse. In this commentary, members of the Global Economics and Evaluation of Clinical Genomics Sequencing Working Group (GEECS) describe the global landscape of CGS in the context of health economics and policy and propose evidence-based solutions to address existing and future barriers to CGS implementation. The topics discussed are reflected as two overarching themes: (1) system readiness for CGS and (2) evidence, assessments, and approval processes. These themes highlight the need for health economics, public health, and infrastructure and operational considerations; a robust patient- and family-centered evidence base on CGS outcomes; and a comprehensive, collaborative, interdisciplinary approach.
Collapse
Affiliation(s)
- Deborah A Marshall
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nicolle Hua
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - James Buchanan
- Health Economics and Policy Research Unit, Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, London E1 2AB, United Kingdom
| | - Kurt D Christensen
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States
| | - Geert W J Frederix
- Epidemiology and Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ilias Goranitis
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Genomics, Parkville, Victoria 3052, Australia
| | - Maarten Ijzerman
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria 3000, Australia
- Erasmus School of Health Policy & Management, Eramus University Rotterdam, 3062 PA Rotterdam, The Netherlands
| | - Jeroen P Jansen
- Center for Translational and Policy Research on Precision Medicine (TRANSPERS), Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Tara A Lavelle
- Center for the Evaluation of Value and Risk in Health, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, United States
| | - Dean A Regier
- Canadian Centre for Applied Research in Cancer Control, Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hadley S Smith
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States
| | - Wendy J Ungar
- Program of Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario M5T 3M6, Canada
| | - Deirdre Weymann
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health and NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Kathryn A Phillips
- Center for Translational and Policy Research on Precision Medicine (TRANSPERS), Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94158, United States
- Health Affairs Scholar Emerging & Global Health Policy, Health Affairs, Washington, DC 20036, United States
| |
Collapse
|
8
|
Regier DA, Loewen R, Chan B, Ehman M, Pollard S, Friedman JM, Stockler-Ipsiroglu S, van Karnebeek C, Race S, Elliott AM, Dragojlovic N, Lynd LD, Weymann D. Real-world diagnostic outcomes and cost-effectiveness of genome-wide sequencing for developmental and seizure disorders: Evidence from Canada. Genet Med 2024; 26:101069. [PMID: 38205742 DOI: 10.1016/j.gim.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
PURPOSE To determine real-world diagnostic rates, cost trajectories, and cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children with developmental and/or seizure disorders in British Columbia, Canada. METHODS Based on medical records review, we estimated real-world costs and outcomes for 491 patients who underwent standard of care (SOC) diagnostic testing at British Columbia Children's Hospital. Results informed a state-transition Markov model examining cost-effectiveness of 3 competing diagnostic strategies: (1) SOC with last-tier access to ES, (2) streamlined ES access, and (3) first-tier GS. RESULTS Through SOC, 49.4% (95% CI: 40.6, 58.2) of patients were diagnosed at an average cost of C$11,683 per patient (95% CI: 9200, 14,166). Compared with SOC, earlier ES or GS access yielded similar or improved diagnostic rates and shorter times to genetic diagnosis, with 94% of simulations demonstrating cost savings for streamlined ES and 60% for first-tier GS. Net benefit from the perspective of the health care system was C$2956 (95% CI: -608, 6519) for streamlined ES compared with SOC. CONCLUSION Using real-world data, we found earlier access to ES may yield more rapid genetic diagnosis of childhood developmental and seizure disorders and cost savings compared with current practice in a Canadian health care system.
