1
|
Qian G, Yang N, Deng F, Zhang M, Pan X, Tan B, Liu L, Zhang X, Yao H, Dong X. SNV/Indel and CNV Analysis in Trio-WES for Intellectual and Developmental Disabilities: Diagnostic Yield & Cost-Effectiveness. Clin Genet 2025; 107:402-412. [PMID: 39829082 DOI: 10.1111/cge.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/22/2025]
Abstract
Intellectual and developmental disabilities (IDD) are clinically and genetically heterogeneous disorders of global concern. While whole exome sequencing (WES) is used to identify single nucleotide variants (SNVs) and small insertions/deletions (Indels) in IDD patients, its detection rate is limited. This study evaluated the value of integrating copy number variation (CNV) analysis into traditional SNV/Indel analysis based on trio-WES. One hundred eighty seven patients with IDD in 140 families from southwest China were incorporated into the study cohort. The overall diagnostic rate was 40.11% (75/187), with 33.16% (62/187) from SNV/Indel analysis and 6.95% (13/187) from CNV analysis. SNV/Indel analysis identified 52 variants in 42 genes, including 30 novel and 22 reported variants; CNV analysis identified 11 CNVs, comprising 1 repeat and 10 deletions, with sizes ranging from 1313 to 55 184 kb. 39.29% (55/140) families benefited from this study for their clinical diagnosis, treatment, and reproduction. Furthermore, our strategy, with an incremental cost-effectiveness ratio (ICER) of $2546.22/diagnosis, had demonstrated significant advantages in terms of cost-effectiveness and detection speed compared to previous methods. In general, by incorporating SNV/Indel and CNV analysis based on trio-WES, a robust, cost-effective, and time-saving approach for diagnosing IDD has been developed.
Collapse
Affiliation(s)
- Guanhua Qian
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanyan Yang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingze Zhang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Pan
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Tan
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Liu
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Lan X, Tang X, Weng W, Xu W, Song X, Yang Y, Sun H, Ye H, Zhang H, Yu G, Wu S. Diagnostic Utility of Trio-Exome Sequencing for Children With Neurodevelopmental Disorders. JAMA Netw Open 2025; 8:e251807. [PMID: 40131272 PMCID: PMC11937947 DOI: 10.1001/jamanetworkopen.2025.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Importance Copy number variants (CNVs) and single-nucleotide variations (SNVs) or insertions and deletions are key genetic contributors to neurodevelopmental disorders (NDDs). Traditionally, chromosome microarray and exome sequencing (ES) have been used to detect CNVs and single gene variants, respectively. Objective To identify genetic variants causing NDDs and evaluate the diagnostic yield and clinical utility of ES by simultaneously analyzing CNVs and SNVs in patients with NDDs and their biologic parents (trios). Design, Setting, and Participants This retrospective cohort study included pediatric patients with suspected NDDs who visited Shanghai Children's Hospital between January 1, 2018, and December 31, 2023. ES was used to investigate trios (trio-ES) including patients with NDDs who remained undiagnosed after phenotype identification and underwent gene panel testing, multiplex ligation-dependent probe amplification, or karyotyping. Comprehensive clinical and laboratory data were collected. Data were analyzed from July 2022 to December 2023. Exposure NDDs, characterized by global developmental delay or intellectual disability. Main Outcomes and Measures The study measured the overall diagnostic yield of SNVs and CNVs in the NDD cohort as well as within NDD syndromic subtypes. Results Of the 1106 patients with NDDs, 731 (66.1%) were male. The mean (SD) age of patients at diagnosis was 3.80 (2.82) years. The overall diagnostic yield of trio-ES was 46.1% (510 diagnoses among 1106 patients), with 149 CNVs (13.5%), 355 SNVs (32.1%), and 4 cases of uniparental disomy (0.4%). Codiagnosis of SNVs and CNVs occurred in 2 cases (0.2%). Among the trios, 812 candidate germline variants were identified, including 634 SNVs (78.1%), 174 CNVs (21.4%), and 4 cases of uniparental disomy (0.5%). Of these, 423 SNVs (66.7%) and 157 CNVs (90.2%) were diagnostic variants, while 211 SNVs (33.3%) and 17 CNVs (9.8%) were variants of uncertain significance. Sixteen CNVs smaller than 20 kilobase were detected using ES. Conclusions and Relevance In this cohort study, trio-ES, by simultaneously detecting SNVs and CNVs, achieved a diagnostic yield of 46.1%. Trio-ES may be particularly applicable for identifying small CNVs and recessive genetic diseases involving both SNVs and CNVs. These findings suggest that in clinical practice, simultaneously analyzing SNVs and CNVs using trio-ES data has a favorable genetic diagnostic yield for children with NDDs.
