1
|
Benet-Pagès A, Laner A, Nassar LR, Wohlfrom T, Steinke-Lange V, Haeussler M, Holinski-Feder E. Reclassification of VUS in BRCA1 and BRCA2 using the new BRCA1/ BRCA2 ENIGMA track set demonstrates the superiority of ClinGen ENIGMA Expert Panel specifications over the standard ACMG/AMP classification system. GENETICS IN MEDICINE OPEN 2025; 3:101961. [PMID: 40027238 PMCID: PMC11869971 DOI: 10.1016/j.gimo.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025]
Abstract
Purpose Variants of uncertain significance (VUS) are considered one of the most significant impediments to the translation of genetic test results into precise clinical recommendations. The 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) classification guidelines established a general framework for the assessment and classification of genetic variants; yet, gene-specific specifications are needed to enable better variant classification to reduce the number of VUS. The process of gene-specific adaptations of the ACMG/AMP codes is led and accompanied by ClinGen and implemented by Variant Curation Expert Panels (VCEP). The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) VCEP recently published its specifications for the BRCA1 (HGNC:1100) and BRCA2 (HGNC:1101) genes. We investigated the differences in reclassification between the ENIGMA specifications and the standard ACMG/AMP classification system in a clinical setting. Methods We reclassified 121 VUS identified in these genes with the latest annotation data using the standard ACMG/AMP classification system and recommendations from the Sequence Variant Interpretation and the ENIGMA specifications. To simplify the reevaluation process, we have created a University of California Santa Cruz Genome Browser track hub that displays the exact data points required for variant classification using the ENIGMA VCEP specifications at the exon and variant level (https://genome.ucsc.edu/s/abenet/BRCA.ENIGMA.hg19). Results By comparing the codes used and their different weighting in the 2 approaches, we were able to demonstrate the superiority of the application of ENIGMA VCEP specifications, which resulted in a dramatic reduction of VUS (83.5% ENIGMA VCEP vs 20% ACMG/AMP + Sequence Variant Interpretation). Conclusion For the diagnostic analysis of the BRCA1 and BRCA2 genes, the use of the ENIGMA VCEP specifications gives the best possible result in the clinical translation of genetic variants. The University of California Santa Cruz Genome Browser BRCA1/BRCA2 ENIGMA track set significantly simplified the interpretation process.
Collapse
Affiliation(s)
- Anna Benet-Pagès
- Medical Genetics Center (MGZ), Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | | | - Luis R. Nassar
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
| | | | | | | | - Elke Holinski-Feder
- Medical Genetics Center (MGZ), Munich, Germany
- Department of Medicine IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
2
|
Pal T, Mundt E, Richardson ME, Chao E, Pesaran T, Slavin TP, Couch FJ, Monteiro ANA. Reduced penetrance BRCA1 and BRCA2 pathogenic variants in clinical germline genetic testing. NPJ Precis Oncol 2024; 8:247. [PMID: 39488595 PMCID: PMC11531542 DOI: 10.1038/s41698-024-00741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Prior studies have suggested the existence of reduced penetrance pathogenic variants (RPPVs) in BRCA1 and BRCA2 (BRCA) which pose challenges for patient counseling and care. Here, we sought to establish RPPVs as a new category of variants. Candidate BRCA RPPVs provided by two large clinical diagnostic laboratories were compiled to identify those with the highest likelihood of being a RPPV, based on concordant interpretations. Sixteen concordant candidate BRCA RPPVs across both laboratories were systematically assessed. RPPVs included missense, splice site, and frameshift variants. Our study establishes RPPVs as a new class of variants imparting a moderately increased risk of breast cancer, which impacts risk-informed cancer prevention strategies, and provides a framework to standardize interpretation and reporting of BRCA RPPVs. Further work to define clinically meaningful risk thresholds and categories for reporting BRCA RPPVs is needed to personalize cancer risks in conjunction with other risk factors.
Collapse
Affiliation(s)
- Tuya Pal
- Department of Medicine, Vanderbilt-Ingram Cancer Center, University Medical Center, Vanderbilt University, Nashville, TN, USA.
| | - Erin Mundt
- Myriad Genetics, Salt Lake City, UT, USA
| | | | | | | | | | - Fergus J Couch
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Davidson AL, Michailidou K, Parsons MT, Fortuno C, Bolla MK, Wang Q, Dennis J, Naven M, Abubakar M, Ahearn TU, Alonso MR, Andrulis IL, Antoniou AC, Auvinen P, Behrens S, Bermisheva MA, Bogdanova NV, Bojesen SE, Brüning T, Byers HJ, Camp NJ, Campbell A, Castelao JE, Cessna MH, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Collée JM, Czene K, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa JD, Flyger H, Gago-Dominguez M, García-Closas M, Glendon G, González-Neira A, Grassmann F, Gronwald J, Guénel P, Hadjisavvas A, Haeberle L, Hall P, Hamann U, Hartman M, Ho PJ, Hooning MJ, Hoppe R, Howell A, Jakubowska A, Khusnutdinova EK, Kristensen VN, Li J, Lim J, Lindblom A, Liu J, Lophatananon A, Mannermaa A, Mavroudis DA, Mensenkamp AR, Milne RL, Muir KR, Newman WG, Obi N, Panayiotidis MI, Park SK, Park-Simon TW, Peterlongo P, Radice P, Rashid MU, Rhenius V, Saloustros E, Sawyer EJ, Schmidt MK, Seibold P, Shah M, Southey MC, Teo SH, Tomlinson I, Torres D, Truong T, van de Beek I, van der Hout AH, Wendt CC, Dunning AM, Pharoah PDP, Devilee P, Easton DF, James PA, Spurdle AB. Co-observation of germline pathogenic variants in breast cancer predisposition genes: Results from analysis of the BRIDGES sequencing dataset. Am J Hum Genet 2024; 111:2059-2069. [PMID: 39096911 PMCID: PMC11393698 DOI: 10.1016/j.ajhg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/05/2024] Open
Abstract
Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.