Collapse
Affiliation(s)
- Dean A Regier
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Rosalie Loewen
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Brandon Chan
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Morgan Ehman
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Samantha Pollard
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sylvia Stockler-Ipsiroglu
- BC Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Division of Biochemical Genetics, BC Children's Hospital, Vancouver, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Simone Race
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Nick Dragojlovic
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Larry D Lynd
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Centre for Health Evaluation and Outcomes Sciences, Providence Health Research Institute, Vancouver, Canada
| | - Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada.
| |
Collapse
|
9
|
Ashby F, Park H, Svensson M, Heldermon CD. Economic Burden of Sanfilippo Syndrome in the United States. RESEARCH SQUARE 2023:rs.3.rs-3001450. [PMID: 37398464 PMCID: PMC10312916 DOI: 10.21203/rs.3.rs-3001450/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Introduction Sanfilippo syndrome is a rare disease and fatal genetic disorder with no FDA-approved treatment in the United States (US), and no comprehensive assessment of economic disease burden is available. Objectives To develop a model to estimate the economic burden associated with Sanfilippo syndrome in the US using direct costs, indirect costs and valued intangibles (disability-adjusted life years, or DALYs) from 2023 onward. Design and Setting A multistage comorbidity model was generated based on Sanfilippo syndrome symptoms, and disability weights from the 2010 Global Burden of Disease Study. Attributable increase in caregiver mental health burden were estimated using data from the CDC National Comorbidity Survey and retrospective studies on caregiver burden. Direct costs were approximated from the 2019 EveryLife Foundation survey, and indirect costs were estimated from Federal income data. Monetary valuations were adjusted to USD 2023 and given a 3% discount rate from 2023 onward. Main Outcome Measures Incidence of Sanfilippo syndrome was calculated for each year, and year-over-year DALYs due to patient years lived with disability (YLDs) and years life lost (YLLs) were calculated by comparing to the health-adjusted life expectancy (HALE) in the US. Direct and indirect costs were calculated for each simulated patient from onset of symptoms to death. Results From 2023-2043, overall economic burden in the US attributable to Sanfilippo syndrome was estimated to be $2.04 billion USD present value (2023) with current standard of care. The burden to individual families exceeded $8 million present value from time of birth per child born with Sanfilippo syndrome. Conclusion Sanfilippo syndrome is a rare lysosomal storage disease, however the severe burden associated with the disease for individual families demonstrates a considerable cumulative impact. Our model represents the first disease burden value estimate associated with Sanfilippo syndrome, and underscores the substantial morbidity and mortality burden of Sanfilippo syndrome.
Collapse
Affiliation(s)
- Frederick Ashby
- College of Medicine, University of Florida - Gainesville, Florida, USA
| | - Haesuk Park
- College of Pharmacy, University of Florida - Gainesville, Florida, USA
| | - Mikael Svensson
- College of Pharmacy, University of Florida - Gainesville, Florida, USA
| | - Coy D Heldermon
- College of Medicine, University of Florida - Gainesville, Florida, USA
| |
Collapse
|
10
|
Lenahan AL, Squire AE, Miller DE. Panels, Exomes, Genomes, and More-Finding the Best Path Through the Diagnostic Odyssey. Pediatr Clin North Am 2023; 70:905-916. [PMID: 37704349 DOI: 10.1016/j.pcl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Selecting the ideal test to evaluate an individual with a suspected genetic disorder can be challenging. While several clinical testing options are available, no single test yet captures all potentially causative genetic variants. Thus, clinicians may order testing in a stepwise fashion, and what to order after non-diagnostic testing can be challenging to determine. Here, we provide an overview of commonly used clinical genetic tests, guidance on when they are best used, and what they may miss. We conclude with a discussion of how new technologies might be used to identify challenging variants and simplify clinical testing in the future.
