1
|
Perofsky K, Doshi A, Boulil Z, Beauchamp Walters J, Lee E, Dimmock D, Kingsmore S, Coufal NG. Palliative Care Outcomes for Critically ill Children After Rapid Whole Genome Sequencing. J Intensive Care Med 2025; 40:509-518. [PMID: 39648615 DOI: 10.1177/08850666241304320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Objectives: Clinical utility of rapid whole genome sequencing (rWGS) has been reported in 30-70% of pediatric ICU patients who receive a molecular diagnosis. Rapid molecular diagnostic techniques have been increasingly integrated into critical care, yet the influence of genetic test results on palliative care related decision making is largely unknown. This study evaluates palliative care related outcomes after rWGS. Design: Retrospective chart review Setting: Tertiary children's hospital Patients: Acutely ill children ≤ 18 years of age who received rWGS due to suspected genetic disease between July 2016 and November 2019 Interventions: rWGS with associated precision medicine Measurements and Main Results: 536 patients underwent rWGS, of whom 152 (28.4%) received a molecular diagnosis. Diagnostic rWGS was associated with more code status modifications, an increase in palliative care inpatient consultations, and greater enrollment in home-based palliative services. A comparison of diagnostic and nondiagnostic rWGS groups where palliative decisions were made prior to reporting of genomic testing results did not identify differences between the groups. In the subset of patients who had palliative care interventions (n = 57, 53% with diagnostic rWGS), time to palliative care consultation and time to compassionate extubation were shorter for patients with rWGS-based diagnoses (Kaplan-Meier method, P = .008; P = .015). Significantly more patients in this subgroup with diagnostic rWGS received home-based palliative care (Chi-squared, P = .025, 95% CI [-0.47, -0.05]). Univariate Poisson regression indicated that diagnostic rWGS is associated with significantly fewer emergency visits, PICU admissions, and unplanned intubations. Conclusions: Diagnostic rWGS correlates with more rapid engagement of pediatric palliative care services, higher enrollment rates in home-based palliative care, and shorter time to compassionate extubation. Further studies are needed with larger cohort sizes and validated pediatric palliative care outcome measurement tools to accurately determine if this change in care is driven by the underlying condition or knowledge of a molecular diagnosis.
Collapse
Affiliation(s)
- Katherine Perofsky
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Rady Children's Hospital San Diego, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Ami Doshi
- Rady Children's Hospital San Diego, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Zaineb Boulil
- Rady Children's Hospital San Diego, San Diego, CA, USA
| | | | - Euyhyun Lee
- Altman Clinical and Translational Research Institute, University of California at San Diego, La Jolla, CA, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | | | - Nicole G Coufal
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Rady Children's Hospital San Diego, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| |
Collapse
|
2
|
Zalusky MPG, Gustafson JA, Bohaczuk SC, Mallory B, Reed P, Wenger T, Beckman E, Chang IJ, Paschal CR, Buchan JG, Lockwood CM, Puia-Dumitrescu M, Garalde DR, Guillory J, Markham AJ, Bamshad MJ, Eichler EE, Stergachis AB, Miller DE. 3-hour genome sequencing and targeted analysis to rapidly assess genetic risk. GENETICS IN MEDICINE OPEN 2024; 2:101833. [PMID: 39421454 PMCID: PMC11484281 DOI: 10.1016/j.gimo.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Purpose Rapid genetic testing in the critical care setting may guide diagnostic evaluation, direct therapies, and help families and care providers make informed decisions about goals of care. We tested whether a simplified DNA extraction and library preparation process would enable us to perform ultra-rapid assessment of genetic risk for a Mendelian condition, based on information from an affected sibling, using long-read genome sequencing and targeted analysis. Methods Following extraction of DNA from cord blood and rapid library preparation, genome sequencing was performed on an Oxford Nanopore PromethION. FASTQ files were generated from original sequencing data in near real-time and aligned to a reference genome. Variant calling and analysis were performed at timed intervals. Results We optimized the DNA extraction and library preparation methods to create sufficient library for sequencing from 500 μL of blood. Real-time, targeted analysis was performed to determine that the newborn was neither affected nor a heterozygote for variants underlying a Mendelian condition. Phasing of the target region and prior knowledge of the affected haplotypes supported our interpretation despite a low level of coverage at 3 hours of life. Conclusion This proof-of-concept experiment demonstrates how prior knowledge of haplotype structure or familial variants can be used to rapidly evaluate an individual at risk for a genetic disease. While ultra-rapid sequencing remains both complex and cost prohibitive, our method is more easily automated than prior approaches and uses smaller volumes of blood, thus may be more easily adopted for future studies of ultra-rapid genome sequencing in the clinical setting.
