1
|
Kariñho Betancourt E, Calderón Cortés N, Tapia López R, De‐la‐Cruz I, Núñez Farfán J, Oyama K. Comparative transcriptome profiling reveals distinct regulatory responses of secondary defensive metabolism in Datura species (Solanaceae) under plant development and herbivory-mediated stress. Ecol Evol 2024; 14:e11496. [PMID: 38983703 PMCID: PMC11231941 DOI: 10.1002/ece3.11496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
Differential expression of genes is key to mediating developmental and stress-related plant responses. Here, we addressed the regulation of plant metabolic responses to biotic stress and the developmental variation of defense-related genes in four species of the genus Datura with variable patterns of metabolite accumulation and development. We combine transcriptome profiling with phylogenomic techniques to analyze gene expression and coexpression in plants subjected to damage by a specialist folivore insect. We found (1) common overall gene expression in species of similar chemical profiles, (2) species-specific responses of proteins involved in specialized metabolism, characterized by constant levels of gene expression coupled with transcriptional rearrangement, and (3) induction of transcriptional rearrangement of major terpene and tropane alkaloid genes upon herbivory. Our results indicate differential modulation of terpene and tropane metabolism linked to jasmonate signaling and specific transcription factors to regulate developmental variation and stress programs, and suggest plastic adaptive responses to cope with herbivory. The transcriptional profiles of specialized metabolism shown here reveal complex genetic control of plant metabolism and contribute to understanding the molecular basis of adaptations and the physiological variation of significant ecological traits.
Collapse
Affiliation(s)
- Eunice Kariñho Betancourt
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, UNAMMoreliaMexico
- Laboratorio de Genética Ecológica y EvoluciónInstituto de Ecología, UNAMCiudad de MéxicoMexico
| | | | - Rosalinda Tapia López
- Laboratorio de Evolución Molecular y ExperimentalInstituto de Ecología, UNAMCiudad de MéxicoMexico
| | - Ivan De‐la‐Cruz
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Juan Núñez Farfán
- Laboratorio de Genética Ecológica y EvoluciónInstituto de Ecología, UNAMCiudad de MéxicoMexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, UNAMMoreliaMexico
| |
Collapse
|
2
|
Canal D, Dos Santos PHD, de Avelar Carpinetti P, Silva MA, Fernandes M, Brustolini OJB, Ferreira A, da Silva Ferreira MF. Exploring the versatility of sesquiterpene biosynthesis in guava plants: a comparative genome-wide analysis of two cultivars. Sci Rep 2024; 14:574. [PMID: 38182724 PMCID: PMC10770072 DOI: 10.1038/s41598-023-51007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Psidium guajava L., a fruit crop belonging to the Myrtaceae family, is highly valued for its nutritional and medicinal properties. The family exhibits a diverse chemical profile of essential oils and serves as a valuable resource due to its ecological interactions, adaptability, and dispersal capacity. The Myrtaceae family has been extensively studied for its terpenoids. Genetic studies have focused on foliar terpene yield in species from the Eucalypteae and Melaleucaceae tribes. To understand the evolutionary trends in guava breeding, this study predicted terpene synthase genes (TPS) from different cultivars. Through this analysis, 43 full-length TPS genes were identified, and approximately 77% of them exhibited relative expression in at least one of the five investigated plant tissues (root, leaf, bud, flower, and fruit) of two guava cultivars. We identified intra-species variation in the terpene profile and single nucleotide polymorphisms (SNPs) in twelve TPS genes, resulting in the clustering of 62 genotypes according to their essential oil chemotypes. The high concentration of sesquiterpenes is supported by the higher number of TPS-a genes and their expression. The expansion for TPS sub-families in P. guajava occurred after the expansion of other rosids species. Providing insight into the origin of structural diversification and expansion in each clade of the TPS gene family within Myrtaceae. This study can provide insights into the diversity of genes for specialized metabolites such as terpenes, and their regulation, which can lead to a diverse chemotype of essential oil in different tissues and genotypes. This suggests a mode of enzymatic evolution that could lead to high sesquiterpene production, act as a chemical defense and contribute to the adaptive capacity of this species to different habitats.
