1
|
Ak B, Akısü M, Durmaz A, Yalaz M, Terek D, Sönmezler E, Oktay Y, Akın H, Aykut A. Expanding the genetic spectrum of short rib polydactyly syndrome: Novel DYNC2H1 variants and functional insights. Bone 2025; 197:117511. [PMID: 40339774 DOI: 10.1016/j.bone.2025.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
INTRODUCTION Short rib polydactyly syndrome (SRPS), with or without polydactyly, also known as Verma-Naumoff/Saldino-Noonan syndrome, is a type of skeletal ciliopathy. Initially, variants in the IFT80 gene were implicated; however, approximately half of the SRPS cases are associated with variants in the DYNC2H1 gene. Additionally, digenic variants involving DYNC2H1 and NEK1 can contribute to the syndrome. MATERIALS AND METHODS This case report describes a male patient presenting with characteristic SRPS features, including a constricted thorax and shortened limbs. Exome sequencing was performed to identify causative variants, followed by functional analyses to assess the pathogenicity of the identified variants, including a synonymous variant. RESULTS Exome sequencing identified compound heterozygous variants in the DYNC2H1 gene: a novel missense variant c.6439G>T p.(Asp2147Tyr) and a synonymous variant c.6477G>A p.(Gln2159=). Functional analyses confirmed that the synonymous variant triggers nonsense-mediated decay of the affected allele. CONCLUSION This study expands the spectrum of DYNC2H1 variants associated with SRPS and emphasizes the importance of functional analyses in genetic diagnostics. Demonstrating pathogenicity for a synonymous variant highlights the necessity for comprehensive variant assessments to improve diagnostic accuracy and enable early intervention. These findings have significant implications for molecular diagnostics and personalized therapy strategies in skeletal ciliopathies.
Collapse
Affiliation(s)
- Bilgesu Ak
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey
| | - Mete Akısü
- Department of Neonatology, Ege University Hospital, Izmir, Turkey.
| | - Asude Durmaz
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey.
| | - Mehmet Yalaz
- Department of Neonatology, Ege University Hospital, Izmir, Turkey.
| | - Demet Terek
- Department of Neonatology, Ege University Hospital, Izmir, Turkey.
| | | | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
| | - Haluk Akın
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey.
| | - Ayça Aykut
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey.
| |
Collapse
|
2
|
Pattani N, Elkhateeb N, Joshi A, Del Rey Jimenez JC, Barber JL, Palmrich P, Firth H, Mehta SG, Kesh LAR, Campbell J, Carmichael J, Mansour S. Phenotypic heterogeneity in DYNC2H1-related short-rib thoracic dysplasia: antenatal indicators and postnatal outcomes. J Med Genet 2025:jmg-2024-110369. [PMID: 40250984 DOI: 10.1136/jmg-2024-110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/30/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION DYNC2H1-related short-rib thoracic dysplasia with/without polydactyly (SRTD), formerly asphyxiating thoracic dystrophy-Jeune syndrome, is a rare genetic skeletal disorder characterised by a narrow thorax, short ribs, shortened long bones and brachydactyly/polydactyly. DYNC2H1-related SRTD shows significant phenotypic variability. There is limited information regarding correlations between genotypes, antenatal ultrasound findings and clinical phenotypes and severity. METHODS A retrospective study of confirmed DYNC2H1-related SRTD cases was conducted through paper and digital medical records. Data collected included patient demographics, initial presentation, postnatal progression, childhood follow-up, antenatal ultrasound imaging, postnatal skeletal surveys and genetic variant analysis. RESULTS Nine individuals from eight families across three tertiary genetic centres in England were included in the study. Eight presented in the antenatal period (gestation 14-36 weeks) and one in the postnatal period at 6 weeks. All nine displayed a narrow thorax and eight displayed shortened long bones (humerus and/or femur). Polydactyly was less common and seen in only four individuals. Phenotypic severity was variable, including mild (n=4), moderate requiring respiratory support (n=2) and severe/lethal (n=3) cases. Earlier antenatal presentation and more significant femur shortening and bowing were predictive of poor postnatal prognosis, and there were no clear genotype-phenotype correlations. We also report seven novel DYNC2H1 variants, not previously reported. CONCLUSION DYNC2H1-related SRTD exhibits significant phenotypic variability which cannot be reliably predicted by genotype but has some correlation with time of gestational presentation.