Collapse
Affiliation(s)
- Aimee L Davidson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael T Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Marc Naven
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - M Rosario Alonso
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland; Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina A Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, 44789 Bochum, Germany
| | - Helen J Byers
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, 36312 Vigo, Spain
| | - Melissa H Cessna
- Department of Pathology, Intermountain Health, Murray, UT, USA; Intermountain Biorepository, Intermountain Health, Murray, UT, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Georgia Chenevix-Trench
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK; Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Fundación Pública Gallega de IDIS, Cancer Genetics and Epidemiology Group, Genomic Medicine Group, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; The Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Health and Medical University, Potsdam, Germany
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; Department of Oncology, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of Surgery, National University Hospital and National University Health System, Singapore City 119228, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City 119228, Singapore
| | - Peh Joo Ho
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 70-115 Szczecin, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 171-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Federal State Budgetary Educational Institution of Higher Education, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore City 138672, Singapore
| | - Joanna Lim
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jenny Liu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City 117549, Singapore; Department of General Surgery, Ng Teng Fong General Hospital, Singapore City 609606, Singapore
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Dimitrios A Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen GA, the Netherlands
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | | | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - the AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Paolo Radice
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Emmanouil Saloustros
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur 50603, Malaysia
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford OX3 7LF, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussay, CESP, 94805 Villejuif, France
| | - Irma van de Beek
- Department of Clinical Genetics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands
| | - Annemieke H van der Hout
- Department of Genetics, University Medical Center Groningen, University Groningen, 9713 GZ Groningen, the Netherlands
| | - Camilla C Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul A James
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Fortuno C, Michailidou K, Parsons M, Dolinsky JS, Pesaran T, Yussuf A, Mester JL, Hruska KS, Hiraki S, O'Connor R, Chan RC, Kim S, Tavtigian SV, Goldgar D, James PA, Spurdle AB. Challenges and approaches to calibrating patient phenotype as evidence for cancer gene variant classification under ACMG/AMP guidelines. Hum Mol Genet 2024; 33:724-732. [PMID: 38271184 PMCID: PMC11000651 DOI: 10.1093/hmg/ddae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Since first publication of the American College of Medical Genetics and Genomics/Association for Medical Pathology (ACMG/AMP) variant classification guidelines, additional recommendations for application of certain criteria have been released (https://clinicalgenome.org/docs/), to improve their application in the diagnostic setting. However, none have addressed use of the PS4 and PP4 criteria, capturing patient presentation as evidence towards pathogenicity. Application of PS4 can be done through traditional case-control studies, or "proband counting" within or across clinical testing cohorts. Review of the existing PS4 and PP4 specifications for Hereditary Cancer Gene Variant Curation Expert Panels revealed substantial differences in the approach to defining specifications. Using BRCA1, BRCA2 and TP53 as exemplar genes, we calibrated different methods proposed for applying the "PS4 proband counting" criterion. For each approach, we considered limitations, non-independence with other ACMG/AMP criteria, broader applicability, and variability in results for different datasets. Our findings highlight inherent overlap of proband-counting methods with ACMG/AMP frequency codes, and the importance of calibration to derive dataset-specific code weights that can account for potential between-dataset differences in ascertainment and other factors. Our work emphasizes the advantages and generalizability of logistic regression analysis over simple proband-counting approaches to empirically determine the relative predictive capacity and weight of various personal clinical features in the context of multigene panel testing, for improved variant interpretation. We also provide a general protocol, including instructions for data formatting and a web-server for analysis of personal history parameters, to facilitate dataset-specific calibration analyses required to use such data for germline variant classification.
Collapse
Affiliation(s)
- Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Michael Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | | | - Tina Pesaran
- Ambry Genetics, Aliso Viejo, CA 92656, United States
| | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, CA 92656, United States
| | | | | | | | | | - Raymond C Chan
- Color Genomics, Inc., Burlingame, CA 94010, United States
| | - Serra Kim
- Color Genomics, Inc., Burlingame, CA 94010, United States
| | - Sean V Tavtigian
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - David Goldgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
5
|
Golan T, Casolino R, Biankin AV, Hammel P, Whitaker KD, Hall MJ, Riegert-Johnson DL. Germline BRCA testing in pancreatic cancer: improving awareness, timing, turnaround, and uptake. Ther Adv Med Oncol 2023; 15:17588359231189127. [PMID: 37720496 PMCID: PMC10504836 DOI: 10.1177/17588359231189127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 09/19/2023] Open
Abstract
Prognosis is generally poor for patients with pancreatic ductal adenocarcinoma. However, patients with germline BRCA1 or BRCA2 mutations (gBRCAm) may benefit from first-line platinum-based chemotherapy and maintenance therapy with the poly(adenosine diphosphate-ribose) polymerase inhibitor olaparib following at least 16 weeks of first-line platinum-based chemotherapy without disease progression. Germline breast cancer gene (BRCA) testing is therefore important to ensure that patients receive the most effective treatment. In addition, testing for other DNA damage response gene mutations beyond gBRCAm may also guide treatment decisions. However, clinical pathways for genetic testing are often suboptimal, leading to delays in treatment initiation or missed opportunities for personalized therapy. Barriers to testing include low rates of referral and uptake, delays to referral and slow result turnaround times, cost, and biopsy and assay limitations if somatic testing is performed, leading to the requirement for subsequent dedicated germline testing. Low rates of referral may result from lack of awareness among physicians of the clinical value of testing, coupled with low confidence in interpreting test results and poor availability of genetic counseling services. Among patients, barriers to uptake may include similar lack of awareness of the clinical value of testing, anxiety regarding the implications of test results, lack of insurance coverage, fear of negative insurance implications, and socioeconomic factors. Potential solutions include innovative approaches to testing pathways, including 'mainstreaming' of testing in which BRCA tests are routinely arranged by the treating oncologist, with the involvement of genetic counselors if a patient is found to have a gBRCAm. More recently, the utility of multigene panel analyses has also been explored. Access to genetic counseling may also be improved through initiatives such as having a genetic counseling appointment for all new patient visits and telemedicine approaches, including the use of telephone consultations or DVD-assisted counseling. Educational programs will also be beneficial, and cost effectiveness is likely to improve as the number of targeted treatments increases and when the earlier detection of tumors in family members following cascade testing is considered.
Collapse
Affiliation(s)
- Talia Golan
- Institute of Oncology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raffaella Casolino
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia
| | - Pascal Hammel
- Department of Digestive and Medical Oncology, University Paris-Saclay, Paul Brousse Hospital (AP-HP), Villejuif, France
| | - Kristen D. Whitaker
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael J. Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | |
Collapse
|
6
|
Thomassen M, Mesman RLS, Hansen TVO, Menendez M, Rossing M, Esteban‐Sánchez A, Tudini E, Törngren T, Parsons MT, Pedersen IS, Teo SH, Kruse TA, Møller P, Borg Å, Jensen UB, Christensen LL, Singer CF, Muhr D, Santamarina M, Brandao R, Andresen BS, Feng B, Canson D, Richardson ME, Karam R, Pesaran T, LaDuca H, Conner BR, Abualkheir N, Hoang L, Calléja FMGR, Andrews L, James PA, Bunyan D, Hamblett A, Radice P, Goldgar DE, Walker LC, Engel C, Claes KBM, Macháčková E, Baralle D, Viel A, Wappenschmidt B, Lazaro C, Vega A, Vreeswijk MPG, de la Hoya M, Spurdle AB. Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach. Hum Mutat 2022; 43:1921-1944. [PMID: 35979650 PMCID: PMC10946542 DOI: 10.1002/humu.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Romy L. S. Mesman
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mireia Menendez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Maria Rossing
- Center for Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Pål Møller
- Department of Tumour BiologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Uffe B. Jensen
- Department of Clinical GeneticsAarhus University HospitalAarhus NDenmark
| | | | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Daniela Muhr
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Santamarina
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - Rita Brandao
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Bing‐Jian Feng
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daffodil Canson
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | | | | | | | | | | | | | | | - Lesley Andrews
- Hereditary Cancer Clinic, Nelune Comprehensive Cancer Care CentreSydneyNew South WalesAustralia
| | - Paul A. James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Dave Bunyan
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Amanda Hamblett
- Middlesex Health Shoreline Cancer CenterWestbrookConnecticutUSA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - David E. Goldgar
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | | | - Eva Macháčková
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Diana Baralle
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Alessandra Viel
- Division of Functional Onco‐genomics and GeneticsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Conxi Lazaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - ENIGMA Consortium
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
7
|
McDonald JT, Ricks-Santi LJ. Hereditary variants of unknown significance in African American women with breast cancer. PLoS One 2022; 17:e0273835. [PMID: 36315513 PMCID: PMC9621418 DOI: 10.1371/journal.pone.0273835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Expanded implementation of genetic sequencing has precipitously increased the discovery of germline and somatic variants. The direct benefit of identifying variants in actionable genes may lead to risk reduction strategies such as increased surveillance, prophylactic surgery, as well as lifestyle modifications to reduce morbidity and mortality. However, patients with African ancestry are more likely to receive inconclusive genetic testing results due to an increased number of variants of unknown significance decreasing the utility and impact on disease management and prevention. This study examines whole exome sequencing results from germline DNA samples in African American women with a family history of cancer including 37 cases that were diagnosed with breast cancer and 51 family members. Self-identified ancestry was validated and compared to the 1000 genomes population. The analysis of sequencing results was limited to 85 genes from three clinically available common genetic screening platforms. This target region had a total of 993 variants of which 6 (<1%) were pathogenic or likely pathogenic, 736 (74.1%) were benign, and 170 (17.1%) were classified as a variant of unknown significance. There was an average of 3.4±1.8 variants with an unknown significance per individual and 85 of 88 individuals (96.6%) harbored at least one of these in the targeted genes. Pathogenic or likely pathogenic variants were only found in 6 individuals for the BRCA1 (p.R1726fs, rs80357867), BRCA2 (p.K589fs, rs397507606 & p.L2805fs, rs397507402), RAD50 (p.E995fs, rs587780154), ATM (p.V2424G, rs28904921), or MUTYH (p.G396D, rs36053993) genes. Strategies to functionally validate the remaining variants of unknown significance, especially in understudied and hereditary cancer populations, are greatly needed to increase the clinical utility and utilization of clinical genetic screening platforms to reduce cancer incidence and mortality.