Collapse
Affiliation(s)
- Drielli Canal
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Pedro Henrique Dias Dos Santos
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Paola de Avelar Carpinetti
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Matheus Alves Silva
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Miquéias Fernandes
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | | | - Adésio Ferreira
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
3
|
Voelker J, Mauleon R, Shepherd M. A terpene synthase supergene locus determines chemotype in Melaleuca alternifolia (tea tree). THE NEW PHYTOLOGIST 2023; 240:1944-1960. [PMID: 37737003 DOI: 10.1111/nph.19262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Leaf oil terpenes vary categorically in many plant populations, leading to discrete phenotypes of adaptive and economic significance, but for most species, a genetic explanation for the concerted fluctuation in terpene chemistry remains unresolved. To uncover the genetic architecture underlying multi-component terpene chemotypes in Melaleuca alternifolia (tea tree), a genome-wide association study was undertaken for 148 individuals representing all six recognised chemotypes. A number of single nucleotide polymorphisms in a genomic region of c. 400 kb explained large proportions of the variation in key monoterpenes of tea tree oil. The region contained a cluster of 10 monoterpene synthase genes, including four genes predicted to encode synthases for 1,8-cineole, terpinolene, and the terpinen-4-ol precursor, sabinene hydrate. Chemotype-dependent null alleles at some sites suggested structural variants within this gene cluster, providing a possible basis for linkage disequilibrium in this region. Genotyping in a separate domesticated population revealed that all alleles surrounding this gene cluster were fixed after artificial selection for a single chemotype. These observations indicate that a supergene accounts for chemotypes in M. alternifolia. A genetic model with three haplotypes, encompassing the four characterised monoterpene synthase genes, explained the six terpene chemotypes, and was consistent with available biparental cross-segregation data.
Collapse
Affiliation(s)
- Julia Voelker
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW, 2480, Australia
| | - Ramil Mauleon
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW, 2480, Australia
| | - Mervyn Shepherd
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW, 2480, Australia
| |
Collapse
|
4
|
Genome-wide identification, expression profile and evolutionary relationships of TPS genes in the neotropical fruit tree species Psidium cattleyanum. Sci Rep 2023; 13:3930. [PMID: 36894661 PMCID: PMC9998390 DOI: 10.1038/s41598-023-31061-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Terpenoids are essential for plant growth, development, defense, and adaptation mechanisms. Psidium cattleyanum (Myrtaceae) is a fleshy fruit tree species endemics from Atlantic Forest, known for its pleasant fragrance and sweet taste, attributed to terpenoids in its leaves and fruits. In this study, we conducted genome-wide identification, evolutionary and expression analyses of the terpene synthase gene (TPS) family in P. cattleyanum red guava (var. cattleyanum), and yellow guava (var. lucidum Hort.) morphotypes. We identified 32 full-length TPS in red guava (RedTPS) and 30 in yellow guava (YlwTPS). We showed different expression patterns of TPS paralogous in the two morphotypes, suggesting the existence of distinct gene regulation mechanisms and their influence on the final essential oil content in both morphotypes. Moreover, the oil profile of red guava was dominated by 1,8-cineole and linalool and yellow guava was enriched in α-pinene, coincident in proportion to TPS-b1 genes, which encode enzymes that produce cyclic monoterpenes, suggesting a lineage-specific subfamily expansion of this family. Finally, we identified amino acid residues near the catalytic center and functional areas under positive selection. Our findings provide valuable insights into the terpene biosynthesis in a Neotropical Myrtaceae species and their potential involvement in adaptation mechanisms.
Collapse
|
5
|
Ritz M, Ahmad N, Brueck T, Mehlmer N. Comparative Genome-Wide Analysis of Two Caryopteris x Clandonensis Cultivars: Insights on the Biosynthesis of Volatile Terpenoids. PLANTS (BASEL, SWITZERLAND) 2023; 12:632. [PMID: 36771729 PMCID: PMC9921992 DOI: 10.3390/plants12030632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 05/31/2023]
Abstract
Caryopteris x Clandonensis, also known as bluebeard, is an ornamental plant containing a large variety of terpenes and terpene-like compounds. Four different cultivars were subjected to a principal component analysis to elucidate variations in terpenoid-biosynthesis and consequently, two representative cultivars were sequenced on a genomic level. Functional annotation of genes as well as comparative genome analysis on long read datasets enabled the identification of cultivar-specific terpene synthase and cytochrome p450 enzyme sequences. This enables new insights, especially since terpenoids in research and industry are gaining increasing interest due to their importance in areas such as food preservation, fragrances, or as active ingredients in pharmaceutical formulations. According to BUSCO assessments, the presented genomes have an average size of 355 Mb and about 96.8% completeness. An average of 52,090 genes could be annotated as putative proteins, whereas about 42 were associated with terpene synthases and about 1340 with cytochrome p450 enzymes.