Collapse
Affiliation(s)
- Nikhil Pattani
- Department of Clinical Genetics, South West Thames Regional Genetic Services, London, UK
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Aakash Joshi
- Department of Clinical Genetics, South West Thames Regional Genetic Services, London, UK
| | | | - Joy L Barber
- Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Pilar Palmrich
- Department of Obstetrics and Feto-maternal Medicine, Medical University of Vienna, Wien, Austria
| | - Helen Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Jennifer Campbell
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jenny Carmichael
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sahar Mansour
- Department of Clinical Genetics, South West Thames Regional Genetic Services, London, UK
- St George's University of London, London, UK
| |
Collapse
|
3
|
Porto Vasconcelos A, Quental S, Freixo JP, Pacheco JM, Rodrigues S, Magalhães M, Oliveira R, Braga AC, Quental R. DYNC2H1 splicing variants causing severe prenatal short-rib polydactyly syndrome and postnatal orofaciodigital syndrome. Ann Hum Genet 2025; 89:24-30. [PMID: 39361243 DOI: 10.1111/ahg.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 12/18/2024]
Abstract
The DYNC2H1 gene has been associated with short-rib polydactyly syndrome (SRPS), among other skeletal ciliopathies. Two cases are presented of distinctive phenotypes resulting from splicing variants in DYNC2H1. The first is a 14-week-old fetus with enlarged nuchal translucency, oral hamartoma, malformed uvula, bifid epiglottis, short ribs, micromelia, long bone agenesis, polysyndactyly, heart defect, pancreatic cysts, multicystic dysplastic kidney, megabladder and trident acetabulum. A ciliopathies NGS panel revealed two compound heterozygous variants in DYNC2H1: c.7840-18T>G r.7841_7964del p.Gly2614Aspfs*5 and c.11070G>A r.11044_11116del p.Ile3682Aspfs*2. Both variants were initially classified as variants of uncertain significance but were reclassified as likely pathogenic after PCR-based RNA testing. The second is an 11-year-old overweight male with multiple accessory oral frenula, median cleft lip and alveolar ridge, polysyndactyly, brachydactyly, normal rib length, and hypogonadism. Exome sequencing revealed two compound heterozygous variants in DYNC2H1: c.6315del p.(Thr2106Glnfs*7), classified as likely pathogenic, and c.3303-16A>G p.(?), classified as a variant of uncertain significance. PCR-based RNA testing suggested that c.3303-16A>G induces an in-frame deletion: r.3303_3458del p.Asp1102_Arg1153del, although the normal transcript is still produced. These results are consistent with both SRPS type I/III in the first case and orofaciodigital syndrome in the second, an unprecedented description. This work thus improves the clinical and molecular knowledge of the phenotypes associated with splicing variants in the DYNC2H1 gene.
Collapse
Affiliation(s)
| | - Sofia Quental
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Parente Freixo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CGPP-IBMC, Universidade do Porto, Porto, Portugal
| | | | - Sofia Rodrigues
- Obstetrics and Gynaecology Department, São João Universitary Hospital Center, Porto, Portugal
| | - Magda Magalhães
- Obstetrics and Gynaecology Department, São João Universitary Hospital Center, Porto, Portugal
| | - Renata Oliveira
- Genetics Service, São João Universitary Hospital Center, Porto, Portugal
| | - Ana Costa Braga
- Pathology Department, São João Universitary Hospital Center, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Quental
- Genetics Service, São João Universitary Hospital Center, Porto, Portugal
| |
Collapse
|
4
|
Altunoglu U, Palencia-Campos A, Güneş N, Turgut GT, Nevado J, Lapunzina P, Valencia M, Iturrate A, Otaify G, Elhossini R, Ashour A, K Amin A, Elnahas RF, Fernandez-Nuñez E, Flores CL, Arias P, Tenorio J, Chamorro Fernández CI, Güven Y, Özsu E, Eklioğlu BS, Ibarra-Ramirez M, Diness BR, Burnyte B, Ajmi H, Yüksel Z, Yıldırım R, Ünal E, Abdalla E, Aglan M, Kayserili H, Tuysuz B, Ruiz-Pérez V. Variant characterisation and clinical profile in a large cohort of patients with Ellis-van Creveld syndrome and a family with Weyers acrofacial dysostosis. J Med Genet 2024; 61:633-644. [PMID: 38531627 DOI: 10.1136/jmg-2023-109546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.
Collapse
Affiliation(s)
- Umut Altunoglu
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Adrian Palencia-Campos
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Nilay Güneş
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Gozde Tutku Turgut
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Julian Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Maria Valencia
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Asier Iturrate
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ghada Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Adel Ashour
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Asmaa K Amin
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rania F Elnahas
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Elisa Fernandez-Nuñez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Carmen-Lisset Flores
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Jair Tenorio
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | - Yeliz Güven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Ankara University, Ankara, Turkey
| | - Beray Selver Eklioğlu
- Division of Pediatric Endocrinology, Department of Pediatrics, Necmettin Erbakan University, Konya, Turkey
| | - Marisol Ibarra-Ramirez
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico
| | - Birgitte Rode Diness
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Kobenhavn, Denmark
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Houda Ajmi
- Service de Pédiatrie, Centre Hôspitalier Universitaire (CHU) Sahloul, Sousse, Tunisia
| | - Zafer Yüksel
- Human Genetics Department, Bioscientia Healthcare GmbH, Ingelheim, Germany
| | - Ruken Yıldırım
- Department of Pediatric Endocrinology, Ministry of Health Diyarbakir Children's Hospital, Diyarbakir, Turkey
| | - Edip Ünal
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Hulya Kayserili
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
| | - Beyhan Tuysuz
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Victor Ruiz-Pérez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
5
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
6
|
McNeill A. April, again. Eur J Hum Genet 2023; 31:369-370. [PMID: 37100859 PMCID: PMC10133227 DOI: 10.1038/s41431-023-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|