Collapse
Affiliation(s)
- Xiaoping Lan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Tang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuhen Xu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhen Song
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongchen Yang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Sun
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center for Biomedical Informatics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyun Ye
- Department of Ophthalmology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjun Yu
- Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Shengnan Wu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zarante-Bahamon AM, Cortés-Rojas MC, Ramon-Gómez JL. A de novo missense variant Ser219Pro in PPP2R1A leads to macrocephaly in Houge-Janssens syndrome type 2. Clin Dysmorphol 2025:00019605-990000000-00092. [PMID: 40073204 DOI: 10.1097/mcd.0000000000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Affiliation(s)
- Ana M Zarante-Bahamon
- Medical Genetics Department, Instituto Roosevelt
- Genetics Department, Hospital Universitario San Ignacio
- Outpatient Clinic, Human Genetics, Biotecnología y genética S.A.S
| | | | | |
Collapse
|
4
|
Martinez-Sanchez M, Skarnes W, Jain A, Vemula S, Sun L, Rockowitz S, Whitman MC. Chromosome 4 Duplication Associated with Strabismus Leads to Gene Expression Changes in iPSC-Derived Cortical Neurons. Genes (Basel) 2025; 16:80. [PMID: 39858627 PMCID: PMC11764630 DOI: 10.3390/genes16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843). METHODS Using CRISPR and bridging oligos, we introduced the duplication into the Kolf2.1J iPSC line. We differentiated the parent line and the line with the duplication into cortical neurons using a three-dimensional differentiation protocol, and performed bulk RNASeq on neural progenitors (day 14) and differentiated neurons (day 63). RESULTS We successfully introduced the duplication into Kolf2.1J iPSCs by nucleofecting a bridging oligo for the newly formed junction along with cas9 ribonucleoparticles. We confirmed that the cells had a tandem duplication without inversion or deletion. The parent line and the line with the duplication both differentiated into neurons reliably. There were a total of 37 differentially expressed genes (DEGs) at day 63, 25 downregulated and 12 upregulated. There were 55 DEGs at day 14, 18 of which were also DEGs at day 63. The DEGs included a number of protocadherins, several genes involved in neuronal development, including SLITRK2, CSMD1, and VGF, and several genes of unknown function. CONCLUSIONS A copy number variant (CNV) that confers risk for strabismus affects gene expression of several genes involved in neural development, highlighting that strabismus most likely results from abnormal neural development, and identifying several new genes and pathways for further research into the pathophysiology of strabismus.
