1
|
Gallo MC, Elias A, Reynolds J, Ball JR, Lieberman JR. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering (Basel) 2025; 12:120. [PMID: 40001640 PMCID: PMC11852166 DOI: 10.3390/bioengineering12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
Collapse
Affiliation(s)
- Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Aura Elias
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Julius Reynolds
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jacob R. Ball
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Xu Q, Hou W, Zhao B, Fan P, Wang S, Wang L, Gao J. Mesenchymal stem cells lineage and their role in disease development. Mol Med 2024; 30:207. [PMID: 39523306 PMCID: PMC11552129 DOI: 10.1186/s10020-024-00967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are widely dispersed in vivo and are isolated from several tissues, including bone marrow, heart, body fluids, skin, and perinatal tissues. Bone marrow MSCs have a multidirectional differentiation potential, which can be induced to differentiate the medium in a specific direction or by adding specific regulatory factors. MSCs repair damaged tissues through lineage differentiation, and the ex vivo transplantation of bone marrow MSCs can heal injured sites. MSCs have different propensities for lineage differentiation and pathological evolution for different diseases, which are crucial in disease progression. In this study, we describe various lineage analysis methods to explore lineage ontology in vitro and in vivo, elucidate the impact of MSC lineage differentiation on diseases, advance our understanding of the role of MSC differentiation in physiological and pathological states, and explore new targets and ideas associated with disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qi Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenrun Hou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baorui Zhao
- Stem cell Translational laboratory, Shanxi Technological Innovation Center for Clinical Diagnosis and Treatment of Immune and Rheumatic Diseases, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Peixin Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Sheng Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Ball JR, Shelby T, Hernandez F, Mayfield CK, Lieberman JR. Delivery of Growth Factors to Enhance Bone Repair. Bioengineering (Basel) 2023; 10:1252. [PMID: 38002376 PMCID: PMC10669014 DOI: 10.3390/bioengineering10111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The management of critical-sized bone defects caused by nonunion, trauma, infection, malignancy, pseudoarthrosis, and osteolysis poses complex reconstruction challenges for orthopedic surgeons. Current treatment modalities, including autograft, allograft, and distraction osteogenesis, are insufficient for the diverse range of pathology encountered in clinical practice, with significant complications associated with each. Therefore, there is significant interest in the development of delivery vehicles for growth factors to aid in bone repair in these settings. This article reviews innovative strategies for the management of critical-sized bone loss, including novel scaffolds designed for controlled release of rhBMP, bioengineered extracellular vesicles for delivery of intracellular signaling molecules, and advances in regional gene therapy for sustained signaling strategies. Improvement in the delivery of growth factors to areas of significant bone loss has the potential to revolutionize current treatment for this complex clinical challenge.
Collapse
Affiliation(s)
- Jacob R. Ball
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, 1500 San Pablo St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
4
|
Bukharova TB, Nedorubova IA, Mokrousova VO, Meglei AY, Basina VP, Nedorubov AA, Vasilyev AV, Grigoriev TE, Zagoskin YD, Chvalun SN, Kutsev SI, Goldshtein DV. Adenovirus-Based Gene Therapy for Bone Regeneration: A Comparative Analysis of In Vivo and Ex Vivo BMP2 Gene Delivery. Cells 2023; 12:1762. [PMID: 37443796 PMCID: PMC10340163 DOI: 10.3390/cells12131762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Adenovirus-mediated gene therapy is a promising tool in bone regenerative medicine. In this work, gene-activated matrices (GAMs) composed of (1) polylactide granules (PLA), which serve as a depot for genetic constructs or matrices for cell attachment, (2) a PRP-based fibrin clot, which is a source of growth factors and a binding gel, and (3) a BMP2 gene providing osteoinductive properties were studied. The study aims to compare the effectiveness of in vivo and ex vivo gene therapy based on adenoviral constructs with the BMP2 gene, PLA particles, and a fibrin clot for bone defect healing. GAMs with Ad-BMP2 and MSC(Ad-BMP2) show osteoinductive properties both in vitro and in vivo. However, MSCs incubated with GAMs containing transduced cells showed a more significant increase in osteopontin gene expression, protein production, Alpl activity, and matrix mineralization. Implantation of the studied matrices into critical-size calvarial defects after 56 days promotes the formation of young bone. The efficiency of neoosteogenesis and the volume fraction of newly formed bone tissue are higher with PLA/PRP-MSC(Ad-BMP2) implantation (33%) than PLA/PRP-Ad-BMP2 (28%). Thus, ex vivo adenoviral gene therapy with the BMP2 gene has proven to be a more effective approach than the in vivo delivery of gene constructs for bone regeneration.