Collapse
Affiliation(s)
- J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Luisel J. Ricks-Santi
- Cancer Research Center, Hampton University, Hampton, VA, United States of America
- Department of Pharmacotherapy and Translational Research, College of Medicine, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
8
|
Matsumoto T, Shiota M, Blas L, Eto M. Role of Olaparib in the Management of Metastatic Castration-Resistant Prostate Cancer: A Japanese Clinician's Perspective. Cancer Manag Res 2022; 14:2389-2397. [PMID: 35967752 PMCID: PMC9373991 DOI: 10.2147/cmar.s326114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Several studies have identified various targetable genomic alterations in prostate cancer, which accumulate during carcinogenesis and cancer progression. Genomic alterations in genes involved in DNA damage repair by homologous recombination repair may predict increased sensitivity to poly-ADP ribose polymerase (PARP) inhibitors. The Phase 3 PROfound trial has shown that treatment with the PARP inhibitor olaparib was associated with an improved radiographic progression-free survival and overall survival among patients with homologous recombination repair-deficient metastatic castration-resistant prostate cancer (mCRPC) after the treatment with androgen receptor targeting therapy, especially in men with BRCA1 or BRCA2 mutation. In Japan, olaparib was approved in December 2020 for the treatment of mCRPC with BRCA1 or BRCA2 mutation. In addition, genetic tests to detect BRCA1 or BRCA2 mutation to select patients who are likely to benefit from olaparib were also approved. This review summarizes the status of olaparib treatment for mCRPC, focusing on the situation in Japan.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Aljarf R, Shen M, Pires DEV, Ascher DB. Understanding and predicting the functional consequences of missense mutations in BRCA1 and BRCA2. Sci Rep 2022; 12:10458. [PMID: 35729312 PMCID: PMC9213547 DOI: 10.1038/s41598-022-13508-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 and BRCA2 are tumour suppressor genes that play a critical role in maintaining genomic stability via the DNA repair mechanism. DNA repair defects caused by BRCA1 and BRCA2 missense variants increase the risk of developing breast and ovarian cancers. Accurate identification of these variants becomes clinically relevant, as means to guide personalized patient management and early detection. Next-generation sequencing efforts have significantly increased data availability but also the discovery of variants of uncertain significance that need interpretation. Experimental approaches used to measure the molecular consequences of these variants, however, are usually costly and time-consuming. Therefore, computational tools have emerged as faster alternatives for assisting in the interpretation of the clinical significance of newly discovered variants. To better understand and predict variant pathogenicity in BRCA1 and BRCA2, various machine learning algorithms have been proposed, however presented limited performance. Here we present BRCA1 and BRCA2 gene-specific models and a generic model for quantifying the functional impacts of single-point missense variants in these genes. Across tenfold cross-validation, our final models achieved a Matthew's Correlation Coefficient (MCC) of up to 0.98 and comparable performance of up to 0.89 across independent, non-redundant blind tests, outperforming alternative approaches. We believe our predictive tool will be a valuable resource for providing insights into understanding and interpreting the functional consequences of missense variants in these genes and as a tool for guiding the interpretation of newly discovered variants and prioritizing mutations for experimental validation.
Collapse
Affiliation(s)
- Raghad Aljarf
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Mengyuan Shen
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia. .,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3053, Australia.
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia. .,Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge, CB2 1GA, UK.
| |
Collapse
|
10
|
Iversen ES, Lipton G, Hart SN, Lee KY, Hu C, Polley EC, Pesaran T, Yussuf A, LaDuca H, Chao E, Karam R, Goldgar DE, Couch FJ, Monteiro ANA. An integrative model for the comprehensive classification of BRCA1 and BRCA2 variants of uncertain clinical significance. NPJ Genom Med 2022; 7:35. [PMID: 35665744 PMCID: PMC9166814 DOI: 10.1038/s41525-022-00302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function variants in the BRCA1 and BRCA2 susceptibility genes predispose carriers to breast and/or ovarian cancer. The use of germline testing panels containing these genes has grown dramatically, but the interpretation of the results has been complicated by the identification of many sequence variants of undefined cancer relevance, termed "Variants of Uncertain Significance (VUS)." We have developed functional assays and a statistical model called VarCall for classifying BRCA1 and BRCA2 VUS. Here we describe a multifactorial extension of VarCall, called VarCall XT, that allows for co-analysis of multiple forms of genetic evidence. We evaluated the accuracy of models defined by the combinations of functional, in silico protein predictors, and family data for VUS classification. VarCall XT classified variants of known pathogenicity status with high sensitivity and specificity, with the functional assays contributing the greatest predictive power. This approach could be used to identify more patients that would benefit from personalized cancer risk assessment and management.
