1
|
Moreira-Saporiti A, Teichberg M, Garnier E, Cornelissen JHC, Alcoverro T, Björk M, Boström C, Dattolo E, Eklöf JS, Hasler-Sheetal H, Marbà N, Marín-Guirao L, Meysick L, Olivé I, Reusch TBH, Ruocco M, Silva J, Sousa AI, Procaccini G, Santos R. A trait-based framework for seagrass ecology: Trends and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1088643. [PMID: 37021321 PMCID: PMC10067889 DOI: 10.3389/fpls.2023.1088643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.
Collapse
Affiliation(s)
- Agustín Moreira-Saporiti
- Faculty for Biology and Chemistry, University of Bremen, Bremen, Germany
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Mirta Teichberg
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | - Mats Björk
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Nuria Marbà
- Global Change Research Group, Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles Illes Balears, Spain
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Lukas Meysick
- Åbo Akademi University, Environmental and Marine Biology, Åbo, Finland
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Irene Olivé
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thorsten B. H. Reusch
- Marine Evolutionary Ecology, Division of Marine Ecology, GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - João Silva
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana I. Sousa
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Rui Santos
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
2
|
Nguyen XV, Phan TTH, Cao VL, Nguyen Nhat NT, Nguyen TH, Nguyen XT, Lau VK, Hoang CT, Nguyen-Thi MN, Nguyen HM, Dao VH, Teichberg M, Papenbrock J. Current advances in seagrass research: A review from Viet Nam. FRONTIERS IN PLANT SCIENCE 2022; 13:991865. [PMID: 36299785 PMCID: PMC9589349 DOI: 10.3389/fpls.2022.991865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Seagrass meadows provide valuable ecosystem services but are fragile and threatened ecosystems all over the world. This review highlights the current advances in seagrass research from Viet Nam. One goal is to support decision makers in developing science-based conservation strategies. In recent years, several techniques were applied to estimate the size of seagrass meadows. Independent from the method used, there is an alarming decline in the seagrass area in almost all parts of Viet Nam. Since 1990, a decline of 46.5% or 13,549 ha was found. Only in a few protected and difficult-to-reach areas was an increase observed. Conditions at those sites could be investigated in more detail to make suggestions for conservation and recovery of seagrass meadows. Due to their lifestyle and morphology, seagrasses take up compounds from their environment easily. Phytoremediation processes of Thalassia hemprichii and Enhalus acoroides are described exemplarily. High accumulation of heavy metals dependent on their concentration in the environment in different organs can be observed. On the one hand, seagrasses play a role in phytoremediation processes in polluted areas; on the other hand, they might suffer at high concentrations, and pollution will contribute to their overall decline. Compared with the neighboring countries, the total C org stock from seagrass beds in Viet Nam was much lower than in the Philippines and Indonesia but higher than that of Malaysia and Myanmar. Due to an exceptionally long latitudinal coastline of 3,260 km covering cool to warm water environments, the seagrass species composition in Viet Nam shows a high diversity and a high plasticity within species boundaries. This leads to challenges in taxonomic issues, especially with the Halophila genus, which can be better deduced from genetic diversity/population structures of members of Hydrocharitaceae. Finally, the current seagrass conservation and management efforts in Viet Nam are presented and discussed. Only decisions based on the interdisciplinary cooperation of scientists from all disciplines mentioned will finally lead to conserve this valuable ecosystem for mankind and biodiversity.
Collapse
Affiliation(s)
- Xuan-Vy Nguyen
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Ha Noi, Vietnam
| | | | - Van-Luong Cao
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Ha Noi, Vietnam
- Institute of Marine Environment and Resources, Viet Nam Academy of Science and Technology, Hai Phong, Vietnam
| | - Nhu-Thuy Nguyen Nhat
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Trung-Hieu Nguyen
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Xuan-Thuy Nguyen
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Va-Khin Lau
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | | | - My-Ngan Nguyen-Thi
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
| | - Hung Manh Nguyen
- Dead Sea and Arava Science Center, Central Arava Branch, Hatseva, Israel
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Viet-Ha Dao
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Vietnam
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Ha Noi, Vietnam
| | - Mirta Teichberg
- Ecosystems Center, Marine Biological Laboratory (MBL), Woodshole, MA, United States
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
De novo assembly and annotation of the transcriptome of the endangered seagrass Zostera capensis: Insights from differential gene expression under thermal stress. Mar Genomics 2022; 66:100984. [PMID: 36116404 DOI: 10.1016/j.margen.2022.100984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
Seagrasses are important marine ecosystem engineers but anthropogenic impacts and climate change have led to numerous population declines globally. In South Africa, Zostera capensis is endangered due to fragmented populations and heavy anthropogenic pressures on estuarine ecosystems that house the core of the populations. Addressing questions of how pressures such as climate change affect foundational species, including Z. capensis are crucial to supporting their conservation and underpin restoration efforts. Here we use ecological transcriptomics to study key functional responses of Z. capensis through quantification of gene expression after thermal stress and present the first reference transcriptome of Z. capensis. Four de novo reference assemblies (Trinity, IDBA-tran, RNAspades, SOAPdenovo) filtered through the EvidentialGene pipeline resulted in 153,755 transcripts with a BUSCO score of 66.1% for completeness. Differential expression analysis between heat stressed (32 °C for three days) and pre-warming plants identified genes involved in photosynthesis, oxidative stress, translation, metabolic and biosynthetic processes in the Z. capensis thermal stress response. This reference transcriptome is a significant contribution to the limited available genomic resources for Z. capensis and represents a vital tool for addressing questions around the species restoration and potential functional responses to warming marine environments.