Collapse
Affiliation(s)
- Arthur L Lenahan
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Audrey E Squire
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Yanes T, Sullivan A, Barbaro P, Brion K, Hollway G, Peake J, McNaughton P. Evaluation and pilot testing of a multidisciplinary model of care to mainstream genomic testing for paediatric inborn errors of immunity. Eur J Hum Genet 2023; 31:1125-1132. [PMID: 36864115 PMCID: PMC10545723 DOI: 10.1038/s41431-023-01321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Molecular diagnosis of paediatric inborn errors of immunity (IEI) influences management decisions and alters clinical outcomes, through early use of targeted and curative therapies. The increasing demand for genetic services has resulted in growing waitlists and delayed access to vital genomic testing. To address this issue, the Queensland Paediatric Immunology and Allergy Service, Australia, developed and evaluated a mainstreaming model of care to support point-of-care genomic testing for paediatric IEI. Key features of the model of care included a genetic counsellor embedded in the department, state-wide multidisciplinary team meetings, and variant prioritisation meetings to review whole exome sequencing (WES) data. Of the 62 children presented at the MDT, 43 proceeded to WES, of which nine (21%) received a confirmed molecular diagnosis. Changes to treatment and management were reported for all children with a positive result, including curative hematopoietic stem cell transplantation (n = 4). Four children were also referred for further investigations of variants of uncertain significance or additional testing due to ongoing suspicion of genetic cause after negative result. Demonstrating engagement with the model of care, 45% of the patients were from regional areas and on average, 14 healthcare providers attended the state-wide multidisciplinary team meetings. Parents demonstrated understanding of the implications of testing, reported minimal decisional regret post-test, and identified benefits to genomic testing. Overall, our program demonstrated the feasibility of a mainstreaming model of care for paediatric IEI, improved access to genomic testing, facilitated treatment decision-making, and was acceptable to parents and clinicians alike.
Collapse
Affiliation(s)
- Tatiane Yanes
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia.
- The Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Anna Sullivan
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
| | - Pasquale Barbaro
- Queensland Paediatric Haematology Service, Queensland Children's Hospital, Brisbane, QLD, 4101, Australia
- Queensland Children's Hospital Laboratory, Pathology Queensland, South Brisbane, QLD, 4101, Australia
| | - Kristian Brion
- Department of Molecular Genetics, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Georgina Hollway
- Department of Molecular Genetics, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Jane Peake
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
- Department of Paediatrics and Child Health, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter McNaughton
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
- Department of Paediatrics and Child Health, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
12
|
Zingela Z, Sokudela F, Thungana Y, van Wyk S. Ethical principles, challenges and opportunities when conducting genetic counselling for schizophrenia. Front Psychiatry 2023; 14:1040026. [PMID: 37415685 PMCID: PMC10320156 DOI: 10.3389/fpsyt.2023.1040026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Ethical challenges of genetic counselling for schizophrenia include effective communication of critical scientific information in an easily understood manner by patients and relatives, and the ability to ensure communication is unencumbered by medical jargon. Levels of literacy in the target population may limit this process, making it difficult for patients to attain the desired levels of informed consent to make crucial decisions during genetic counselling. Multilingualism in target communities may further complicate such communication. This paper outlines the ethical principles, challenges and opportunities facing clinicians when conducting genetic counselling for schizophrenia and how these might be met, drawing on lessons from South African studies. The paper draws on reflections of clinician and researcher experiences gained from clinical practice or research on the genetics of schizophrenia and psychotic disorders in South Africa. The context of genetic studies in schizophrenia is used to illustrate the ethical challenges in genetic counselling for schizophrenia, both in clinical and research settings. Attention is also drawn to multicultural and multilingual populations, particularly where the preferred language lacks a well-developed scientific language of communication for some of the genetic concepts that have to be presented during the genetic counselling process. The authors describe the ethical challenges and how to address these to empower patients and relatives to make well-informed decisions despite these obstacles. Principles applied by clinicians and researchers during the genetic counselling are described. Potential solutions, including the establishment of community advisory boards to address potential ethical challenges inherent to the genetic counselling process, are also shared. Genetic counselling for schizophrenia still faces ethical challenges which require a balance of principles of beneficence, autonomy, informed consent, confidentiality and distributive justice, while striving to present accuracy in the science that guides the process. Evolution in language and cultural competency therefore needs to occur alongside scientific advances in genetic research. Key stakeholders need to partner and build capacity and expertise in genetic counselling through the provision of funding and resources. The goal of partnerships is to empower patients, relatives, clinicians and researchers to share scientific information in a manner guided by empathy while retaining scientific accuracy.
