1
|
Fehrman RL, Chern KJ, Stoltz KP, Lipinski DM. The vectors went in two-by-two: Transduction efficiency and tolerability of dual and triple rAAV vector delivery following intravitreal injection for genome-editing applications. Exp Eye Res 2025; 251:110223. [PMID: 39710097 DOI: 10.1016/j.exer.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Genome or prime editing has become a promising tool for the treatment of hereditary disorders affecting the inner retina, such as dominant optic neuropathies. In vivo delivery of gene editors, such as Cas9, is typically achieved using recombinant adeno-associated virus (rAAV) vectors, which have a broad range of cellular tropisms and are well tolerated following intravitreal administration. Owing to the large size of gene editing constructs and the limited carrying capacity of rAAV (<5.1 kb) it is unfortunately usually necessary to split therapeutic transgene cassettes across multiple co-administered vector genomes. While the efficiency with which multiple vector genomes recombine following cellular entry has been studied extensively, another potentially limiting factor is the likelihood of target cells (e.g. retinal ganglion cells) receiving two or more vectors containing genomes that correspond to the full-length expression cassette when recombined. In this study we examine the efficiency with which two or more vector genomes transduce various retinal cell types following intravitreal administration. rAAV2/2[MAX] vectors expressing individual fluorescent reporters (GFP, BFP or mCherry) were co-injected intravitreally singly or in combination (dual or triple), allowing the extent of co-transduction to be assessed through multimodal in vivo imaging, electroretinography, flow cytometry and post-mortem histology. We find that intravitreal co-administration of vectors containing multiple genomes is well tolerated - with no observed alterations in retinal thickness or ERG amplitudes - but that co-transduction efficiency decreases significantly with increasing genome number. As such co-transduction of multiple vectors may be a major bottleneck limiting gene editing of inherited disorders affecting the inner retina.
Collapse
Affiliation(s)
- Rachel L Fehrman
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, 53226, USA
| | - Kristina J Chern
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, 53226, USA
| | - Kyle P Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, WI, 53226, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, 53226, USA; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, WI, 53226, USA.
| |
Collapse
|
2
|
Derome M, Denard J, Marinello M, Levade T, Boespflug-Tanguy O, Buj-Bello A. [Therapeutic perspectives for lysosomal storage disorders caused by acid ceramidase deficiency]. Med Sci (Paris) 2024; 40 Hors série n° 1:52-55. [PMID: 39555879 DOI: 10.1051/medsci/2024162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are two ultra-rare lysosomal storage disorders resulting from loss-of-function mutations in the ASAH1 gene encoding for acid ceramidase (ACDase). ACDase deficiency leads to the intracellular accumulation of ceramides with an inflammatory response in tissues. These two diseases manifest differently but are part of a clinical continuum with variable severity affecting the nervous system and/or peripheral tissues, including the neuromuscular system. To date, no specific or curative treatments are available for patients affected by acid ceramidase deficiency. Here, we summarize the clinical features, enzyme function, mouse models and therapeutic perspectives for these allelic diseases.
Collapse
Affiliation(s)
- Marion Derome
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| | - Jérôme Denard
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| | - Martina Marinello
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| | - Thierry Levade
- Unité mixte de recherche Inserm 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de recherches en cancérologie de Toulouse (CRCT), Toulouse, France - Laboratoire de biochimie, Institut fédératif de biologie, CHU Purpan, Toulouse, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, Inserm, UMR 1141 NeuroDiderot, Paris, France ; AP-HP, Service de neurologie pédiatrique, Hôpital Robert Debré et Hôpital Trousseau, Paris, France
| | - Ana Buj-Bello
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| |
Collapse
|
3
|
Casasampere M, Ung J, Iñáñez A, Dufau C, Tsuboi K, Casas J, Tan SF, Feith DJ, Andrieu-Abadie N, Segui B, Loughran TP, Abad JL, Fabrias G. A fluorogenic substrate for the detection of lipid amidases in intact cells. J Lipid Res 2024; 65:100520. [PMID: 38369184 PMCID: PMC10956054 DOI: 10.1016/j.jlr.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 μM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 μM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 μM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.
Collapse
Affiliation(s)
- Mireia Casasampere
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Johnson Ung
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alejandro Iñáñez
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carine Dufau
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Josefina Casas
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Su-Fern Tan
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David J Feith
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Bruno Segui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France; Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - José Luis Abad
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Gemma Fabrias
- Department of Biological Chemistry, Research Unit on BioActive Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; CIBEREHD, Madrid, Spain; Spanish National Research Council (CSIC)'s Cancer Hub, Madrid, Spain.
| |
Collapse
|
4
|
Kleynerman A, Rybova J, Faber ML, McKillop WM, Levade T, Medin JA. Acid Ceramidase Deficiency: Bridging Gaps between Clinical Presentation, Mouse Models, and Future Therapeutic Interventions. Biomolecules 2023; 13:biom13020274. [PMID: 36830643 PMCID: PMC9953133 DOI: 10.3390/biom13020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse, and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-4118
| |
Collapse
|