Collapse
|
4
|
Pazzaglia J, Santillán-Sarmiento A, Ruocco M, Dattolo E, Ambrosino L, Marín-Guirao L, Procaccini G. Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119077. [PMID: 35276251 DOI: 10.1016/j.envpol.2022.119077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants' organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy; Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Alex Santillán-Sarmiento
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy; Faculty of Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Luca Ambrosino
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Lazaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy; Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy.
| |
Collapse
|
5
|
Ruocco M, Jahnke M, Silva J, Procaccini G, Dattolo E. 2b-RAD Genotyping of the Seagrass Cymodocea nodosa Along a Latitudinal Cline Identifies Candidate Genes for Environmental Adaptation. Front Genet 2022; 13:866758. [PMID: 35651946 PMCID: PMC9149362 DOI: 10.3389/fgene.2022.866758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Plant populations distributed along broad latitudinal gradients often show patterns of clinal variation in genotype and phenotype. Differences in photoperiod and temperature cues across latitudes influence major phenological events, such as timing of flowering or seed dormancy. Here, we used an array of 4,941 SNPs derived from 2b-RAD genotyping to characterize population differentiation and levels of genetic and genotypic diversity of three populations of the seagrass Cymodocea nodosa along a latitudinal gradient extending across the Atlantic-Mediterranean boundary (i.e., Gran Canaria—Canary Islands, Faro—Portugal, and Ebro Delta—Spain). Our main goal was to search for potential outlier loci that could underlie adaptive differentiation of populations across the latitudinal distribution of the species. We hypothesized that such polymorphisms could be related to variation in photoperiod-temperature regime occurring across latitudes. The three populations were clearly differentiated and exhibited diverse levels of clonality and genetic diversity. Cymodocea nodosa from the Mediterranean displayed the highest genotypic richness, while the Portuguese population had the highest clonality values. Gran Canaria exhibited the lowest genetic diversity (as observed heterozygosity). Nine SNPs were reliably identified as outliers across the three sites by two different methods (i.e., BayeScan and pcadapt), and three SNPs could be associated to specific protein-coding genes by screening available C. nodosa transcriptomes. Two SNPs-carrying contigs encoded for transcription factors, while the other one encoded for an enzyme specifically involved in the regulation of flowering time, namely Lysine-specific histone demethylase 1 homolog 2. When analyzing biological processes enriched within the whole dataset of outlier SNPs identified by at least one method, “regulation of transcription” and “signalling” were among the most represented. Our results highlight the fundamental importance signal integration and gene-regulatory networks, as well as epigenetic regulation via DNA (de)methylation, could have for enabling adaptation of seagrass populations along environmental gradients.