Collapse
Affiliation(s)
- Miranda PG Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Jonas A Gustafson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Ben Mallory
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Paxton Reed
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Tara Wenger
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Erika Beckman
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Irene J. Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | - Cate R. Paschal
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA, USA
| | - Jillian G. Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Christina M. Lockwood
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Mihai Puia-Dumitrescu
- Division of Neonatology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
| | | | | | | | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Andrew B. Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Wojcik MH, D'Gama AM, Agrawal PB. A model to implement genomic medicine in the neonatal intensive care unit. J Perinatol 2023; 43:248-252. [PMID: 35750755 PMCID: PMC9789202 DOI: 10.1038/s41372-022-01428-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Rapid genomic sequencing has been shown to have a high diagnostic yield for critically ill infants, with multiple research studies demonstrating both diagnostic and clinical utility. However, clinical implementation of rapid sequencing in the neonatal intensive care unit (NICU), as well as other aspects of genomic medicine such as precision therapy, may be challenging. We describe the Neonatal Genomics Program, developed at our institution as a multidisciplinary approach to improve clinical genetic diagnosis and outcomes for infants in our NICU through genomic medicine. The creation of a dedicated program implementing genomic medicine to improve care in the NICU allows not only for improved access to genomic sequencing for rapid diagnosis, but also advancement of rare disease research and precision therapeutics. Ongoing efforts will help to define an optimal approach to genomic medicine in the NICU context.
Collapse
Affiliation(s)
- Monica H Wojcik
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- The Broad Institute, Cambridge, MA, USA.
| | - Alissa M D'Gama
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- The Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
4
|
Hayeems RZ, Bernier F, Boycott KM, Hartley T, Michaels-Igbokwe C, Marshall DA. Positioning whole exome sequencing in the diagnostic pathway for rare disease to optimise utility: a protocol for an observational cohort study and an economic evaluation. BMJ Open 2022; 12:e061468. [PMID: 36216418 PMCID: PMC9557316 DOI: 10.1136/bmjopen-2022-061468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Despite the superior diagnostic performance of exome and genome sequencing compared with conventional genetic tests, evidence gaps related to clinical utility and cost effectiveness have limited their availability in routine clinical practice in many jurisdictions. To inform adoption and reimbursement policy, this protocol provides a chain of evidence approach to determining the diagnostic utility, clinical utility and cost-effectiveness of whole exome sequencing (WES) from seven medical genetic centres in two Canadian provinces. METHODS AND ANALYSIS Using a multicentre observational cohort design, we will extract data specific to the pre-WES diagnostic pathway and 1-year post-WES medical management from electronic medical records for 650 patients with rare disease of suspected genetic aetiology who receive WES. The date from the clinical record will be linked to provincial administrative health database to capture healthcare resource use and estimate costs. Our analysis will: (1) define and describe diagnostic testing pathways that occur prior to WES among patients with rare disease, (2) determine the diagnostic utility of WES, characterised as the proportion of patients for whom causative DNA variants are identified, (3) determine the clinical utility of WES, characterised as a change in medical management triggered by WES results, (4) determine the pattern and cost of health service utilisation prior and 1 year following WES among patients who receive a diagnosis, do not receive a diagnosis, or receive an uncertain diagnosis and (5) estimate the cost-effectiveness of WES compared with conventional diagnostic testing pathways, measured by the incremental cost per additional patient diagnosed by WES using simulation modelling. ETHICS AND DISSEMINATION This protocol was approved by Clinical Trials Ontario (CTO-1577) and research ethics boards at the University of Calgary (REB18-0744 and REB20-1449) and University of Alberta (Pro0009156). Findings will be disseminated through academic publications and policy reports.