Collapse
Affiliation(s)
- Mayra Martinez-Sanchez
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - William Skarnes
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Ashish Jain
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Sampath Vemula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Shira Rockowitz
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mary C. Whitman
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Li C, Wang Y, Zeng C, Huang B, Chen Y, Xue C, Liu L, Rong S, Lin Y. Trio-whole exome sequencing reveals the importance of de novo variants in children with intellectual disability and developmental delay. Sci Rep 2024; 14:27590. [PMID: 39528574 PMCID: PMC11555314 DOI: 10.1038/s41598-024-79431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the genetic basis of developmental delay (DD) and intellectual disability (ID) remains a considerable clinical challenge. This study evaluated the clinical application of trio whole exome sequencing (WES) in children diagnosed with DD/ID. The study comprised 173 children with unexplained DD/ID. The participants underwent trio-WES and their demographic, clinical, and genetic characteristics were evaluated. Based on their clinical features, the participants were classified into two groups for further analysis: a syndromic DD/ID group and a non-syndromic DD/ID group. The genetic diagnostic yield of the 173 children diagnosed with DD/ID was 49.7% (86/173). This included 58 pathogenic or likely pathogenic single nucleotide variants (SNVs) in 41 genes identified across 54 individuals (31.2%) through trio-WES. Among these, 22 SNVs had not been previously reported. Additionally, 30 copy number variations (CNVs) were detected in 36 individuals (20.8%). The diagnostic yield in the syndromic DD/ID group was higher than that in the non-syndromic DD/ID group (57.8% vs. 47.2%, P < 0.001). Within the syndromic DD/ID subgroup, the diagnostic yield of the DD/ID with epilepsy subgroup (83.9%) was significantly higher than those of the other subgroups (P < 0.001). Based on the analysis of the individuals' clinical phenotypes, the individuals with facial dysmorphism shown a higher diagnostic yield (68.2%, P < 0.001). The diagnostic yield of SNVs was higher in the individuals with DD/ID accompanied by epilepsy, whereas the diagnostic yield of CNVs was higher in the DD/ID without epilepsy group. Similarly, the diagnostic yield of de novo SNVs was higher in the DD/ID with epilepsy group, while the diagnostic yield of de novo CNVs was higher in the DD/ID without epilepsy group (all P < 0.001). Trio-WES is a crucial tool for the genetic diagnosis of DD/ID, demonstrating a diagnostic yield of up to 49.7%. De novo variants in autosomal dominant genes are significant contributors to DD/ID, particularly in non-consanguineous families.
Collapse
Affiliation(s)
- Chengyan Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - You Wang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Cizheng Zeng
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Binglong Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yinhui Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Chupeng Xue
- Department of Pediatrics, Shantou Central Hospital, ShanTou, 515000, Guangdong Province, People's Republic of China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Shiwen Rong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yongwen Lin
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China.
| |
Collapse
|
6
|
Sandran NG, Fornarino DL, Corbett MA, Kroes T, Gardner AE, MacLennan AH, Gécz J, van Eyk CL. Application of multiple mosaic callers improves post-zygotic mutation detection from exome sequencing data. Genet Med 2024; 26:101220. [PMID: 39041334 DOI: 10.1016/j.gim.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
PURPOSE The gold standard for identification of post-zygotic variants (PZVs) is droplet digital polymerase chain reaction or high-depth sequencing across multiple tissues types. These approaches are yet to be systematically implemented for monogenic disorders. We developed PZV detection pipelines for correct classification of de novo variants. METHOD Our pipelines detect PZV in parents (gonosomal mosaicism [pGoM]) and children (somatic mosaicism, "M3"). We applied them to research exome sequencing (ES) data from the Australian Cerebral Palsy Biobank (n = 145 trios) and Simons Simplex Collection (n = 405 families). Candidate mosaic variants were validated using deep amplicon sequencing or droplet digital polymerase chain reaction. RESULTS 69.2% (M3trio), 63.9% (M3single), and 92.7% (pGoM) of detected variants were validated, with 48.6%, 56.7%, and 26.2% of variants, respectively, meeting strict criteria for mosaicism. In the Australian Cerebral Palsy Biobank, 16.6% of probands and 20.7% of parents had at least 1 true-positive somatic or pGoM variant, respectively. A large proportion of PZVs detected in Simons Simplex Collection parents (79.8%) and child (94.5%) were not previously reported. We reclassified 3.7% to 8.0% of germline de novo variants as mosaic. CONCLUSION Many PZVs were incorrectly classified as germline variants or missed by previous approaches. Systematic application of our pipelines could increase genetic diagnostic rate, improve estimates of recurrence risk in families, and benefit novel disease gene identification.