Collapse
Affiliation(s)
| | - Marlene Jahnke
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - João Silva
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | | |
Collapse
|
6
|
Jueterbock A, Duarte B, Coyer J, Olsen JL, Kopp MEL, Smolina I, Arnaud-Haond S, Hu ZM, Hoarau G. Adaptation of Temperate Seagrass to Arctic Light Relies on Seasonal Acclimatization of Carbon Capture and Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:745855. [PMID: 34925400 PMCID: PMC8675887 DOI: 10.3389/fpls.2021.745855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Due to rising global surface temperatures, Arctic habitats are becoming thermally suitable for temperate species. Whether a temperate species can immigrate into an ice-free Arctic depends on its ability to tolerate extreme seasonal fluctuations in daylength. Thus, understanding adaptations to polar light conditions can improve the realism of models predicting poleward range expansions in response to climate change. Plant adaptations to polar light have rarely been studied and remain unknown in seagrasses. If these ecosystem engineers can migrate polewards, seagrasses will enrich biodiversity, and carbon capture potential in shallow coastal regions of the Arctic. Eelgrass (Zostera marina) is the most widely distributed seagrass in the northern hemisphere. As the only seagrass species growing as far north as 70°N, it is the most likely candidate to first immigrate into an ice-free Arctic. Here, we describe seasonal (and diurnal) changes in photosynthetic characteristics, and in genome-wide gene expression patterns under strong annual fluctuations of daylength. We compared PAM measurements and RNA-seq data between two populations at the longest and shortest day of the year: (1) a Mediterranean population exposed to moderate annual fluctuations of 10-14 h daylength and (2) an Arctic population exposed to high annual fluctuations of 0-24 h daylength. Most of the gene expression specificities of the Arctic population were found in functions of the organelles (chloroplast and mitochondrion). In winter, Arctic eelgrass conserves energy by repressing respiration and reducing photosynthetic energy fluxes. Although light-reactions, and genes involved in carbon capture and carbon storage were upregulated in summer, enzymes involved in CO2 fixation and chlorophyll-synthesis were upregulated in winter, suggesting that winter metabolism relies not only on stored energy resources but also on active use of dim light conditions. Eelgrass is unable to use excessive amounts of light during summer and demonstrates a significant reduction in photosynthetic performance under long daylengths, possibly to prevent photoinhibition constrains. Our study identified key mechanisms that allow eelgrass to survive under Arctic light conditions and paves the way for experimental research to predict whether and up to which latitude eelgrass can potentially migrate polewards in response to climate change.
Collapse
Affiliation(s)
- Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Bernardo Duarte
- Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
- Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - James Coyer
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, United States
| | - Jeanine L. Olsen
- Ecological Genetics-Genomics Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Irina Smolina
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sophie Arnaud-Haond
- UMR MARBEC Marine Biodiversity Exploitation and Conservation, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Zi-Min Hu
- Ocean School, Yantai University, Yantai, China
| | - Galice Hoarau
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
7
|
Hays CG, Hanley TC, Hughes AR, Truskey SB, Zerebecki RA, Sotka EE. Local Adaptation in Marine Foundation Species at Microgeographic Scales. THE BIOLOGICAL BULLETIN 2021; 241:16-29. [PMID: 34436968 DOI: 10.1086/714821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractNearshore foundation species in coastal and estuarine systems (e.g., salt marsh grasses, mangroves, seagrasses, corals) drive the ecological functions of ecosystems and entire biomes by creating physical structure that alters local abiotic conditions and influences species interactions and composition. The resilience of foundation species and the ecosystem functions they provide depends on their phenotypic and genetic responses to spatial and temporal shifts in environmental conditions. In this review, we explore what is known about the causes and consequences of adaptive genetic differentiation in marine foundation species over spatial scales shorter than dispersal capabilities (i.e., microgeographic scales). We describe the strength of coupling field and laboratory experiments with population genetic techniques to illuminate patterns of local adaptation, and we illustrate this approach by using several foundation species. Among the major themes that emerge from our review include (1) adaptive differentiation of marine foundation species repeatedly evolves along vertical (i.e., elevation or depth) gradients, and (2) mating system and phenology may facilitate this differentiation. Microgeographic adaptation is an understudied mechanism potentially underpinning the resilience of many sessile marine species, and this evolutionary mechanism likely has particularly important consequences for the ecosystem functions provided by foundation species.
Collapse
|
8
|
Entrambasaguas L, Ruocco M, Verhoeven KJF, Procaccini G, Marín-Guirao L. Gene body DNA methylation in seagrasses: inter- and intraspecific differences and interaction with transcriptome plasticity under heat stress. Sci Rep 2021; 11:14343. [PMID: 34253765 PMCID: PMC8275578 DOI: 10.1038/s41598-021-93606-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The role of DNA methylation and its interaction with gene expression and transcriptome plasticity is poorly understood, and current insight comes mainly from studies in very few model plant species. Here, we study gene body DNA methylation (gbM) and gene expression patterns in ecotypes from contrasting thermal environments of two marine plants with contrasting life history strategies in order to explore the potential role epigenetic mechanisms could play in gene plasticity and responsiveness to heat stress. In silico transcriptome analysis of CpGO/E ratios suggested that the bulk of Posidonia oceanica and Cymodocea nodosa genes possess high levels of intragenic methylation. We also observed a correlation between gbM and gene expression flexibility: genes with low DNA methylation tend to show flexible gene expression and plasticity under changing conditions. Furthermore, the empirical determination of global DNA methylation (5-mC) showed patterns of intra and inter-specific divergence that suggests a link between methylation level and the plants' latitude of origin and life history. Although we cannot discern whether gbM regulates gene expression or vice versa, or if other molecular mechanisms play a role in facilitating transcriptome responsiveness, our findings point to the existence of a relationship between gene responsiveness and gbM patterns in marine plants.