Collapse
Affiliation(s)
- Zukiswa Zingela
- Executive Dean’s Office, Nelson Mandela University, Port Elizabeth, South Africa
| | - Funeka Sokudela
- Department of Psychiatry, University of Pretoria, Pretoria, South Africa
| | - Yanga Thungana
- Executive Dean’s Office, Nelson Mandela University, Port Elizabeth, South Africa
- Department of Psychiatry and Behavioural Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Stephan van Wyk
- Department of Psychiatry and Behavioural Sciences, Walter Sisulu University, Mthatha, South Africa
| |
Collapse
|
13
|
Smith HS, Bonkowski ES, Hickingbotham MR, Deloge RB, Pereira S. Framing the Family: A Qualitative Exploration of Factors That Shape Family-Level Experience of Pediatric Genomic Sequencing. CHILDREN (BASEL, SWITZERLAND) 2023; 10:774. [PMID: 37238322 PMCID: PMC10217651 DOI: 10.3390/children10050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
Families of children with rare and undiagnosed conditions face many psychosocial and logistical challenges that may affect their approach to decisions about their child's care and their family's well-being. As genomic sequencing (GS) is increasingly incorporated into pediatric diagnostic workups, assessing the family-level characteristics that shape the experience of pediatric GS is crucial to understanding how families approach decision-making about the test and how they incorporate the results into their family life. We conducted semi-structured interviews with parents and other primary caregivers of pediatric patients who were evaluated for a suspected genetic condition and who were recommended to have GS (n = 20) or who had recently completed GS (n = 21). We analyzed qualitative data using multiple rounds of thematic analysis. We organized our thematic findings into three domains of factors that influence the family-level experience of GS: (1) family structure and dynamics; (2) parental identity, relationships, and philosophies; and (3) social and cultural differences. Participants conceptualized their child's family in various ways, ranging from nuclear biological family to support networks made up of friends and communities. Our findings can inform the design and interpretation of preference research to advance family-level value assessment of GS as well as genetic counseling for families.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Emily S. Bonkowski
- Institute for Public Health Genetics, University of Washington School of Public Health, Seattle, WA 98195, USA
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Madison R. Hickingbotham
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Raymond Belanger Deloge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Rosenfeld LE, LeBlanc K, Nagy A, Ego BK, McCray AT. Participation in a national diagnostic research study: assessing the patient experience. Orphanet J Rare Dis 2023; 18:73. [PMID: 37032333 PMCID: PMC10084693 DOI: 10.1186/s13023-023-02695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION The Undiagnosed Diseases Network (UDN), a clinical research study funded by the National Institutes of Health, aims to provide answers for patients with undiagnosed conditions and generate knowledge about underlying disease mechanisms. UDN evaluations involve collaboration between clinicians and researchers and go beyond what is possible in clinical settings. While medical and research outcomes of UDN evaluations have been explored, this is the first formal assessment of the patient and caregiver experience. METHODS We invited UDN participants and caregivers to participate in focus groups via email, newsletter, and a private participant Facebook group. We developed focus group questions based on research team expertise, literature focused on patients with rare and undiagnosed conditions, and UDN participant and family member feedback. In March 2021, we conducted, recorded, and transcribed four 60-min focus groups via Zoom. Transcripts were evaluated using a thematic analysis approach. RESULTS The adult undiagnosed focus group described the UDN evaluation as validating and an avenue for access to medical providers. They also noted that the experience impacted professional choices and helped them rely on others for support. The adult diagnosed focus group described the healthcare system as not set up for rare disease. In the pediatric undiagnosed focus group, caregivers discussed a continued desire for information and gratitude for the UDN evaluation. They also described an ability to rule out information and coming to terms with not having answers. The pediatric diagnosed focus group discussed how the experience helped them focus on management and improved communication. Across focus groups, adults (undiagnosed/diagnosed) noted the comprehensiveness of the evaluation. Undiagnosed focus groups (adult/pediatric) discussed a desire for ongoing communication and care with the UDN. Diagnosed focus groups (adult/pediatric) highlighted the importance of the diagnosis they received in the UDN. The majority of the focus groups noted a positive future orientation after participation. CONCLUSION Our findings are consistent with prior literature focused on the patient experience of rare and undiagnosed conditions and highlight benefits from comprehensive evaluations, regardless of whether a diagnosis is obtained. Focus group themes also suggest areas for improvement and future research related to the diagnostic odyssey.