Collapse
Affiliation(s)
- Nandini G Sandran
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Dani L Fornarino
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Mark A Corbett
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Thessa Kroes
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alison E Gardner
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alastair H MacLennan
- Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gécz
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Clare L van Eyk
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
7
|
Kassabian B, Levy AM, Gardella E, Aledo-Serrano A, Ananth AL, Brea-Fernández AJ, Caumes R, Chatron N, Dainelli A, De Wachter M, Denommé-Pichon AS, Dye TJ, Fazzi E, Felt R, Fernández-Jaén A, Fernández-Prieto M, Gantz E, Gasperowicz P, Gil-Nagel A, Gómez-Andrés D, Greiner HM, Guerrini R, Haanpää MK, Helin M, Hoyer J, Hurst ACE, Kallish S, Karkare SN, Khan A, Kleinendorst L, Koch J, Kothare SV, Koudijs SM, Lagae L, Lakeman P, Leppig KA, Lesca G, Lopergolo D, Lusk L, Mackenzie A, Mei D, Møller RS, Pereira EM, Platzer K, Quelin C, Revah-Politi A, Rheims S, Rodríguez-Palmero A, Rossi A, Santorelli F, Seinfeld S, Sell E, Stephenson D, Szczaluba K, Trinka E, Umair M, Van Esch H, van Haelst MM, Veenma DCM, Weber S, Weckhuysen S, Zacher P, Tümer Z, Rubboli G. Developmental epileptic encephalopathy in DLG4-related synaptopathy. Epilepsia 2024; 65:1029-1045. [PMID: 38135915 DOI: 10.1111/epi.17876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.
Collapse
Affiliation(s)
- Benedetta Kassabian
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Neurology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - Amanda M Levy
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Angel Aledo-Serrano
- Epilepsy and Neurogenetics Unit, Vithas la Milagrosa University Hospital, Vithas Hospital Group, Madrid, Spain
| | - Amitha L Ananth
- Division of Pediatric Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alejandro J Brea-Fernández
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Genética, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Biomédica de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Nicolas Chatron
- Service de Genetique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Centre National de la recherche scientifique (CNRS) Unité mixte de recherche (UMR) 5261- L'Institut national de la santé et de la recherche médicale (INSERM) U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Alice Dainelli
- Neuroscience Department, Meyer Children's Hospital IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), member of the European Reference Network EpiCARE, Florence, Italy
| | - Matthias De Wachter
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Anne-Sophie Denommé-Pichon
- Functional Unit for Diagnostic Innovation in Rare Diseases, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement (FHU-TRANSLAD), Dijon Bourgogne University Hospital, Dijon, France
- L'Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR) 1231, Génétique des Anomalies du Développement (GAD), Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement (FHU-TRANSLAD), University of Burgundy, Dijon, France
| | - Thomas J Dye
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | - Roxanne Felt
- Department of Neurology, Kaiser Permanente Bellevue Medical Center, Bellevue, Washington, USA
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Neurogenetics Section, Hospital Universitario Quirónsalud, Madrid, Spain
- Facultad de Medicina, Universidad Europea, Madrid, Spain
| | - Montse Fernández-Prieto
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Genética, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Biomédica de Santiago (IDIS), Santiago de Compostela, Spain
| | - Emily Gantz
- Division of Pediatric Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Antonio Gil-Nagel
- Neurology Department, Epilepsy Program, Ruber Internacional Hospital, Madrid, Spain
| | - David Gómez-Andrés
- Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), member of the European Reference Network EpiCARE, Florence, Italy
| | - Maria K Haanpää
- Department of Genomics, Turku University Hospital, Turku, Finland
| | - Minttu Helin
- Department of Pediatric Neurology, Turku University Hospital, Turku, Finland
| | - Juliane Hoyer
- Friedrich-Alexander-Universität Erlangen Nürnberg, Institute of Human Genetics, Erlangen, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Staci Kallish
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shefali N Karkare
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Amjad Khan
- Department of Zoology, Faculty of Biological Sciences, University of Lakki Marwat, Lakki Marwat, Pakistan
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lotte Kleinendorst
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes Koch
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Sanjeev V Kothare
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Suzanna M Koudijs
- Department of Neurology, Erasmus Medical Center (MC) Sophia Children's Hospital, Rotterdam, the Netherlands
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Rotterdam, Erasmus Medical Center (ENCORE)-GRIN Expertise Center, Rotterdam, the Netherlands