Collapse
Affiliation(s)
- Robin Z Hayeems
- Child Health Evaluative Sciences, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Francois Bernier
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
- Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Paediatrics, Facuty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Taila Hartley
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Christine Michaels-Igbokwe
- Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Deborah A Marshall
- Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Wojcik MH, Del Rosario MC, Agrawal PB. Perspectives of United States neonatologists on genetic testing practices. Genet Med 2022; 24:1372-1377. [PMID: 35304021 DOI: 10.1016/j.gim.2022.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Genetic disorders often present in the neonatal intensive care unit (NICU), and detecting or confirming these diagnoses has been shown to impact care. However, the availability and use of genetic testing, particularly exome or genome sequencing, among NICUs varies widely. We therefore sought to investigate practice patterns related to genetic testing in NICUs around the country to identify and quantify potential discrepancies. METHODS We designed a survey that was distributed to neonatologists via email. The survey contained questions related to test availability and desirability, the process of test ordering in NICU, and general comfort with ordering and interpreting genetic testing. Demographic data related to the survey participants and characteristics of their NICU were also obtained. RESULTS In total, 162 neonatologists completed the survey, representing 40 states and 112 distinct NICUs. Although nearly all (93.2%) neonatologists attributed a high level of importance to identifying a genetic diagnosis for their patients, genetic consultations were only available at 78% of NICUs and exome or genome sequencing was not available on a regular basis (69% of NICUs). CONCLUSION Although, among US neonatologists surveyed, most feel that genetic tests are indicated for their patients, these are not always clinically available. Further research into implementation barriers is warranted.
Collapse
Affiliation(s)
- Monica H Wojcik
- Division of Newborn Medicine, Department of Pediatrics, Boston Children' Hospital and Harvard Medical School, Boston, MA; Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA.
| | - Maya C Del Rosario
- Division of Newborn Medicine, Department of Pediatrics, Boston Children' Hospital and Harvard Medical School, Boston, MA; Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children' Hospital and Harvard Medical School, Boston, MA; Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA.
| |
Collapse
|
6
|
Goranitis I, Wu Y, Lunke S, White SM, Tan TY, Yeung A, Hunter MF, Martyn M, Gaff C, Stark Z. Is faster better? An economic evaluation of rapid and ultra-rapid genomic testing in critically ill infants and children. Genet Med 2022; 24:1037-1044. [PMID: 35181209 DOI: 10.1016/j.gim.2022.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To evaluate whether the additional cost of providing increasingly faster genomic results in pediatric critical care is outweighed by reductions in health care costs and increases in personal utility. METHODS Hospital costs and medical files from a cohort of 40 children were analyzed. The health economic impact of rapid and ultra-rapid genomic testing, with and without early initiation, relative to standard genomic testing was evaluated. RESULTS Shortening the time to results led to substantial economic and personal benefits. Early initiation of ultra-rapid genomic testing was the most cost-beneficial strategy, leading to a cost saving of AU$26,600 per child tested relative to standard genomic testing and a welfare gain of AU$12,000 per child tested. Implementation of early ultra-rapid testing of critically ill children is expected to lead to an annual cost saving of AU$7.3 million for the Australian health system and an aggregate welfare gain of AU$3.3 million, corresponding to a total net benefit of AU$10.6 million. CONCLUSION Early initiation of ultra-rapid genomic testing can offer substantial economic and personal benefits. Future implementation of rapid genomic testing programs should focus not only on optimizing the laboratory workflow to achieve a fast turnaround time but also on changing clinical practice to expedite test initiation.