Collapse
Affiliation(s)
- Lindsay E Rosenfeld
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
- Heller School for Social Policy and Management, Institute for Child, Youth, and Family Policy, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Anna Nagy
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Braeden K Ego
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Alexa T McCray
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA.
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Smith HS, Bonkowski ES, Deloge RB, Gutierrez AM, Recinos AM, Lavelle TA, Veenstra DL, McGuire AL, Pereira S. Key drivers of family-level utility of pediatric genomic sequencing: a qualitative analysis to support preference research. Eur J Hum Genet 2023; 31:445-452. [PMID: 36434257 PMCID: PMC10133279 DOI: 10.1038/s41431-022-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Given that pediatric genomic sequencing (GS) may have implications for the health and well-being of both the child and family, a clearer understanding of the key drivers of the utility of GS from the family perspective is needed. The purpose of this study is to explore what is important to caregivers of pediatric patients regarding clinical GS, with a focus on family-level considerations. We conducted semi-structured interviews with caregivers (n = 41) of pediatric patients who had been recommended for or completed GS that explored the scope of factors caregivers considered when deciding whether to pursue GS for their child. We analyzed the qualitative data in multiple rounds of coding using thematic analysis. Caregivers raised important family-level considerations, in addition to those specifically for their child, which included wanting the best chance at good quality of life for the family, the ability to learn about family health, the impact on the caregiver's well-being, privacy concerns among family members, and the cost of testing to the family. We developed a framework of key drivers of utility consisting of four domains that influenced caregivers' decision making: underlying values, perceived benefits, perceived risks, and other pragmatic considerations regarding GS. These findings can inform measurement approaches that better capture the utility of pediatric GS for families and improve assessments of the value of clinical GS.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA.
| | - Emily S Bonkowski
- Institute for Public Health Genetics, University of Washington School of Public Health, Seattle, WA, USA
| | | | - Amanda M Gutierrez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Alva M Recinos
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tara A Lavelle
- Center for the Evaluation of Value and Risk in Health (CEVR), Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| | - David L Veenstra
- Comparative Health Outcomes, Policy & Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
de Morales HGV, Wang HLV, Garber K, Cheng X, Corces VG, Li H. Expansion of the genotypic and phenotypic spectrum of CTCF-related disorder guides clinical management: 43 new subjects and a comprehensive literature review. Am J Med Genet A 2023; 191:718-729. [PMID: 36454652 PMCID: PMC9928606 DOI: 10.1002/ajmg.a.63065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/22/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Monoallelic variants of CTCF cause an autosomal dominant neurodevelopmental disorder with a wide range of features, including impacts on the brain, growth, and craniofacial development. A growing number of subjects with CTCF-related disorder (CRD) have been identified due to the increased application of exome sequencing, and further delineation of the clinical spectrum of CRD is needed. Here, we examined the clinical features, including facial profiles, and genotypic spectrum of 107 subjects with identified CTCF variants, including 43 new and 64 previously described subjects. Among the 43 new subjects, 23 novel variants were reported. The cardinal clinical features in subjects with CRD included intellectual disability/developmental delay (91%) with speech delay (65%), motor delay (53%), feeding difficulties/failure to thrive (66%), ocular abnormalities (56%), musculoskeletal anomalies (53%), and behavioral problems (52%). Other congenital anomalies were also reported, but none of them were common. Our findings expanded the genotypic and phenotypic spectrum of CRD that will guide genetic counseling, management, and surveillance care for patients with CRD. Additionally, a newly built facial gestalt on the Face2Gene tool will facilitate prompt recognition of CRD by physicians and shorten a patient's diagnostic odyssey.