| | - Lieven Lagae
- Department of Development and Regeneration, Section Paediatric Neurology, member of the European Reference Network EpiCARE, University Hospitals Leuven, Leuven, Belgium
| | - Phillis Lakeman
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Kathleen A Leppig
- Genetic Services, Kaiser Permanente of Washington, Seattle, Washington, USA
| | - Gaetan Lesca
- Service de Genetique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Centre National de la recherche scientifique (CNRS) Unité mixte de recherche (UMR) 5261- L'Institut national de la santé et de la recherche médicale (INSERM) U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Diego Lopergolo
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Stella Maris Foundation, Pisa, Italy
| | - Laina Lusk
- Division of Neurology, Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alex Mackenzie
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), member of the European Reference Network EpiCARE, Florence, Italy
| | - Rikke S Møller
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Elaine M Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chloe Quelin
- Department of Medical Genetics, CHU de Rennes, Rennes, France
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, member of the European Reference Network EpiCARE, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Agustí Rodríguez-Palmero
- Paediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
- Grupo de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Rossi
- Unit of Child Neurology and Psychiatry, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | - Filippo Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Stella Maris Foundation, Pisa, Italy
| | - Syndi Seinfeld
- Department of Pediatric Neurology, Neuroscience Center, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Erick Sell
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Donna Stephenson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Krzysztof Szczaluba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
- Center of Excellence for Rare and Undiagnosed Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Eugen Trinka
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Christian Doppler University Hospital, member of the European Reference Network EpiCARE, Paracelsus Medical University, Center for Cognitive Neuroscience, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, member of the European Reference Network EpiCARE, Paracelsus Medical University, Center for Cognitive Neuroscience, Salzburg, Austria
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Danielle C M Veenma
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Rotterdam, Erasmus Medical Center (ENCORE)-GRIN Expertise Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center (MC)-Sophia Hospital, Rotterdam, the Netherlands
| | - Sacha Weber
- Service de Génétique, Centre Hospitalier Universitaire (CHU) de Caen-Normandie, Caen, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) de Caen-Normandie, Caen, France
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Pia Zacher
- Center for Adults with Disability (MZEB), Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Wayhelova M, Vallova V, Broz P, Mikulasova A, Smetana J, Dynkova Filkova H, Machackova D, Handzusova K, Gaillyova R, Kuglik P. Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders. Orphanet J Rare Dis 2024; 19:41. [PMID: 38321498 PMCID: PMC10845791 DOI: 10.1186/s13023-024-03056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) and/or associated multiple congenital abnormalities (MCAs) represent a genetically heterogeneous group of conditions with an adverse prognosis for the quality of intellectual and social abilities and common daily functioning. The rapid development of exome sequencing (ES) techniques, together with trio-based analysis, nowadays leads to up to 50% diagnostic yield. Therefore, it is considered as the state-of-the-art approach in these diagnoses. RESULTS In our study, we present the results of ES in a cohort of 85 families with 90 children with severe NDDs and MCAs. The interconnection of the in-house bioinformatic pipeline and a unique algorithm for variant prioritization resulted in a diagnostic yield of up to 48.9% (44/90), including rare and novel causative variants (41/90) and intragenic copy-number variations (CNVs) (3/90). Of the total number of 47 causative variants, 53.2% (25/47) were novel, highlighting the clinical benefit of ES for unexplained NDDs. Moreover, trio-based ES was verified as a reliable tool for the detection of rare CNVs, ranging from intragenic exon deletions (GRIN2A, ZC4H2 genes) to a 6-Mb duplication. The functional analysis using PANTHER Gene Ontology confirmed the involvement of genes with causative variants in a wide spectrum of developmental processes and molecular pathways, which form essential structural and functional components of the central nervous system. CONCLUSION Taken together, we present one of the first ES studies of this scale from the central European region. Based on the high diagnostic yield for paediatric NDDs in this study, 48.9%, we confirm trio-based ES as an effective and reliable first-tier diagnostic test in the genetic evaluation of children with NDDs.