Collapse
Affiliation(s)
- Laura Entrambasaguas
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Miriam Ruocco
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Gabriele Procaccini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Lazaro Marín-Guirao
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/Varadero, 30740, San Pedro del Pinatar, Spain
| |
Collapse
|
9
|
Hu ZM, Zhang QS, Zhang J, Kass JM, Mammola S, Fresia P, Draisma SGA, Assis J, Jueterbock A, Yokota M, Zhang Z. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol Ecol 2021; 30:3840-3855. [PMID: 34022079 DOI: 10.1111/mec.15996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023]
Abstract
Seagrasses play a vital role in structuring coastal marine ecosystems, but their distributional range and genetic diversity have declined rapidly in recent decades. To improve conservation of seagrass species, it is important to predict how climate change may impact their ranges. Such predictions are typically made with correlative species distribution models (SDMs), which can estimate a species' potential distribution under present and future climatic scenarios given species' presence data and climatic predictor variables. However, these models are typically constructed with species-level data, and thus ignore intraspecific genetic variability, which can give rise to populations with adaptations to heterogeneous climatic conditions. Here, we explore the link between intraspecific adaptation and niche differentiation in Thalassia hemprichii, a seagrass broadly distributed in the tropical Indo-Pacific Ocean and a crucial provider of habitat for numerous marine species. By retrieving and re-analysing microsatellite data from previous studies, we delimited two distinct phylogeographical lineages within the nominal species and found an intermediate level of differentiation in their multidimensional environmental niches, suggesting the possibility for local adaptation. We then compared projections of the species' habitat suitability under climate change scenarios using species-level and lineage-level SDMs. In the Central Tropical Indo-Pacific region, models for both levels predicted considerable range contraction in the future, but the lineage-level models predicted more severe habitat loss. Importantly, the two modelling approaches predicted opposite patterns of habitat change in the Western Tropical Indo-Pacific region. Our results highlight the necessity of conserving distinct populations and genetic pools to avoid regional extinction due to climate change and have important implications for guiding future management of seagrasses.
Collapse
Affiliation(s)
- Zi-Min Hu
- Ocean School, YanTai University, Yantai, China
| | | | - Jie Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland.,Molecular Ecology Group (MEG), Water Research Institute (IRSA, National Research Council of Italy (CNR, Verbania Pallanza, Italy
| | - Pablo Fresia
- Pasteur+INIA Joint Unit (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Stefano G A Draisma
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jorge Assis
- CCMAR, University of Algarve, Faro, Portugal
| | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Masashi Yokota
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Zhixin Zhang
- Arctic Research Center, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Nguyen HM, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G. Seagrasses in an era of ocean warming: a review. Biol Rev Camb Philos Soc 2021; 96:2009-2030. [PMID: 34014018 DOI: 10.1111/brv.12736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy.,Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, C/Varadero, San Pedro del Pinatar, Murcia, 30740, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | | |
Collapse
|
11
|
Pazzaglia J, Reusch TBH, Terlizzi A, Marín‐Guirao L, Procaccini G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol Appl 2021; 14:1181-1201. [PMID: 34025759 PMCID: PMC8127715 DOI: 10.1111/eva.13212] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Coastal oceans are particularly affected by rapid and extreme environmental changes with dramatic consequences for the entire ecosystem. Seagrasses are key ecosystem engineering or foundation species supporting diverse and productive ecosystems along the coastline that are particularly susceptible to fast environmental changes. In this context, the analysis of phenotypic plasticity could reveal important insights into seagrasses persistence, as it represents an individual property that allows species' phenotypes to accommodate and react to fast environmental changes and stress. Many studies have provided different definitions of plasticity and related processes (acclimation and adaptation) resulting in a variety of associated terminology. Here, we review different ways to define phenotypic plasticity with particular reference to seagrass responses to single and multiple stressors. We relate plasticity to the shape of reaction norms, resulting from genotype by environment interactions, and examine its role in the presence of environmental shifts. The potential role of genetic and epigenetic changes in underlying seagrasses plasticity in face of environmental changes is also discussed. Different approaches aimed to assess local acclimation and adaptation in seagrasses are explored, explaining strengths and weaknesses based on the main results obtained from the most recent literature. We conclude that the implemented experimental approaches, whether performed with controlled or field experiments, provide new insights to explore the basis of plasticity in seagrasses. However, an improvement of molecular analysis and the application of multi-factorial experiments are required to better explore genetic and epigenetic adjustments to rapid environmental shifts. These considerations revealed the potential for selecting the best phenotypes to promote assisted evolution with fundamental implications on restoration and preservation efforts.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Thorsten B. H. Reusch