Collapse
Affiliation(s)
- Edwin S. Iversen
- grid.26009.3d0000 0004 1936 7961Department of Statistical Science, Duke University, Durham, NC 27708 USA
| | - Gary Lipton
- grid.26009.3d0000 0004 1936 7961Department of Statistical Science, Duke University, Durham, NC 27708 USA
| | - Steven N. Hart
- grid.66875.3a0000 0004 0459 167XDepartment of Health Sciences Research, Mayo Clinic, Rochester, MN 55901 USA
| | - Kun Y. Lee
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Chunling Hu
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Eric C. Polley
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Tina Pesaran
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Amal Yussuf
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Holly LaDuca
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Elizabeth Chao
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - Rachid Karam
- grid.465138.d0000 0004 0455 211XAmbry Genetics Corporation, Aliso Viejo, CA 92656 USA
| | - David E. Goldgar
- grid.223827.e0000 0001 2193 0096Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Fergus J. Couch
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902 USA
| | - Alvaro N. A. Monteiro
- grid.468198.a0000 0000 9891 5233Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612 USA
| |
Collapse
|
11
|
Clark KA, Paquette A, Tao K, Bell R, Boyle JL, Rosenthal J, Snow AK, Stark AW, Thompson BA, Unger J, Gertz J, Varley KE, Boucher KM, Goldgar DE, Foulkes WD, Thomas A, Tavtigian SV. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am J Hum Genet 2022; 109:1153-1174. [PMID: 35659930 PMCID: PMC9247830 DOI: 10.1016/j.ajhg.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein-truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a mammalian two-hybrid assay. Downstream of the laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data, such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that 15%-20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 45 with concordant computational and functional assay evidence in favor of pathogenicity plus 223 with concordant evidence in favor of benignity; these are particularly likely to be classified as likely pathogenic and likely benign, respectively, once human observational data become available.
Collapse
Affiliation(s)
- Kathleen A Clark
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew Paquette
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayoko Tao
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Russell Bell
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Julie L Boyle
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Judith Rosenthal
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Angela K Snow
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Alex W Stark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bryony A Thompson
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Unger
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine E Varley
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth M Boucher
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - David E Goldgar
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - William D Foulkes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Research Institute McGill University Health Center, Montreal, QC H3T 1E2, Canada; Departments of Medicine, Human Genetics, and Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alun Thomas
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Molina-Zayas M, Garrido-Navas C, García-Puche JL, Barwell J, Pedrinaci S, Atienza MM, García-Linares S, de Haro-Muñoz T, Lorente JA, Serrano MJ, Poyatos-Andújar A. Identification of hereditary breast and ovarian cancer germline variants in Granada (Spain): NGS perspective. Mol Genet Genomics 2022; 297:859-871. [PMID: 35451682 PMCID: PMC9130174 DOI: 10.1007/s00438-022-01891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/23/2022] [Indexed: 12/09/2022]
Abstract
The aim of this study was to assess the prevalence of germline variants in cancer-predisposing genes by either targeted (BRCA1/2) or multigene NGS panel in a high-risk Hereditary Breast and Ovarian Cancer (HBOC) cohort. Samples from 824 Caucasian probands were retrospectively collected and the impact of genetic diagnosis and genetic variants epidemiology in this cohort was evaluated. Performance of risk-reducing prophylactic measures, such as prophylactic mastectomy and/or prophylactic oophorectomy, was assessed through clinical follow-up of patients with a positive genetic result. Pathogenic variants predisposing to HBOC were identified in 11.9% (98/824) individuals at BRCA2 (47/98), BRCA1 (24/98), PALB2 (8/51), ATM (7/51), CHEK2 (6/51) MSH6, (2/51), RAD51C (2/51) and TP53 (2/386). Of them, 11 novel pathogenic variants and 12 VUS were identified, characterized, and submitted to ClinVar. Regarding clinical impact, the risk of developing basal or Her2 breast cancer was increased 15.7 times or 37.5 times for BRCA1 and MSH6 pathogenic variants respectively. On the contrary, the risk of developing basal or luminal A breast cancer was reduced to 81% or 77% for BRCA2 and BRCA1 pathogenic variants, respectively. Finally, 53.2% of individuals testing positive for class IV/V variants underwent prophylactic surgery (mastectomy, oophorectomy or both) being significantly younger at the cancer diagnosis than those undertaking prophylactic measures (p = 0.008). Of them, 8 carried a pathogenic/likely pathogenic variant in other genes different from BRCA1 and BRCA2, and the remaining (46.7%) decided to continue with clinical follow-up. No differences in pathogenicity or risk of developing cancer were found for BRCA1/2 between targeted and multigene sequencing strategies; however, NGS was able to resolve a greater proportion of high-risk patients.
Collapse
Affiliation(s)
- María Molina-Zayas
- UGC de Laboratorios, Hospital Universitario Clínico San Cecilio, Avda de la Investigación s/n, 18016, Granada, Spain
| | - Carmen Garrido-Navas
- Genetics Department, Faculty of Sciences, Universidad de Granada, 18071, Granada, Spain. .,CONGEN, Genetic Counselling Services, C/Albahaca 4, 18006, Granada, Spain.
| | - Jose Luis García-Puche
- Oncology Department, Vithas Granada Hospital, Avda de Santa María de La Alhambra, Granada, Spain
| | - Julian Barwell
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Susana Pedrinaci
- UGC de Laboratorios, Hospital Universitario Virgen de Las Nieves, Avda de Las Fuerzas Armadas, 2, 18014, Granada, Spain
| | - Margarita Martínez Atienza
- UGC de Laboratorios, Hospital Universitario Virgen de Las Nieves, Avda de Las Fuerzas Armadas, 2, 18014, Granada, Spain
| | - Susana García-Linares
- UGC de Laboratorios, Hospital Universitario Clínico San Cecilio, Avda de la Investigación s/n, 18016, Granada, Spain
| | - Tomás de Haro-Muñoz
- UGC de Laboratorios, Hospital Universitario Clínico San Cecilio, Avda de la Investigación s/n, 18016, Granada, Spain
| | - Jose Antonio Lorente
- Legal Medicine Department, Medicine School, Universidad de Granada, 18016, Granada, Spain
| | - M Jose Serrano
- Department of Medical Oncology, Bio-Health Research Institute (Instituto de Investigación Biosanitaria Ibs GRANADA), Hospital Universitario Virgen de Las Nieves Granada, University of Granada, Granada, Spain.,Department of Pathological Anatomy, Faculty of Medicine, Campus de Ciencias de la Salud, University of Granada, Granada, Spain
| | - Antonio Poyatos-Andújar
- UGC de Laboratorios, Hospital Universitario Clínico San Cecilio, Avda de la Investigación s/n, 18016, Granada, Spain.