Collapse
Affiliation(s)
| | | | - Thomas Brueck
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
6
|
Silva MA, Soares FAF, Clarindo WR, Mendes LA, Alves LB, Ferreira A, da Silva Ferreira MF. Genomic and epigenomic variation in Psidium species and their outcome under the yield and composition of essential oils. Sci Rep 2023; 13:1385. [PMID: 36697447 PMCID: PMC9876884 DOI: 10.1038/s41598-023-27912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Diploid and polyploid species derived from the euploid series x = 11 occur in the genus Psidium, as well as intraspecific cytotypes. Euploidy in the genus can alter the gene copy number, resulting in several "omics" variations. We revisited the euploidy, reported genomic (nuclear 2C value, GC%, and copy number of secondary metabolism genes) and epigenomic (5-mC%) differences in Psidium, and related them to essential oil yield and composition. Mean 2C values ranged from 0.90 pg (P. guajava) to 7.40 pg (P. gaudichaudianum). 2C value is intraspecifically varied in P. cattleyanum and P. gaudichaudianum, evidencing cytotypes that can be formed from euploid (non-reduced) and/or aneuploid reproductive cells. GC% ranged from 34.33% (P. guineense) to 48.95% (P. myrtoides), and intraspecific variations occurred even for species without 2C value intraspecific variation. Essential oil yield increased in relation to 2C value and to GC%. We showed that P. guajava (diploid) possesses two and P. guineense (tetraploid) four copies of the one specific TPS gene, as well as eight and sixteen copies respectively of the conserved regions that occur in eight TPS genes. We provide a wide "omics'' characterization of Psidium and show the outcome of the genome and epigenome variation in secondary metabolism.
Collapse
Affiliation(s)
- Matheus Alves Silva
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Fernanda Aparecida Ferrari Soares
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Wellington Ronildo Clarindo
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Luiza Alves Mendes
- Departamento de Química, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Luziane Brandão Alves
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
7
|
Goodger JQD, Sargent D, Humphries J, Woodrow IE. Monoterpene synthases responsible for the terpene profile of anther glands in Eucalyptus polybractea R.T. Baker (Myrtaceae). TREE PHYSIOLOGY 2021; 41:849-864. [PMID: 33219374 DOI: 10.1093/treephys/tpaa161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Research on terpene biosynthesis in the genus Eucalyptus (Myrtaceae) is poorly developed, but recently large numbers of terpene synthase (TPS) genes have been identified. Few of these have been characterized or their expression localized to specific tissues. A prime candidate for detailed examination of TPS gene expression is the bisexual eucalypt flower-composed of male and female reproductive organs, and vegetative tissues that may express different TPS genes. We aimed to characterize and compare the terpene profile and TPS genes expressed in anthers and gynoecia in the high oil-yielding Eucalyptus polybractea R.T. Baker. We hypothesized that gynoecia will produce greater amounts of defensive terpenes, whereas anthers will have a terpene profile that is biased towards a role in pollination. Microscopy of isolated anthers showed them to possess a single, prominent oil gland. Chemical analysis of whole floral structures at different stages of development showed total oil per unit dry mass increased as flower buds expanded, with highest concentrations in mature flower buds just prior to flower opening. The oil profile of gynoecia was dominated by the monoterpene 1,8-cineole, whereas that of isolated anthers were enriched with the monoterpene α-pinene. Through transcriptomic analysis and recombinant protein expression, we were able to identify monoterpene synthases responsible for the different profiles. Synthases for α-pinene and 1,8-cineole were expressed in each tissue type, but the relative expression of the former was higher in anthers. Sequence comparison and site-directed mutagenesis of the α-pinene synthase allowed us to identify amino acids that influence the α-pinene to β-pinene ratio of the product profile. We suggest the terpene constituents of anthers may have multiple roles including attracting pollinators through emission of volatile α-pinene, deterrence of palynivores through emission of volatile 1,8-cineole and adhesion of pollen to pollinators via the release of sticky α-pinene onto the anther surface.
Collapse
Affiliation(s)
- Jason Q D Goodger
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Demi Sargent
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - John Humphries
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian E Woodrow
- School of Ecosystem and Forest Sciences, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Healey AL, Shepherd M, King GJ, Butler JB, Freeman JS, Lee DJ, Potts BM, Silva-Junior OB, Baten A, Jenkins J, Shu S, Lovell JT, Sreedasyam A, Grimwood J, Furtado A, Grattapaglia D, Barry KW, Hundley H, Simmons BA, Schmutz J, Vaillancourt RE, Henry RJ. Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Commun Biol 2021; 4:537. [PMID: 33972666 PMCID: PMC8110574 DOI: 10.1038/s42003-021-02009-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
Corymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although the two diverged approximately 60 million years ago and have different genome sizes (408 vs 641 Mb), with few large intra-chromosomal rearrangements. C. citriodora shares an ancient whole-genome duplication event with E. grandis but has undergone tandem gene family expansions related to terpene biosynthesis, innate pathogen resistance, and leaf wax formation, enabling their successful adaptation to biotic/abiotic stresses and arid conditions of the Australian continent.