Collapse
Affiliation(s)
- Marketa Wayhelova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic.
| | - Vladimira Vallova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Petr Broz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Jan Smetana
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Dynkova Filkova
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Dominika Machackova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristina Handzusova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Petr Kuglik
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
9
|
Chang YT, Hong SY, Lin WD, Lin CH, Lin SS, Tsai FJ, Chou IC. Genetic Testing in Children with Developmental and Epileptic Encephalopathies: A Review of Advances in Epilepsy Genomics. CHILDREN 2023; 10:children10030556. [PMID: 36980114 PMCID: PMC10047509 DOI: 10.3390/children10030556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Advances in disease-related gene discovery have led to tremendous innovations in the field of epilepsy genetics. Identification of genetic mutations that cause epileptic encephalopathies has opened new avenues for the development of targeted therapies. Clinical testing using extensive gene panels, exomes, and genomes is currently accessible and has resulted in higher rates of diagnosis and better comprehension of the disease mechanisms underlying the condition. Children with developmental disabilities have a higher risk of developing epilepsy. As our understanding of the mechanisms underlying encephalopathies and epilepsies improves, there may be greater potential to develop innovative therapies tailored to an individual’s genotype. This article provides an overview of the significant progress in epilepsy genomics in recent years, with a focus on developmental and epileptic encephalopathies in children. The aim of this review is to enhance comprehension of the clinical utilization of genetic testing in this particular patient population. The development of effective and precise therapeutic strategies for epileptic encephalopathies may be facilitated by a comprehensive understanding of their molecular pathogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
| | - Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medial University, Taichung 40447, Taiwan
| | - Sheng-Shing Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Division of Genetics and Metabolism, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 40447, Taiwan
| | - I-Ching Chou
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-4-22052121
| |
Collapse
|
10
|
Xu L, Yang K, Zhu M, Yin S, Gu Y, Fan Q, Wang Y, Pang C, Ren S. Trio-based exome sequencing broaden the genetic spectrum in keratoconus. Exp Eye Res 2023; 226:109342. [PMID: 36502923 DOI: 10.1016/j.exer.2022.109342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Keratoconus (KC) is a complex corneal disorder with genetic factors involving in its pathogenesis. The genetic etiology of KC has not been fully elucidated. In this study, we aimed to expand the genetic spectrum in KC by trio-based exome sequencing. Trio-based exome sequencing was conducted in 20 patients with KC and their unaffected parents to broaden the genetic spectrum of the disease. With a series of filtering criteria, de novo, recessive homozygous, and compound heterozygous variants in candidate genes were identified, and the candidate genes were classified for further analysis. Finally, we identified 60 variants in 32 candidate genes through trio-based exome sequencing. Among the candidate genes, 10 genes (ARHGEF10, ARHGEF17, ASPM, FLNA, NDRG1, NEB, PLS3, STARD8, SYNE1, TTN) were classified as cytoskeleton-related genes, 4 genes (COL28A1, SDK1, STAB1, TENM2) were classified as cell adhesion-related genes, and 18 genes (APLP2, BCORL1, CCNB3, FOXN1, FUT8, GALNT10, HEPH, HHIP, HMGB3, HS6ST2, JADE3, KIAA0040, MCF2L, MYOF, QRICH2, RPS6KA6, SMARCA1, TNRC6A) were classified into other genes group. Additionally, the candidate rare deleterious variants in TTN were highly repeated in 25% trios. In conclusion, the study provided new insights into the genetic spectrum of KC which might underlie the genetic etiology for the disease. The findings would improve our understanding of pathogenesis in KC and provide critical clues to future functional validation.