Collapse
Affiliation(s)
| | - Hsiao-Lin V. Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA. 30322
| | - Kathryn Garber
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA. 30322
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX. 77030
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA. 30322
| | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA. 30322
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA. 30322
| |
Collapse
|
17
|
Barrio-Hernandez I, Beltrao P. Network analysis of genome-wide association studies for drug target prioritisation. Curr Opin Chem Biol 2022; 71:102206. [PMID: 36087372 DOI: 10.1016/j.cbpa.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
Over the past decades, genome-wide association studies (GWAS) have led to a dramatic expansion of genetic variants implicated with human traits and diseases. These advances are expected to result in new drug targets but the identification of causal genes and the cell biology underlying human diseases from GWAS remains challenging. Here, we review protein interaction network-based methods to analyse GWAS data. These approaches can rank candidate drug targets at GWAS-associated loci or among interactors of disease genes without direct genetic support. These methods identify the cell biology affected in common across diseases, offering opportunities for drug repurposing, as well as be combined with expression data to identify focal tissues and cell types. Going forward, we expect that these methods will further improve from advances in the characterisation of context specific interaction networks and the joint analysis of rare and common genetic signals.
Collapse
Affiliation(s)
- Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, UK; Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, UK; Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, 8093, Switzerland.
| |
Collapse
|
18
|
Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure 2022; 101:197-204. [DOI: 10.1016/j.seizure.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
|
19
|
Abbott M, McKenzie L, Moran BVG, Heidenreich S, Hernández R, Hocking-Mennie L, Clark C, Gomes J, Lampe A, Baty D, McGowan R, Miedzybrodzka Z, Ryan M. Continuing the sequence? Towards an economic evaluation of whole genome sequencing for the diagnosis of rare diseases in Scotland. J Community Genet 2022; 13:487-501. [PMID: 34415556 PMCID: PMC9530076 DOI: 10.1007/s12687-021-00541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
Novel developments in genomic medicine may reduce the length of the diagnostic odyssey for patients with rare diseases. Health providers must thus decide whether to offer genome sequencing for the diagnosis of rare conditions in a routine clinical setting. We estimated the costs of singleton standard genetic testing and trio-based whole genome sequencing (WGS), in the context of the Scottish Genomes Partnership (SGP) study. We also explored what users value about genomic sequencing. Insights from the costing and value assessments will inform a subsequent economic evaluation of genomic medicine in Scotland. An average cost of £1,841 per singleton was estimated for the standard genetic testing pathway, with significant variability between phenotypes. WGS cost £6625 per family trio, but this estimate reflects the use of WGS during the SGP project and large cost savings may be realised if sequencing was scaled up. Patients and families valued (i) the chance of receiving a diagnosis (and the peace of mind and closure that brings); (ii) the information provided by WGS (including implications for family planning and secondary findings); and (iii) contributions to future research. Our costings will be updated to address limitations of the current study for incorporation in budget impact modelling and cost-effectiveness analysis (cost per diagnostic yield). Our insights into the benefits of WGS will guide the development of a discrete choice experiment valuation study. This will inform a user-perspective cost-benefit analysis of genome-wide sequencing, accounting for the broader non-health outcomes. Taken together, our research will inform the long-term strategic development of NHS Scotland clinical genetics testing services, and will be of benefit to others seeking to undertake similar evaluations in different contexts.