| |
Collapse
|
13
|
Mishra AP, Hartford SA, Sahu S, Klarmann K, Chittela RK, Biswas K, Jeon AB, Martin BK, Burkett S, Southon E, Reid S, Albaugh ME, Karim B, Tessarollo L, Keller JR, Sharan SK. BRCA2-DSS1 interaction is dispensable for RAD51 recruitment at replication-induced and meiotic DNA double strand breaks. Nat Commun 2022; 13:1751. [PMID: 35365640 PMCID: PMC8975877 DOI: 10.1038/s41467-022-29409-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB. Mishra et al. have generated mice with a single amino acid substitution in BRCA2, which disrupts its interaction with DSS1 resulting in a severe HR defect. They show the interaction to be dispensable for HR at replication induced and meiotic DSBs.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne A Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kimberly Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Albert B Jeon
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Basic Science Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
14
|
Lesueur F, Easton DF, Renault AL, Tavtigian SV, Bernstein JL, Kote-Jarai Z, Eeles RA, Plaseska-Karanfia D, Feliubadaló L, Arun B, Herold N, Versmold B, Schmutzler RK, Nguyen-Dumont T, Southey MC, Dorling L, Dunning AM, Ghiorzo P, Dalmasso BS, Cavaciuti E, Le Gal D, Roberts NJ, Dominguez-Valentin M, Rookus M, Taylor AMR, Goldstein AM, Goldgar DE, Stoppa-Lyonnet D, Andrieu N. First international workshop of the ATM and cancer risk group (4-5 December 2019). Fam Cancer 2022; 21:211-227. [PMID: 34125377 PMCID: PMC9969796 DOI: 10.1007/s10689-021-00248-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
The first International Workshop of the ATM and Cancer Risk group focusing on the role of Ataxia-Telangiectasia Mutated (ATM) gene in cancer was held on December 4 and 5, 2019 at Institut Curie in Paris, France. It was motivated by the fact that germline ATM pathogenic variants have been found to be associated with different cancer types. However, due to the lack of precise age-, sex-, and site-specific risk estimates, no consensus on management guidelines for variant carriers exists, and the clinical utility of ATM variant testing is uncertain. The meeting brought together epidemiologists, geneticists, biologists and clinicians to review current knowledge and on-going challenges related to ATM and cancer risk. This report summarizes the meeting sessions content that covered the latest results in family-based and population-based studies, the importance of accurate variant classification, the effect of radiation exposures for ATM variant carriers, and the characteristics of ATM-deficient tumors. The report concludes that ATM variant carriers outside of the context of Ataxia-Telangiectasia may benefit from effective cancer risk management and therapeutic strategies and that efforts to set up large-scale studies in the international framework to achieve this goal are necessary.
Collapse
Affiliation(s)
- Fabienne Lesueur
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Douglas F Easton
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Anne-Laure Renault
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | | | | | | | | | - Dijana Plaseska-Karanfia
- Research Centre for Genetic Engineering and Biotechnology « Georgi D. Efremov », MASA, Skopje, UK
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Banu Arun
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Natalie Herold
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Beatrix Versmold
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rita Katharina Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tú Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, 3004, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, 3004, Australia
| | - Leila Dorling
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Bruna Samia Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Eve Cavaciuti
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Dorothée Le Gal
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University, Baltimore, USA
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matti Rookus
- Netherlands Cancer Institute NKI, Amsterdam, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, USA
| | | | - Dominique Stoppa-Lyonnet
- Université Paris Descartes, Paris, France
- Service de Génétique, Institut Curie, Paris, France
- INSERM U830, Paris, France
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France.
- Institut Curie, Paris, France.
- Mines ParisTech, Fontainebleau, France.
- PSL Research University, Paris, France.
| |
Collapse
|
15
|
Tao M, Sun F, Wang J, Wang Y, Zhu H, Chen M, Liu L, Liu L, Lin H, Wu X. Developing patient-derived organoids to predict PARP inhibitor response and explore resistance overcoming strategies in ovarian cancer. Pharmacol Res 2022; 179:106232. [DOI: 10.1016/j.phrs.2022.106232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
|
16
|
Feasibility of targeted cascade genetic testing in the family members of BRCA1/2 gene pathogenic variant/likely pathogenic variant carriers. Sci Rep 2022; 12:1842. [PMID: 35115620 PMCID: PMC8813990 DOI: 10.1038/s41598-022-05931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The pathogenic variant (PV) or likely pathogenic variant (LPV) BRCA1/2 gene is strongly associated with hereditary breast or ovarian cancer. Therefore, it is important to screen blood relatives to establish preventive modalities and surveillance. This study evaluated the feasibility of targeted cascade genetic testing for family members of BRCA1/2 gene PV or LPV carriers. We screened 18 families for BRCA1/2 gene status via the conventional cascade genetic test (n = 9) and targeted cascade genetic test (n = 9), which targeted the exon region wherein the index patient showed PV or LPV. The pedigree and clinicopathologic characteristics were reviewed and analyzed. All index patients were diagnosed with breast cancer, while the third family members were all healthy. In the conventional cascade test group, 3 index patients and 3 family members had the BRCA1/2 gene PV or LPV. In the targeted cascade test group, 5 family members had same type of BRCA1/2 gene PV or LPV as their index patients. Two families had an identical string of BRCA1/2 gene PV or LPV. Although the targeted cascade genetic test cannot completely characterize the BRCA1/2 gene, it is sufficient for determining its PV or LPV status. This limited genetic test can be used for family members of PV or LPV carriers.
Collapse
|
17
|
Li H, Engel C, de la Hoya M, Peterlongo P, Yannoukakos D, Livraghi L, Radice P, Thomassen M, Hansen TVO, Gerdes AM, Nielsen HR, Caputo SM, Zambelli A, Borg A, Solano A, Thomas A, Parsons MT, Antoniou AC, Leslie G, Yang X, Chenevix-Trench G, Caldes T, Kwong A, Pedersen IS, Lautrup CK, John EM, Terry MB, Hopper JL, Southey MC, Andrulis IL, Tischkowitz M, Janavicius R, Boonen SE, Kroeldrup L, Varesco L, Hamann U, Vega A, Palmero EI, Garber J, Montagna M, Van Asperen CJ, Foretova L, Greene MH, Selkirk T, Moller P, Toland AE, Domchek SM, James PA, Thorne H, Eccles DM, Nielsen SM, Manoukian S, Pasini B, Caligo MA, Lazaro C, Kirk J, Wappenschmidt B, Spurdle AB, Couch FJ, Schmutzler R, Goldgar DE. Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genet Med 2022; 24:119-129. [PMID: 34906479 PMCID: PMC10170303 DOI: 10.1016/j.gim.2021.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Germline genetic testing for BRCA1 and BRCA2 variants has been a part of clinical practice for >2 decades. However, no studies have compared the cancer risks associated with missense pathogenic variants (PVs) with those associated with protein truncating (PTC) variants. METHODS We collected 582 informative pedigrees segregating 1 of 28 missense PVs in BRCA1 and 153 pedigrees segregating 1 of 12 missense PVs in BRCA2. We analyzed 324 pedigrees with PTC variants in BRCA1 and 214 pedigrees with PTC variants in BRCA2. Cancer risks were estimated using modified segregation analysis. RESULTS Estimated breast cancer risks were markedly lower for women aged >50 years carrying BRCA1 missense PVs than for the women carrying BRCA1 PTC variants (hazard ratio [HR] = 3.9 [2.4-6.2] for PVs vs 12.8 [5.7-28.7] for PTC variants; P = .01), particularly for missense PVs in the BRCA1 C-terminal domain (HR = 2.8 [1.4-5.6]; P = .005). In case of BRCA2, for women aged >50 years, the HR was 3.9 (2.0-7.2) for those heterozygous for missense PVs compared with 7.0 (3.3-14.7) for those harboring PTC variants. BRCA1 p.[Cys64Arg] and BRCA2 p.[Trp2626Cys] were associated with particularly low risks of breast cancer compared with other PVs. CONCLUSION These results have important implications for the counseling of at-risk women who harbor missense PVs in the BRCA1/2 genes.