Collapse
Affiliation(s)
- Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Meng Zhu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Zhengzhou, 450003, China
| | - Shanshan Yin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Zhengzhou, 450003, China
| | - Yuwei Gu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Qi Fan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Yawen Wang
- Henan University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, 450003, China
| | - Chenjiu Pang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China; Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Zhengzhou, 450003, China.
| |
Collapse
|
11
|
The exploration of genetic aetiology and diagnostic strategy for 321 Chinese individuals with intellectual disability. Clin Chim Acta 2023; 538:94-103. [PMID: 36368352 DOI: 10.1016/j.cca.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intellectual disability is a heterogeneous neurodevelopmental disorder with complex genetic architectures. Different sequential methodologies are usually applied to identify the genetic aetiologies of ID patients. METHODS We collected 321 consecutive ID patients. All patients underwent karyotyping, while 293 and 164 cases further received copy number variation sequencing (CNV-seq) and whole-exome sequencing (WES). The updated WES technology can detect CNVs simultaneously. The diagnostic data from 137 patients who received WES and CNV-seq were used to define the approach that could be recommended as the first-tier test. RESULTS WES obtains the highest diagnostic yield of 50% (82/164), compared with karyotyping (7.79%, 25/321) and CNV-seq (19.80%, 58/293). Among the variants detected by WES, 66.67% (44/66) de novo and 57.58% (38/66) novel pathogenic/likely pathogenic (P/LP) variants were identified in patients with ID. Besides, 24 out of 25P/LP CNVs discovered by CNV-seq can also be accurately identified using WES in 137 patients who received WES and CNV-seq. Thus, genetic abnormalities found through karyotyping, CNV-seq, and WES can be completely detected by combined karyotyping and WES. CONCLUSIONS This study illustrates the genetic aberrations of a Chinese ID cohort and expands the mutation spectrum of ID-related genes. Compared with the conventional diagnostic strategy, a combination of karyotype analysis and WES could be recommended as the first-tier diagnostic strategy for ID patients.
Collapse
|
12
|
McNeill A. Exome sequencing-one test to rule them all? Eur J Hum Genet 2022; 30:869. [PMID: 35922666 PMCID: PMC9349271 DOI: 10.1038/s41431-022-01145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK. .,Sheffield Clinical Genetics Department, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
13
|
Kim SH, Kwon SS, Lee JS, Kim HD, Lee ST, Choi JR, Shin S, Kang HC. Analysis of trio test in neurodevelopmental disorders. Front Pediatr 2022; 10:1073083. [PMID: 36619507 PMCID: PMC9816327 DOI: 10.3389/fped.2022.1073083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Trio test has been widely used for diagnosis of various hereditary disorders. We aimed to investigate the contribution of trio test in genetically diagnosing neurodevelopmental disorders (NDD). METHODS We retrospectively reviewed 2,059 NDD cases with genetic test results. The trio test was conducted in 563 cases. Clinical usefulness, optimal timing, and methods for the trio test were reviewed. RESULTS Pathogenic or likely pathogenic variants were detected in 112 of 563 (19.9%) patients who underwent the trio test. With trio test results, the overall diagnostic yield increased by 5.4% (112/2,059). Of 165 de novo variants detected, 149 were pathogenic and we detected 85 novel pathogenic variants. Pathogenic, de novo variants were frequently detected in CDKL5, ATP1A3, and STXBP1. CONCLUSION The trio test is an efficient method for genetically diagnosing NDD. We identified specific situations where a certain trio test is more appropriate, thereby providing a guide for clinicians when confronted with variants of unknown significance of specific genes.
Collapse
Affiliation(s)
- Se Hee Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Sung Kwon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Soo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Heung Dong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hoon-Chul Kang
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|