Collapse
Affiliation(s)
- Michael Abbott
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK.
| | - Lynda McKenzie
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Sebastian Heidenreich
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
- Evidera Inc., London, UK
| | - Rodolfo Hernández
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Caroline Clark
- Department of Medical Genetics, University of Aberdeen, Aberdeen, UK
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Joana Gomes
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Anne Lampe
- South East Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, UK
| | - David Baty
- NHS Tayside Regional Genetics Service, Ninewells Hospital, Dundee, UK
| | - Ruth McGowan
- South East Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Mandy Ryan
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
20
|
Halley MC, Young JL, Fernandez L, Kohler JN, Bernstein JA, Wheeler MT, Tabor HK. Perceived utility and disutility of genomic sequencing for pediatric patients: Perspectives from parents with diverse sociodemographic characteristics. Am J Med Genet A 2022; 188:1088-1101. [PMID: 34981646 DOI: 10.1002/ajmg.a.62619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Given the limited therapeutic options for most rare diseases diagnosed through genomic sequencing (GS) and the proportion of patients who remain undiagnosed even after GS, it is important to characterize a broader range of benefits and potential harms of GS from the perspectives of families with diverse sociodemographic characteristics. We recruited parents of children enrolled in the Undiagnosed Diseases Network. Parents completed an in-depth interview, and we conducted a comparative content analysis of the data. Parents (n = 30) were demographically diverse, with 43.3% identifying as Hispanic, 33.3% primarily Spanish-speaking, and widely variable household income and education. Parents reported minimal changes in their child's health status following GS but did report a range of other forms of perceived utility, including improvements in their child's healthcare management and access, in their own psychological well-being, and in disease-specific social connections and research opportunities. Parents who received a diagnosis more frequently perceived utility across all domains; however, disutility also was reported by both those with and without a diagnosis. Impacts depended on multiple mediating factors, including parents' underlying expectations and beliefs, family sociodemographic characteristics, individual disease characteristics, and prior healthcare access. Our study suggests that the perceived utility of GS varies widely among parents and may depend on multiple individual, sociodemographic, and contextual factors that are relevant for pre- and post-GS counseling, for value assessment of GS, and for policymaking related to access to new genomic technologies.
Collapse
Affiliation(s)
- Meghan C Halley
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer L Young
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, California, USA
| | - Liliana Fernandez
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Jennefer N Kohler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | | | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Holly K Tabor
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine (and by courtesy, Department of Epidemiology), Stanford University, Stanford, California, USA
| |
Collapse
|
21
|
Álvaro-Sánchez S, Abreu-Rodríguez I, Abulí A, Serra-Juhe C, Garrido-Navas MDC. Current Status of Genetic Counselling for Rare Diseases in Spain. Diagnostics (Basel) 2021; 11:2320. [PMID: 34943558 PMCID: PMC8700506 DOI: 10.3390/diagnostics11122320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Genetic Counselling is essential for providing personalised information and support to patients with Rare Diseases (RD). Unlike most other developed countries, Spain does not recognize geneticists or genetic counsellors as healthcare professionals Thus, patients with RD face not only challenges associated with their own disease but also deal with lack of knowledge, uncertainty, and other psychosocial issues arising as a consequence of diagnostic delay. In this review, we highlight the importance of genetic counsellors in the field of RD as well as evaluate the current situation in which rare disease patients receive genetic services in Spain. We describe the main units and strategies at the national level assisting patients with RD and we conclude with a series of future perspectives and unmet needs that Spain should overcome to improve the management of patients with RD.
Collapse
Affiliation(s)
| | - Irene Abreu-Rodríguez
- Genetics Service, Hospital del Mar Research Institute, IMIM, 08003 Barcelona, Spain;
| | - Anna Abulí
- Department of Clinical and Molecular Genetics, Hospital Vall d’Hebron, 08035 Barcelona, Spain;
- Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Clara Serra-Juhe
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Maria del Carmen Garrido-Navas
- CONGEN, Genetic Counselling Services, C/Albahaca 4, 18006 Granada, Spain;
- Genetics Department, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
22
|
|