Collapse
Affiliation(s)
- Ilias Goranitis
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia; Australian Genomics Health Alliance, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - You Wu
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia; Australian Genomics Health Alliance, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sebastian Lunke
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia; Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Melissa Martyn
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Clara Gaff
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia; Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
The IDeaS initiative: pilot study to assess the impact of rare diseases on patients and healthcare systems. Orphanet J Rare Dis 2021; 16:429. [PMID: 34674728 PMCID: PMC8532301 DOI: 10.1186/s13023-021-02061-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Background Rare diseases (RD) are a diverse collection of more than 7–10,000 different disorders, most of which affect a small number of people per disease. Because of their rarity and fragmentation of patients across thousands of different disorders, the medical needs of RD patients are not well recognized or quantified in healthcare systems (HCS). Methodology We performed a pilot IDeaS study, where we attempted to quantify the number of RD patients and the direct medical costs of 14 representative RD within 4 different HCS databases and performed a preliminary analysis of the diagnostic journey for selected RD patients. Results The overall findings were notable for: (1) RD patients are difficult to quantify in HCS using ICD coding search criteria, which likely results in under-counting and under-estimation of their true impact to HCS; (2) per patient direct medical costs of RD are high, estimated to be around three–fivefold higher than age-matched controls; and (3) preliminary evidence shows that diagnostic journeys are likely prolonged in many patients, and may result in progressive, irreversible, and costly complications of their disease Conclusions The results of this small pilot suggest that RD have high medical burdens to patients and HCS, and collectively represent a major impact to the public health. Machine-learning strategies applied to HCS databases and medical records using sentinel disease and patient characteristics may hold promise for faster and more accurate diagnosis for many RD patients and should be explored to help address the high unmet medical needs of RD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02061-3.
Collapse
|
8
|
Cost or price of sequencing? Implications for economic evaluations in genomic medicine. Genet Med 2021; 23:1833-1835. [PMID: 34113006 DOI: 10.1038/s41436-021-01223-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
|
9
|
Sanford Kobayashi E, Waldman B, Engorn BM, Perofsky K, Allred E, Briggs B, Gatcliffe C, Ramchandar N, Gold JJ, Doshi A, Ingulli EG, Thornburg CD, Benson W, Farnaes L, Chowdhury S, Rego S, Hobbs C, Kingsmore SF, Dimmock DP, Coufal NG. Cost Efficacy of Rapid Whole Genome Sequencing in the Pediatric Intensive Care Unit. Front Pediatr 2021; 9:809536. [PMID: 35141181 PMCID: PMC8818891 DOI: 10.3389/fped.2021.809536] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
The diagnostic and clinical utility of rapid whole genome sequencing (rWGS) for critically ill children in the intensive care unit (ICU) has been substantiated by multiple studies, but comprehensive cost-effectiveness evaluation of rWGS in the ICU outside of the neonatal age group is lacking. In this study, we examined cost data retrospectively for a cohort of 38 children in a regional pediatric ICU (PICU) who received rWGS. We identified seven of 17 patients who received molecular diagnoses by rWGS and had resultant changes in clinical management with sufficient clarity to permit cost and quality adjusted life years (QALY) modeling. Cost of PICU care was estimated to be reduced by $184,846 and a total of 12.1 QALYs were gained among these seven patients. The total cost of rWGS for patients and families for the entire cohort (38 probands) was $239,400. Thus, the net cost of rWGS was $54,554, representing $4,509 per QALY gained. This quantitative, retrospective examination of healthcare utilization associated with rWGS-informed medicine interventions in the PICU revealed approximately one-third of a QALY gained per patient tested at a cost per QALY that was approximately one-tenth of that typically sought for cost-effective new medical interventions. This evidence suggests that performance of rWGS as a first-tier test in selected PICU children with diseases of unknown etiology is associated with acceptable cost-per-QALY gained.