Collapse
Affiliation(s)
- Tatiana Borisovna Bukharova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Irina Alekseevna Nedorubova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Viktoria Olegovna Mokrousova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Anastasiia Yurevna Meglei
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Viktoriia Pavlovna Basina
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Andrey Anatolevich Nedorubov
- Institute of Translational Medicine and Biotechnology and E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
| | - Andrey Vyacheslavovich Vasilyev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
- Institute of Translational Medicine and Biotechnology and E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
| | | | | | | | - Sergey Ivanovich Kutsev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Dmitry Vadimovich Goldshtein
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| |
Collapse
|
5
|
Nasir G, Chopra R, Elwood F, Ahmed SS. Krabbe Disease: Prospects of Finding a Cure Using AAV Gene Therapy. Front Med (Lausanne) 2021; 8:760236. [PMID: 34869463 PMCID: PMC8633897 DOI: 10.3389/fmed.2021.760236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Krabbe Disease (KD) is an autosomal metabolic disorder that affects both the central and peripheral nervous systems. It is caused by a functional deficiency of the lysosomal enzyme, galactocerebrosidase (GALC), resulting in an accumulation of the toxic metabolite, psychosine. Psychosine accumulation affects many different cellular pathways, leading to severe demyelination. Although there is currently no effective therapy for Krabbe disease, recent gene therapy-based approaches in animal models have indicated a promising outlook for clinical treatment. This review highlights recent findings in the pathogenesis of Krabbe disease, and evaluates AAV-based gene therapy as a promising strategy for treating this devastating pediatric disease.
Collapse
Affiliation(s)
- Gibran Nasir
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Rajiv Chopra
- AllianThera Biopharma, Boston, MA, United States
| | - Fiona Elwood
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Seemin S Ahmed
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| |
Collapse
|
6
|
De la Vega RE, Atasoy-Zeybek A, Panos JA, VAN Griensven M, Evans CH, Balmayor ER. Gene therapy for bone healing: lessons learned and new approaches. Transl Res 2021; 236:1-16. [PMID: 33964474 PMCID: PMC8976879 DOI: 10.1016/j.trsl.2021.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Although gene therapy has its conceptual origins in the treatment of Mendelian disorders, it has potential applications in regenerative medicine, including bone healing. Research into the use of gene therapy for bone healing began in the 1990s. Prior to this period, the highly osteogenic proteins bone morphogenetic protein (BMP)-2 and -7 were cloned, produced in their recombinant forms and approved for clinical use. Despite their promising osteogenic properties, the clinical usefulness of recombinant BMPs is hindered by delivery problems that necessitate their application in vastly supraphysiological amounts. This generates adverse side effects, some of them severe, and raises costs; moreover, the clinical efficacy of the recombinant proteins is modest. Gene delivery offers a potential strategy for overcoming these limitations. Our research has focused on delivering a cDNA encoding human BMP-2, because the recombinant protein is Food and Drug Administration approved and there is a large body of data on its effects in people with broken bones. However, there is also a sizeable literature describing experimental results obtained with other transgenes that may directly or indirectly promote bone formation. Data from experiments in small animal models confirm that intralesional delivery of BMP-2 cDNA is able to heal defects efficiently and safely while generating transient, local BMP-2 concentrations 2-3 log orders less than those needed by recombinant BMP-2. The next challenge is to translate this information into a clinically expedient technology for bone healing. Our present research focuses on the use of genetically modified, allografted cells and chemically modified messenger RNA.
Collapse
Affiliation(s)
- Rodolfo E De la Vega
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota; cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Aysegul Atasoy-Zeybek
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Panos
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Martijn VAN Griensven
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota; cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota.
| | - Elizabeth R Balmayor
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, Minnesota; IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Musculoskeletal tissue engineering: Regional gene therapy for bone repair. Biomaterials 2021; 275:120901. [PMID: 34091300 DOI: 10.1016/j.biomaterials.2021.120901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Bone loss associated with fracture nonunion, revision total joint arthroplasty (TJA), and pseudoarthrosis of the spine presents a challenging clinical scenario for the orthopaedic surgeon. Current treatment options including autograft, allograft, bone graft substitutes, and bone transport techniques are associated with significant morbidity, high costs, and prolonged treatment regimens. Unfortunately, these treatment strategies have proven insufficient to safely and consistently heal bone defects in the stringent biological environments often encountered in clinical cases of bone loss. The application of tissue engineering (TE) to musculoskeletal pathology has uncovered exciting potential treatment strategies for challenging bone loss scenarios in orthopaedic surgery. Regional gene therapy involves the local implantation of nucleic acids or genetically modified cells to direct specific protein expression, and has shown promise as a potential TE technique for the regeneration of bone. Preclinical studies in animal models have demonstrated the ability of regional gene therapy to safely and effectively heal critical sized bone defects which otherwise do not heal. The purpose of the present review is to provide a comprehensive overview of the current status of gene therapy applications for TE in challenging bone loss scenarios, with an emphasis on gene delivery methods and models, scaffold biomaterials, preclinical results, and future directions.
Collapse
|