Collapse
Affiliation(s)
- Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, National Centre for Scientific Research "Demokritos", INRASTES Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, Athens, Greece
| | - Luca Livraghi
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy; University of Siena, Siena, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henriette R Nielsen
- Department of Clinical Genetics Sygehus Lillebaelt, Vejle Hospital, Vejle, Denmark
| | - Sandrine M Caputo
- Service de Génétique, Institut Curie, Paris, France; Paris Sciences and Lettres Research University, Paris, France
| | - Alberto Zambelli
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy
| | - Ake Borg
- Divisions of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Angela Solano
- INBIOMED, Faculty of Medicine, University of Buenos Aires, CONICET and Genotyping Laboratory, Department of Clinical Chemistry, CEMIC, Buenos Aires, Argentina
| | - Abigail Thomas
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Trinidad Caldes
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Ava Kwong
- Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong; Department of Surgery, LKS Faculty of Medicine,University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Inge Søkilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Charlotte K Lautrup
- Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Esther M John
- Department of Epidemiology & Population Health and Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ramunas Janavicius
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lone Kroeldrup
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Liliana Varesco
- Unit of Hereditary Cancer, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Vega
- Fundación Pública galega Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil; National Cancer Institute, Rio de Janeiro, Brazil
| | - Judy Garber
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, IOV - Istituto Oncologico Veneto - IRCCS, Padova, Italy
| | - Christi J Van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tina Selkirk
- NorthShore University HealthSystem, University of Chicago, Evanston, IL
| | - Pal Moller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Hereditary Tumors, HELIOS-Klinikum Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, Penn Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Thorne
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sarah M Nielsen
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Barbara Pasini
- Medical Genetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Conxi Lazaro
- ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Hereditary Cancer Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney Medical School, University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rita Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David E Goldgar
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT.
| |
Collapse
|
18
|
Ozgencil M, Barwell J, Tischkowitz M, Izatt L, Kesterton I, Simpson M, Sharpe P, de Sepulveda P, Voisset E, Solomon E. Assessing BRCA1 activity in DNA damage repair using human induced pluripotent stem cells as an approach to assist classification of BRCA1 variants of uncertain significance. PLoS One 2021; 16:e0260852. [PMID: 34855882 PMCID: PMC8638976 DOI: 10.1371/journal.pone.0260852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Establishing a universally applicable protocol to assess the impact of BRCA1 variants of uncertain significance (VUS) expression is a problem which has yet to be resolved despite major progresses have been made. The numerous difficulties which must be overcome include the choices of cellular models and functional assays. We hypothesised that the use of induced pluripotent stem (iPS) cells might facilitate the standardisation of protocols for classification, and could better model the disease process. We generated eight iPS cell lines from patient samples expressing either BRCA1 pathogenic variants, non-pathogenic variants, or BRCA1 VUSs. The impact of these variants on DNA damage repair was examined using a ɣH2AX foci formation assay, a Homologous Repair (HR) reporter assay, and a chromosome abnormality assay. Finally, all lines were tested for their ability to differentiate into mammary lineages in vitro. While the results obtained from the two BRCA1 pathogenic variants were consistent with published data, some other variants exhibited differences. The most striking of these was the BRCA1 variant Y856H (classified as benign), which was unexpectedly found to present a faulty HR repair pathway, a finding linked to the presence of an additional variant in the ATM gene. Finally, all lines were able to differentiate first into mammospheres, and then into more advanced mammary lineages expressing luminal- or basal-specific markers. This study stresses that BRCA1 genetic analysis alone is insufficient to establish a reliable and functional classification for assessment of clinical risk, and that it cannot be performed without considering the other genetic aberrations which may be present in patients. The study also provides promising opportunities for elucidating the physiopathology and clinical evolution of breast cancer, by using iPS cells.
Collapse
Affiliation(s)
- Meryem Ozgencil
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Julian Barwell
- Department of Genetics and Genome Biology at the University of Leicester, Leicester, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ian Kesterton
- Cytogenetics Laboratory, Viapath Analytics, Guy’s and St. Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Michael Simpson
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Paul Sharpe
- Department of Craniofacial Development & Stem Cell Biology, King’s College London, London, United Kingdom
| | - Paulo de Sepulveda
- Signaling Hematopoiesis and Mechanism of Oncogenesis Lab, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Aix Marseille University, Marseille, France
| | - Edwige Voisset
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
- * E-mail: (EV); (ES)
| | - Ellen Solomon
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
- * E-mail: (EV); (ES)
| |
Collapse
|
19
|
Chiang YC, Lin PH, Cheng WF. Homologous Recombination Deficiency Assays in Epithelial Ovarian Cancer: Current Status and Future Direction. Front Oncol 2021; 11:675972. [PMID: 34722237 PMCID: PMC8551835 DOI: 10.3389/fonc.2021.675972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Epithelial ovarian cancer (EOC) patients are generally diagnosed at an advanced stage, usually relapse after initial treatments, which include debulking surgery and adjuvant platinum-based chemotherapy, and eventually have poor 5-year survival of less than 50%. In recent years, promising survival benefits from maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) has changed the management of EOC in newly diagnosed and recurrent disease. Identification of BRCA mutations and/or homologous recombination deficiency (HRD) is critical for selecting patients for PARPi treatment. However, the currently available HRD assays are not perfect predictors of the clinical response to PARPis in EOC patients. In this review, we introduce the concept of synthetic lethality, the rationale of using PARPi when HRD is present in tumor cells, the clinical trials of PARPi incorporating the HRD assays for EOC, the current HRD assays, and other HRD assays in development.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Tao M, Wu X. The role of patient-derived ovarian cancer organoids in the study of PARP inhibitors sensitivity and resistance: from genomic analysis to functional testing. J Exp Clin Cancer Res 2021; 40:338. [PMID: 34702316 PMCID: PMC8547054 DOI: 10.1186/s13046-021-02139-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) harbors distinct genetic features such as homologous recombination repair (HRR) deficiency, and therefore may respond to poly ADP-ribose polymerase inhibitors (PARPi). Over the past few years, PARPi have been added to the standard of care for EOC patients in both front-line and recurrent settings. Next-generation sequencing (NGS) genomic analysis provides key information, allowing for the prediction of PARPi response in patients who are PARPi naïve. However, there are indeed some limitations in NGS analyses. A subset of patients can benefit from PARPi, despite the failed detection of the predictive biomarkers such as BRCA1/2 mutations or HRR deficiency. Moreover, in the recurrent setting, the sequencing of initial tumor does not allow for the detection of reversions or secondary mutations restoring proficient HRR and thus leading to PARPi resistance. Therefore, it becomes crucial to better screen patients who will likely benefit from PARPi treatment, especially those with prior receipt of maintenance PARPi therapy. Recently, patient-derived organoids (PDOs) have been regarded as a reliable preclinical platform with clonal heterogeneity and genetic features of original tumors. PDOs are found feasible for functional testing and interrogation of biomarkers for predicting response to PARPi in EOC. Hence, we review the strengths and limitations of various predictive biomarkers and highlight the role of patient-derived ovarian cancer organoids as functional assays in the study of PARPi response. It was found that a combination of NGS and functional assays using PDOs could enhance the efficient screening of EOC patients suitable for PARPi, thus prolonging their survival time.