Collapse
Affiliation(s)
- Erica Sanford Kobayashi
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - Bryce Waldman
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - Branden M Engorn
- Rady Children's Hospital San Diego, San Diego, CA, United States
| | - Katherine Perofsky
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States.,Rady Children's Hospital San Diego, San Diego, CA, United States
| | - Erika Allred
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States.,Rady Children's Hospital San Diego, San Diego, CA, United States
| | - Benjamin Briggs
- Naval Medical Center San Diego, San Diego, CA, United States
| | - Chelsea Gatcliffe
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nanda Ramchandar
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States.,Rady Children's Hospital San Diego, San Diego, CA, United States
| | - Jeffrey J Gold
- Rady Children's Hospital San Diego, San Diego, CA, United States.,Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
| | - Ami Doshi
- Rady Children's Hospital San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | | | - Courtney D Thornburg
- Rady Children's Hospital San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Wendy Benson
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - Lauge Farnaes
- Department of Infectious Disease, University of California, San Diego, San Diego, CA, United States
| | - Shimul Chowdhury
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - Seema Rego
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - David P Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States
| | - Nicole G Coufal
- Rady Children's Institute for Genomic Medicine, San Diego, CA, United States.,Rady Children's Hospital San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Hayeems RZ, Dimmock D, Bick D, Belmont JW, Green RC, Lanpher B, Jobanputra V, Mendoza R, Kulkarni S, Grove ME, Taylor SL, Ashley E. Clinical utility of genomic sequencing: a measurement toolkit. NPJ Genom Med 2020; 5:56. [PMID: 33319814 PMCID: PMC7738524 DOI: 10.1038/s41525-020-00164-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Whole-genome sequencing (WGS) is positioned to become one of the most robust strategies for achieving timely diagnosis of rare genomic diseases. Despite its favorable diagnostic performance compared to conventional testing strategies, routine use and reimbursement of WGS are hampered by inconsistencies in the definition and measurement of clinical utility. For example, what constitutes clinical utility for WGS varies by stakeholder's perspective (physicians, patients, families, insurance companies, health-care organizations, and society), clinical context (prenatal, pediatric, critical care, adult medicine), and test purpose (diagnosis, screening, treatment selection). A rapidly evolving technology landscape and challenges associated with robust comparative study design in the context of rare disease further impede progress in this area of empiric research. To address this challenge, an expert working group of the Medical Genome Initiative was formed. Following a consensus-based process, we align with a broad definition of clinical utility and propose a conceptually-grounded and empirically-guided measurement toolkit focused on four domains of utility: diagnostic thinking efficacy, therapeutic efficacy, patient outcome efficacy, and societal efficacy. For each domain of utility, we offer specific indicators and measurement strategies. While we focus on diagnostic applications of WGS for rare germline diseases, this toolkit offers a flexible framework for best practices around measuring clinical utility for a range of WGS applications. While we expect this toolkit to evolve over time, it provides a resource for laboratories, clinicians, and researchers looking to characterize the value of WGS beyond the laboratory.
Collapse
Affiliation(s)
- Robin Z Hayeems
- Program in Child Health Evaluative Sciences, The Hospital for Sick Children and the Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada.
| | - David Dimmock
- Rady Children's Hospital Institute for Genomic Medicine, San Diego, CA, USA
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Robert C Green
- Brigham and Women's Hospital Broad Institute and Harvard Medical School, Boston, MA, USA
| | | | - Vaidehi Jobanputra
- New York Genome Center, New York, NY, USA
- Department of Pathology and Cell Biology Columbia University Medical Center, New York, NY, USA
| | - Roberto Mendoza
- The Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shashi Kulkarni
- Baylor Genetics and Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
11
|
Dimmock DP, Clark MM, Gaughran M, Cakici JA, Caylor SA, Clarke C, Feddock M, Chowdhury S, Salz L, Cheung C, Bird LM, Hobbs C, Wigby K, Farnaes L, Bloss CS, Kingsmore SF. An RCT of Rapid Genomic Sequencing among Seriously Ill Infants Results in High Clinical Utility, Changes in Management, and Low Perceived Harm. Am J Hum Genet 2020; 107:942-952. [PMID: 33157007 PMCID: PMC7675004 DOI: 10.1016/j.ajhg.2020.10.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The second Newborn Sequencing in Genomic Medicine and Public Health (NSIGHT2) study was a randomized, controlled trial of rapid whole-genome sequencing (rWGS) or rapid whole-exome sequencing (rWES) in infants with diseases of unknown etiology in intensive care units (ICUs). Gravely ill infants were not randomized and received ultra-rapid whole-genome sequencing (urWGS). Herein we report results of clinician surveys of the clinical utility of rapid genomic sequencing (RGS). The primary end-point-clinician perception that RGS was useful- was met for 154 (77%) of 201 infants. Both positive and negative tests were rated as having clinical utility (42 of 45 [93%] and 112 of 156 [72%], respectively). Physicians reported that RGS changed clinical management in 57 (28%) infants, particularly in those receiving urWGS (p = 0.0001) and positive tests (p < 0.00001). Outcomes of 32 (15%) infants were perceived to be changed by RGS. Positive tests changed outcomes more frequently than negative tests (p < 0.00001). In logistic regression models, the likelihood that RGS was perceived as useful increased 6.7-fold when associated with changes in management (95% CI 1.8-43.3). Changes in management were 10.1-fold more likely when results were positive (95% CI 4.7-22.4) and turnaround time was shorter (odds ratio 0.92, 95% CI 0.85-0.99). RGS seldom led to clinician-perceived confusion or distress among families (6 of 207 [3%]). In summary, clinicians perceived high clinical utility and low likelihood of harm with first-tier RGS of infants in ICUs with diseases of unknown etiology. RGS was perceived as beneficial irrespective of whether results were positive or negative.