- Marine Evolutionary EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Antonio Terlizzi
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnNaplesItaly
| | - Lázaro Marín‐Guirao
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Seagrass Ecology GroupOceanographic Center of MurciaSpanish Institute of OceanographyMurciaSpain
| | - Gabriele Procaccini
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
12
|
The Genetic Component of Seagrass Restoration: What We Know and the Way Forwards. WATER 2021. [DOI: 10.3390/w13060829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seagrasses are marine flowering plants providing key ecological services and functions in coasts and estuaries across the globe. Increased environmental changes fueled by human activities are affecting their existence, compromising natural habitats and ecosystems’ biodiversity and functioning. In this context, restoration of disturbed seagrass environments has become a worldwide priority to reverse ecosystem degradation and to recover ecosystem functionality and associated services. Despite the proven importance of genetic research to perform successful restoration projects, this aspect has often been overlooked in seagrass restoration. Here, we aimed to provide a comprehensive perspective of genetic aspects related to seagrass restoration. To this end, we first reviewed the importance of studying the genetic diversity and population structure of target seagrass populations; then, we discussed the pros and cons of different approaches used to restore and/or reinforce degraded populations. In general, the collection of genetic information and the development of connectivity maps are critical steps for any seagrass restoration activity. Traditionally, the selection of donor population preferred the use of local gene pools, thought to be the best adapted to current conditions. However, in the face of rapid ocean changes, alternative approaches such as the use of climate-adjusted or admixture genotypes might provide more sustainable options to secure the survival of restored meadows. Also, we discussed different transplantation strategies applied in seagrasses and emphasized the importance of long-term seagrass monitoring in restoration. The newly developed information on epigenetics as well as the application of assisted evolution strategies were also explored. Finally, a view of legal and ethical issues related to national and international restoration management is included, highlighting improvements and potential new directions to integrate with the genetic assessment. We concluded that a good restoration effort should incorporate: (1) a good understanding of the genetic structure of both donors and populations being restored; (2) the analysis of local environmental conditions and disturbances that affect the site to be restored; (3) the analysis of local adaptation constraints influencing the performances of donor populations and native plants; (4) the integration of distribution/connectivity maps with genetic information and environmental factors relative to the target seagrass populations; (5) the planning of long-term monitoring programs to assess the performance of the restored populations. The inclusion of epigenetic knowledge and the development of assisted evolution programs are strongly hoped for the future.
Collapse
|
13
|
Marín-Guirao L, Entrambasaguas L, Ruiz JM, Procaccini G. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol Ecol 2019; 28:2486-2501. [PMID: 30938465 DOI: 10.1111/mec.15089] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
Abstract
The Mediterranean Sea is particularly vulnerable to warming and the abrupt declines experienced by the endemic Posidonia oceanica populations after recent heatwaves have forecasted severe consequences for the ecological functions and socio-economical services this habitat forming species provides. Nevertheless, this highly clonal and long-lived species could be more resilient to warming than commonly thought since heat-sensitive plants massively bloomed after a simulated heatwave, which provides the species with an opportunity to adapt to climate change. Taking advantage of this unexpected plant response, we investigated for the first time the molecular and physiological mechanisms involved in seagrass flowering through the transcriptomic analysis of bloomed plants. We also aimed to identify if flowering is a stress-induced response as suggested from the fact that heat-sensitive but not heat-tolerant plants flowered. The transcriptomic profiles of flowered plants showed a strong metabolic activation of sugars and hormones and indications of an active transport of these solutes within the plant, most likely to induce flower initiation in the apical meristem. Preflowered plants also activated numerous epigenetic-related genes commonly used by plants to regulate the expression of key floral genes and stress-tolerance genes, which could be interpreted as a mechanism to survive and optimize reproductive success under stress conditions. Furthermore, these plants provided numerous molecular clues suggesting that the factor responsible for the massive flowering of plants from cold environments (heat-sensitive) can be considered as a stress. Heat-stress induced flowering may thus be regarded as an ultimate response to survive extreme warming events with potential adaptive consequences for the species. Fitness implications of this unexpected stress-response and the potential consequences on the phenotypic plasticity (acclimation) and evolutionary (adaptation) opportunity of the species to ocean warming are finally discussed.
Collapse
Affiliation(s)
| | | | - Juan M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, San Pedro del Pinatar, Spain
| | | |
Collapse
|