Collapse
Affiliation(s)
- Mengyu Tao
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China
| | - Xia Wu
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
21
|
Caputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, et alCaputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, Le Gall J, Legendre B, Legrand C, Legros A, Lejeune S, Lidereau R, Lignon N, Limacher JM, Doriane Livon, Lizard S, Longy M, Lortholary A, Macquere P, Mailliez A, Malsa S, Margot H, Mari V, Maugard C, Meira C, Menjard J, Molière D, Moncoutier V, Moretta-Serra J, Muller E, Nevière Z, Nguyen Minh Tuan TV, Noguchi T, Noguès C, Oca F, Popovici C, Prieur F, Raad S, Rey JM, Ricou A, Salle L, Saule C, Sevenet N, Simaga F, Sobol H, Suybeng V, Tennevet I, Tenreiro H, Tinat J, Toulas C, Turbiez I, Uhrhammer N, Vande Perre P, Vaur D, Venat L, Viellard N, Villy MC, Warcoin M, Yvard A, Zattara H, Caron O, Lasset C, Remenieras A, Boutry-Kryza N, Castéra L, Stoppa-Lyonnet D. Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach. Am J Hum Genet 2021; 108:1907-1923. [PMID: 34597585 DOI: 10.1016/j.ajhg.2021.09.003] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.
Collapse
|
22
|
Chiang YC, Lin PH, Lu TP, Kuo KT, Tai YJ, Hsu HC, Wu CY, Lee CY, Shen H, Chen CA, Cheng WF. A DNA Damage Response Gene Panel for Different Histologic Types of Epithelial Ovarian Carcinomas and Their Outcomes. Biomedicines 2021; 9:biomedicines9101384. [PMID: 34680501 PMCID: PMC8533221 DOI: 10.3390/biomedicines9101384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
DNA damage response (DDR) is important for maintaining genomic integrity of the cell. Aberrant DDR pathways lead to accumulation of DNA damage, genomic instability and malignant transformations. Gene mutations have been proven to be associated with epithelial ovarian cancer, and the majority of the literature has focused on BRCA. In this study, we investigated the somatic mutation of DNA damage response genes in epithelial ovarian cancer patients using a multiple-gene panel with next-generation sequencing. In all, 69 serous, 39 endometrioid and 64 clear cell carcinoma patients were enrolled. Serous carcinoma patients (69.6%) had higher percentages of DDR gene mutations compared with patients with endometrioid (33.3%) and clear cell carcinoma (26.6%) (p < 0.001, chi-squared test). The percentages of DDR gene mutations in patients with recurrence (53.9 vs. 32.9% p = 0.006, chi-squared test) or cancer-related death (59.2 vs. 34.4% p = 0.001, chi-squared test) were higher than those without recurrence or living patients. In endometrioid carcinoma, patients with ≥2 DDR gene mutations had shorter PFS (p = 0.0035, log-rank test) and OS (p = 0.015, log-rank test) than those with one mutation or none. In clear cell carcinoma, patients with ≥2 DDR gene mutations had significantly shorter PFS (p = 0.0056, log-rank test) and OS (p = 0.0046, log-rank test) than those with 1 DDR mutation or none. In the EOC patients, somatic DDR gene mutations were associated with advanced-stage tumor recurrence and tumor-related death. Type I EOC patients with DDR mutations had an unfavorable prognosis, especially for clear cell carcinoma.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
| | - Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100226, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei 100025, Taiwan;
| | - Kuan-Ting Kuo
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Yi-Jou Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
| | - Heng-Cheng Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan
| | - Chia-Ying Wu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
| | - Chia-Yi Lee
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan
| | - Hung Shen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Correspondence: (C.-A.C.); (W.-F.C.); Tel.: +886-2-2312-3456 (ext. 71964) (W.-F.C.)
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
- Correspondence: (C.-A.C.); (W.-F.C.); Tel.: +886-2-2312-3456 (ext. 71964) (W.-F.C.)
| |
Collapse
|
23
|
Germline variant of BRCA1 c.5332G>A has clinical features of hereditary breast and ovarian cancer syndrome. Int Cancer Conf J 2021; 11:12-16. [DOI: 10.1007/s13691-021-00512-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022] Open
|
24
|
Fortuno C, Pesaran T, Dolinsky J, Yussuf A, McGoldrick K, Tavtigian SV, Goldgar D, Spurdle AB, James PA. An updated quantitative model to classify missense variants in the TP53 gene: A novel multifactorial strategy. Hum Mutat 2021; 42:1351-1361. [PMID: 34273903 DOI: 10.1002/humu.24264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Multigene panel testing has led to an increase in the number of variants of uncertain significance identified in the TP53 gene, associated with Li-Fraumeni syndrome. We previously developed a quantitative model for predicting the pathogenicity of P53 missense variants based on the combination of calibrated bioinformatic information and somatic to germline ratio. Here, we extended this quantitative model for the classification of P53 predicted missense variants by adding new pieces of evidence (personal and family history parameters, loss-of-function results, population allele frequency, healthy individual status by age 60, and breast tumor pathology). We also annotated which missense variants might have an effect on splicing based on bioinformatic predictions. This updated model plus annotation led to the classification of 805 variants into a clinically relevant class, which correlated well with existing ClinVar classifications, and resolved a large number of conflicting and uncertain classifications. We propose this model as a reliable approach to TP53 germline variant classification and emphasize its use in contributing to optimize TP53-specific ACMG/AMP guidelines.
Collapse
Affiliation(s)
- Cristina Fortuno
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, California, USA
| | | | - Sean V Tavtigian
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
25
|
BRCA1/2 Mutation Detection in the Tumor Tissue from Selected Polish Patients with Breast Cancer Using Next Generation Sequencing. Genes (Basel) 2021; 12:genes12040519. [PMID: 33918338 PMCID: PMC8065856 DOI: 10.3390/genes12040519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Although, in the mutated BRCA detected in the Polish population of patients with breast cancer, there is a large percentage of recurrent pathogenic variants, an increasing need for the assessment of rare BRCA1/2 variants using NGS can be observed. (2) Methods: We studied 75 selected patients with breast cancer (negative for the presence of 5 mutations tested in the Polish population in the prophylactic National Cancer Control Program). DNA extracted from the cancer tissue of these patients was used to prepare a library and to sequence all coding regions of the BRCA1/2 genes. (3) Results: We detected nine pathogenic variants in 8 out of 75 selected patients (10.7%). We identified one somatic and eight germline variants. We also used different bioinformatic NGS software programs to analyze NGS FASTQ files and established that tertiary analysis performed with different tools was more likely to give the same outcome if we analyzed files received from secondary analysis using the same method. (4) Conclusions: Our study emphasizes (i) the importance of an NGS validation process with a bioinformatic procedure included; (ii) the importance of screening both somatic and germline pathogenic variants; (iii) the urgent need to identify additional susceptible genes in order to explain the high percentage of non-BRCA-related hereditary cases of breast cancer.