Collapse
Affiliation(s)
- David P Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| | - Michelle M Clark
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mary Gaughran
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Julie A Cakici
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA 92093, USA
| | - Sara A Caylor
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Christina Clarke
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Michele Feddock
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Shimul Chowdhury
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lisa Salz
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Cynthia Cheung
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA 92093, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Lynne M Bird
- Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Kristen Wigby
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | - Lauge Farnaes
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Cinnamon S Bloss
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA 92093, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| |
Collapse
|
12
|
Lunke S, Eggers S, Wilson M, Patel C, Barnett CP, Pinner J, Sandaradura SA, Buckley MF, Krzesinski EI, de Silva MG, Brett GR, Boggs K, Mowat D, Kirk EP, Adès LC, Akesson LS, Amor DJ, Ayres S, Baxendale A, Borrie S, Bray A, Brown NJ, Chan CY, Chong B, Cliffe C, Delatycki MB, Edwards M, Elakis G, Fahey MC, Fennell A, Fowles L, Gallacher L, Higgins M, Howell KB, Hunt L, Hunter MF, Jones KJ, King S, Kumble S, Lang S, Le Moing M, Ma A, Phelan D, Quinn MCJ, Richards A, Richmond CM, Riseley J, Rodgers J, Sachdev R, Sadedin S, Schlapbach LJ, Smith J, Springer A, Tan NB, Tan TY, Temple SL, Theda C, Vasudevan A, White SM, Yeung A, Zhu Y, Martyn M, Best S, Roscioli T, Christodoulou J, Stark Z. Feasibility of Ultra-Rapid Exome Sequencing in Critically Ill Infants and Children With Suspected Monogenic Conditions in the Australian Public Health Care System. JAMA 2020; 323:2503-2511. [PMID: 32573669 PMCID: PMC7312414 DOI: 10.1001/jama.2020.7671] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. OBJECTIVE To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. DESIGN, SETTING, AND PARTICIPANTS Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. EXPOSURES Ultra-rapid exome sequencing. MAIN OUTCOMES AND MEASURES The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. RESULTS The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). CONCLUSIONS AND RELEVANCE This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.