Collapse
Affiliation(s)
- Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- University of Queensland/QAAFI, Brisbane, QLD, Australia.
| | - Mervyn Shepherd
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Jules S Freeman
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
- Scion, Rotorua, New Zealand
| | - David J Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Brad M Potts
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | | | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- Institute of Precision Medicine & Bioinformatics, Camperdown, NSW, Australia
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Agnelo Furtado
- University of Queensland/QAAFI, Brisbane, QLD, Australia
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology, Brasília, Brazil
- Genomic Science Program, Universidade Catolica de Brasilia, Taguatinga, Brazil
| | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Hope Hundley
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Blake A Simmons
- University of Queensland/QAAFI, Brisbane, QLD, Australia
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - René E Vaillancourt
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | - Robert J Henry
- University of Queensland/QAAFI, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Mostert-O'Neill MM, Reynolds SM, Acosta JJ, Lee DJ, Borevitz JO, Myburg AA. Genomic evidence of introgression and adaptation in a model subtropical tree species, Eucalyptus grandis. Mol Ecol 2020; 30:625-638. [PMID: 32881106 DOI: 10.1111/mec.15615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022]
Abstract
The genetic consequences of adaptation to changing environments can be deciphered using population genomics, which may help predict species' responses to global climate change. Towards this, we used genome-wide SNP marker analysis to determine population structure and patterns of genetic differentiation in terms of neutral and adaptive genetic variation in the natural range of Eucalyptus grandis, a widely cultivated subtropical and temperate species, serving as genomic reference for the genus. We analysed introgression patterns at subchromosomal resolution using a modified ancestry mapping approach and identified provenances with extensive interspecific introgression in response to increased aridity. Furthermore, we describe potentially adaptive genetic variation as explained by environment-associated SNP markers, which also led to the discovery of what is likely a large structural variant. Finally, we show that genes linked to these markers are enriched for biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Marja Mirjam Mostert-O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sharon Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Juan Jose Acosta
- Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - David John Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Justin O Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT, Australia
| | - Alexander Andrew Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Genomic characterization of the complete terpene synthase gene family from Cannabis sativa. PLoS One 2019; 14:e0222363. [PMID: 31513654 PMCID: PMC6742361 DOI: 10.1371/journal.pone.0222363] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/27/2019] [Indexed: 12/05/2022] Open
Abstract
Terpenes are responsible for most or all of the odor and flavor properties of Cannabis sativa, and may also impact effects users experience either directly or indirectly. We report the diversity of terpene profiles across samples bound for the Washington dispensary market. The remarkable degree of variation in terpene profiles ultimately results from action of a family of terpene synthase genes, only some of which have been described. Using a recently available genome assembly we describe 55 terpene synthases with genomic context, and tissue specific expression. The family is quite diverse from a protein similarity perspective, and subsets of the family are expressed in all tissues in the plant, including a set of root specific monoterpene synthases that could well have agronomic importance. Ultimately understanding and breeding for specific terpene profiles will require a good understanding of the gene family that underlies it. We intend for this work to serve as a foundation for that.
Collapse
|
11
|
Tuskan GA, Groover AT, Schmutz J, DiFazio SP, Myburg A, Grattapaglia D, Smart LB, Yin T, Aury JM, Kremer A, Leroy T, Le Provost G, Plomion C, Carlson JE, Randall J, Westbrook J, Grimwood J, Muchero W, Jacobson D, Michener JK. Hardwood Tree Genomics: Unlocking Woody Plant Biology. FRONTIERS IN PLANT SCIENCE 2018; 9:1799. [PMID: 30619389 PMCID: PMC6304363 DOI: 10.3389/fpls.2018.01799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative ("evo-devo") approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.
Collapse
Affiliation(s)
- Gerald A. Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Andrew T. Groover
- Pacific Southwest Research Station, USDA Forest Service, Davis, CA, United States
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
- Joint Genome Institute, Walnut Creek, CA, United States
| | | | - Alexander Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Dario Grattapaglia
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Universidade Católica de Brasília, Brasília, Brazil
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, United States
| | - Tongming Yin
- The Key Laboratory for Poplar Improvement of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Jean-Marc Aury
- Commissariat à l’Energie Atomique, Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | - Thibault Leroy
- BIOGECO, INRA, Université de Bordeaux, Cestas, France
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | | | | | - John E. Carlson
- Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, United States
| | - Jennifer Randall
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jared Westbrook
- The American Chestnut Foundation, Asheville, NC, United States
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Daniel Jacobson
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Joshua K. Michener
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| |
Collapse
|