Collapse
|
26
|
Biswas K, Lipton GB, Stauffer S, Sullivan T, Cleveland L, Southon E, Reid S, Magidson V, Iversen ES, Sharan SK. A computational model for classification of BRCA2 variants using mouse embryonic stem cell-based functional assays. NPJ Genom Med 2020; 5:52. [PMID: 33293522 PMCID: PMC7722754 DOI: 10.1038/s41525-020-00158-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Sequencing-based genetic tests to identify individuals at increased risk of hereditary breast and ovarian cancers have resulted in the identification of more than 40,000 sequence variants of BRCA1 and BRCA2. A majority of these variants are considered to be variants of uncertain significance (VUS) because their impact on disease risk remains unknown, largely due to lack of sufficient familial linkage and epidemiological data. Several assays have been developed to examine the effect of VUS on protein function, which can be used to assess their impact on cancer susceptibility. In this study, we report the functional characterization of 88 BRCA2 variants, including several previously uncharacterized variants, using a well-established mouse embryonic stem cell (mESC)-based assay. We have examined their ability to rescue the lethality of Brca2 null mESC as well as sensitivity to six DNA damaging agents including ionizing radiation and a PARP inhibitor. We have also examined the impact of BRCA2 variants on splicing. In addition, we have developed a computational model to determine the probability of impact on function of the variants that can be used for risk assessment. In contrast to the previous VarCall models that are based on a single functional assay, we have developed a new platform to analyze the data from multiple functional assays separately and in combination. We have validated our VarCall models using 12 known pathogenic and 10 neutral variants and demonstrated their usefulness in determining the pathogenicity of BRCA2 variants that are listed as VUS or as variants with conflicting functional interpretation.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Gary B Lipton
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA.
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
27
|
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, Nik-Zainal S, Ray-Coquard I, Shah SP, Matias-Guiu X, Swisher EM, Yates LR. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol 2020; 31:1606-1622. [PMID: 33004253 DOI: 10.1016/j.annonc.2020.08.2102] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Homologous recombination repair deficiency (HRD) is a frequent feature of high-grade serous ovarian, fallopian tube and peritoneal carcinoma (HGSC) and is associated with sensitivity to PARP inhibitor (PARPi) therapy. HRD testing provides an opportunity to optimise PARPi use in HGSC but methodologies are diverse and clinical application remains controversial. MATERIALS AND METHODS To define best practice for HRD testing in HGSC the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project that incorporated a systematic review approach. The main aims were to (i) define the term 'HRD test'; (ii) provide an overview of the biological rationale and the level of evidence supporting currently available HRD tests; (iii) provide recommendations on the clinical utility of HRD tests in clinical management of HGSC. RESULTS A broad range of repair genes, genomic scars, mutational signatures and functional assays are associated with a history of HRD. Currently, the clinical validity of HRD tests in ovarian cancer is best assessed, not in terms of biological HRD status per se, but in terms of PARPi benefit. Clinical trials evidence supports the use of BRCA mutation testing and two commercially available assays that also incorporate genomic instability for identifying subgroups of HGSCs that derive different magnitudes of benefit from PARPi therapy, albeit with some variation by clinical scenario. These tests can be used to inform treatment selection and scheduling but their use is limited by a failure to consistently identify a subgroup of patients who derive no benefit from PARPis in most studies. Existing tests lack negative predictive value and inadequately address the complex and dynamic nature of the HRD phenotype. CONCLUSIONS Currently available HRD tests are useful for predicting likely magnitude of benefit from PARPis but better biomarkers are urgently needed to better identify current homologous recombination proficiency status and stratify HGSC management.
Collapse
Affiliation(s)
- R E Miller
- Department of Medical Oncology, University College London, London, UK; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - A Leary
- Department of Medicine and INSERM U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Paris, France
| | - C L Scott
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - V Serra
- Experimental Therapeutics Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - D Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - D K Chang
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - D W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - J Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J A Ledermann
- UCL Cancer Institute, University College London, London, UK
| | - S Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK; MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - I Ray-Coquard
- Centre Leon Berard, Lyon, France; University Claude Bernard Groupe University of Lyon, France
| | - S P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - X Matias-Guiu
- Departments of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, Universities of Lleida and Barcelona, Irblleida, Idibell, Ciberonc, Barcelona, Spain
| | - E M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - L R Yates
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge; Guy's Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
28
|
Pavanello M, Chan IHY, Ariff A, Pharoah PDP, Gayther SA, Ramus SJ. Rare Germline Genetic Variants and the Risks of Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:E3046. [PMID: 33086730 PMCID: PMC7589980 DOI: 10.3390/cancers12103046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
A family history of ovarian or breast cancer is the strongest risk factor for epithelial ovarian cancer (EOC). Germline deleterious variants in the BRCA1 and BRCA2 genes confer EOC risks by age 80, of 44% and 17% respectively. The mismatch repair genes, particularly MSH2 and MSH6, are also EOC susceptibility genes. Several other DNA repair genes, BRIP1, RAD51C, RAD51D, and PALB2, have been identified as moderate risk EOC genes. EOC has five main histotypes; high-grade serous (HGS), low-grade serous (LGS), clear cell (CCC), endometrioid (END), and mucinous (MUC). This review examines the current understanding of the contribution of rare genetic variants to EOC, focussing on providing frequency data for each histotype. We provide an overview of frequency and risk for pathogenic variants in the known susceptibility genes as well as other proposed genes. We also describe the progress to-date to understand the role of missense variants and the different breast and ovarian cancer risks for each gene. Identification of susceptibility genes have clinical impact by reducing disease-associated mortality through improving risk prediction, with the possibility of prevention strategies, and developing new targeted treatments and these clinical implications are also discussed.
Collapse
Affiliation(s)
- Marina Pavanello
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia; (M.P.); (I.H.C.); (A.A.)
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Isaac HY Chan
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia; (M.P.); (I.H.C.); (A.A.)
| | - Amir Ariff
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia; (M.P.); (I.H.C.); (A.A.)
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Paul DP Pharoah
- Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Simon A. Gayther
- Center for Cancer Prevention and Translational Genomics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
- Applied Genomics, Computation and Translational Core, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan J. Ramus
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia; (M.P.); (I.H.C.); (A.A.)
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
29
|
Le Page C, Amuzu S, Rahimi K, Gotlieb W, Ragoussis J, Tonin PN. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2mutation carriers. Semin Cancer Biol 2020; 77:110-126. [PMID: 32827632 DOI: 10.1016/j.semcancer.2020.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BRCA1 and BRCA2 are multi-functional proteins and key factors for maintaining genomic stability through their roles in DNA double strand break repair by homologous recombination, rescuing stalled or damaged DNA replication forks, and regulation of cell cycle DNA damage checkpoints. Impairment of any of these critical roles results in genomic instability, a phenotypic hallmark of many cancers including breast and epithelial ovarian carcinomas (EOC). Damaging, usually loss of function germline and somatic variants in BRCA1 and BRCA2, are important drivers of the development, progression, and management of high-grade serous tubo-ovarian carcinoma (HGSOC). However, mutations in these genes render patients particularly sensitive to platinum-based chemotherapy, and to the more innovative targeted therapies with poly-(ADP-ribose) polymerase inhibitors (PARPis) that are targeted to BRCA1/BRCA2 mutation carriers. Here, we reviewed the literature on the responsiveness of BRCA1/2-associated HGSOC to platinum-based chemotherapy and PARPis, and propose mechanisms underlying the frequent development of resistance to these therapeutic agents.
Collapse
Affiliation(s)
- Cécile Le Page
- McGill Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| | - Setor Amuzu
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurosh Rahimi
- Department of Pathology du Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Walter Gotlieb
- Laboratory of Gynecologic Oncology, Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Patricia N Tonin
- Departments of Medicine and Human Genetics, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|