Collapse
Affiliation(s)
| | - Sebastian Lunke
- Australian Genomics Health Alliance, Parkville, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Stefanie Eggers
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Meredith Wilson
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Jason Pinner
- Sydney Children's Hospitals Network-Randwick, Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Michael F Buckley
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Emma I Krzesinski
- Monash Genetics, Monash Health, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Michelle G de Silva
- Australian Genomics Health Alliance, Parkville, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Gemma R Brett
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Kirsten Boggs
- Australian Genomics Health Alliance, Parkville, Australia
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- Sydney Children's Hospitals Network-Randwick, Sydney, Australia
| | - David Mowat
- Sydney Children's Hospitals Network-Randwick, Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - Edwin P Kirk
- Sydney Children's Hospitals Network-Randwick, Sydney, Australia
- University of New South Wales, Sydney, Australia
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Lesley C Adès
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Lauren S Akesson
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Monash Genetics, Monash Health, Melbourne, Australia
| | - David J Amor
- University of Melbourne, Melbourne, Australia
- Royal Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Samantha Ayres
- Australian Genomics Health Alliance, Parkville, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Anne Baxendale
- Women's and Children's Hospital, North Adelaide, Australia
| | - Sarah Borrie
- Women's and Children's Hospital, North Adelaide, Australia
| | - Alessandra Bray
- Australian Genomics Health Alliance, Parkville, Australia
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- Sydney Children's Hospitals Network-Randwick, Sydney, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Cheng Yee Chan
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Corrina Cliffe
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Matthew Edwards
- Hunter Genetics, Newcastle, Australia
- Department of Paediatrics, School of Medicine, University of Western Sydney, Sydney, Australia
| | - George Elakis
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Michael C Fahey
- Monash Genetics, Monash Health, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Andrew Fennell
- Monash Genetics, Monash Health, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Lindsay Fowles
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Megan Higgins
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | - Katherine B Howell
- University of Melbourne, Melbourne, Australia
- Royal Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Lauren Hunt
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Kristi J Jones
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Sarah King
- Australian Genomics Health Alliance, Parkville, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide
| | - Smitha Kumble
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarah Lang
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Maelle Le Moing
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Alan Ma
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Michael C J Quinn
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Anna Richards
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Christopher M Richmond
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jessica Riseley
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jonathan Rodgers
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Rani Sachdev
- Sydney Children's Hospitals Network-Randwick, Sydney, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Luregn J Schlapbach
- Paediatric Critical Care Research Group, Child Health Research Centre, the University of Queensland and Queensland Children's Hospital, Brisbane, Australia
| | - Janine Smith
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Amanda Springer
- Monash Genetics, Monash Health, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Natalie B Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Suzanna L Temple
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Christiane Theda
- University of Melbourne, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Royal Women's Hospital, Melbourne, Australia
| | | | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Monash Genetics, Monash Health, Melbourne, Australia
| | - Ying Zhu
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
| | - Melissa Martyn
- Murdoch Children's Research Institute, Melbourne, Australia
- Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Stephanie Best
- Australian Genomics Health Alliance, Parkville, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Australian Institute of Health Innovation, Macquarie University, Sydney
| | - Tony Roscioli
- University of New South Wales, Sydney, Australia
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - John Christodoulou
- Australian Genomics Health Alliance, Parkville, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- University of Sydney, Sydney, Australia
| | - Zornitza Stark
- Australian Genomics Health Alliance, Parkville, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Abstract
OBJECTIVES Genetic disorders are a leading contributor to mortality in the neonatal ICU and PICU in the United States. Although individually rare, there are over 6,200 single-gene diseases, which may preclude a genetic diagnosis prior to ICU admission. Rapid whole genome sequencing is an emerging method of diagnosing genetic conditions in time to affect ICU management of neonates; however, its clinical utility has yet to be adequately demonstrated in critically ill children. This study evaluates next-generation sequencing in pediatric critical care. DESIGN Retrospective cohort study. SETTING Single-center PICU in a tertiary children's hospital. PATIENTS Children 4 months to 18 years admitted to the PICU who were nominated between July 2016 and May 2018. INTERVENTIONS Rapid whole genome sequencing with targeted phenotype-driven analysis was performed on patients and their parents, when parental samples were available. MEASUREMENTS AND MAIN RESULTS A molecular diagnosis was made by rapid whole genome sequencing in 17 of 38 children (45%). In four of the 17 patients (24%), the genetic diagnoses led to a change in management while in the PICU, including genome-informed changes in pharmacotherapy and transition to palliative care. Nine of the 17 diagnosed children (53%) had no dysmorphic features or developmental delay. Eighty-two percent of diagnoses affected the clinical management of the patient and/or family after PICU discharge, including avoidance of biopsy, administration of factor replacement, and surveillance for disorder-related sequelae. CONCLUSIONS This study demonstrates a retrospective evaluation for undiagnosed genetic disease in the PICU and clinical utility of rapid whole genome sequencing in a portion of critically ill children. Further studies are needed to identify PICU patients who will benefit from rapid whole genome sequencing early in PICU admission when the underlying etiology is unclear.
Collapse
|