1
|
Du K, Deusch O, Bezrukov I, Lanz C, Guiguen Y, Hoffmann M, Habring A, Weigel D, Schartl M, Dreyer C. Identification of the male-specific region on the guppy Y Chromosome from a haplotype-resolved assembly. Genome Res 2025; 35:489-498. [PMID: 40044220 PMCID: PMC11960691 DOI: 10.1101/gr.279582.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025]
Abstract
The guppy Y Chromosome has been a paradigmatic model for studying the genetics of sex-linked traits and Y Chromosome-driven evolution for more than a century. Despite strong efforts, knowledge on genomic organization and molecular differentiation of the sex chromosome pair remains unsatisfactory and partly contradictory with respect to regions of reduced recombination. Especially the border between pseudoautosomal and male-specific regions of the Y has not been defined so far. To circumvent the problems in assigning the repeat-rich differentiated hemizygous or heterozygous sequences of the sex chromosome pair, we sequenced a YY male generated by a cross of a sex-reversed Maculatus strain XY female to a normal XY male from the inbred Guanapo population. High-molecular-weight genomic DNA from the YY male was sequenced on the Pacific Biosciences platform, and both Y haplotypes were reconstructed by Trio binning. By mapping of male specific SNPs and RADseq sequences, we identify a single male specific-region of ∼5 Mb length at the distal end of the Y (MSY). Sequence divergence between X and Y in the segment is on average five times higher than in the proximal part in agreement with reduced recombination. The MSY is enriched for repeats and transposons but does not differ in the content of coding genes from the X, indicating that genic degeneration has not progressed to a measurable degree.
Collapse
Affiliation(s)
- Kang Du
- Xiphophorus Genetic Stock Center, Institute for Molecular Life Sciences, Texas State University, San Marcos, Texas 78666, USA
| | - Oliver Deusch
- Max Planck Institute for Biology Tübingen, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Ilja Bezrukov
- Max Planck Institute for Biology Tübingen, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Max Planck Institute for Biology Tübingen, Department of Molecular Biology, 72076 Tübingen, Germany
| | | | - Margarete Hoffmann
- Max Planck Institute for Biology Tübingen, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Anette Habring
- Max Planck Institute for Biology Tübingen, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Institute for Molecular Life Sciences, Texas State University, San Marcos, Texas 78666, USA;
- Theodor Boveri Institute, Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Research Department for Limnology, University of Innsbruck, 5130 Mondsee, Austria
| | - Christine Dreyer
- Max Planck Institute for Biology Tübingen, Department of Molecular Biology, 72076 Tübingen, Germany;
| |
Collapse
|
2
|
Moulistanos A, Papasakellariou K, Kavakiotis I, Gkagkavouzis K, Karaiskou N, Antonopoulou E, Triantafyllidis A, Papakostas S. Genomic Signatures of Domestication in European Seabass ( Dicentrarchus labrax L.) Reveal a Potential Role for Epigenetic Regulation in Adaptation to Captivity. Ecol Evol 2024; 14:e70512. [PMID: 39629177 PMCID: PMC11612516 DOI: 10.1002/ece3.70512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
Genome scans provide a comprehensive method to explore genome-wide variation associated with traits under study. However, linking individual genes to broader functional groupings and pathways is often challenging, yet crucial for understanding the evolutionary mechanisms underlying these traits. This task is particularly relevant for multi-trait processes such as domestication, which are influenced by complex interactions between numerous genetic and non-genetic factors, including epigenetic regulation. As various traits within the broader spectrum of domestication are selected in concert over time, this process offers an opportunity to identify broader functional overlaps and understand the integrated genetic architecture underlying these traits. In this study, we analyzed approximately 600,000 SNPs from a Pool-Seq experiment comparing eight natural-origin and 12 farmed populations of European seabass in the Mediterranean Sea region. We implemented two genome scan approaches and focused on genomic regions supported by both methods, resulting in the identification of 96 candidate genes, including nine CpG islands, which highligt potential epigenetic influences. Many of these genes and CpG islands are in linkage groups previously associated with domestication-related traits. The most significantly overrepresented molecular function was "oxidoreductase activity". Furthermore, a dense network of interactions was identified, connecting 22 of the candidate genes. Within this network, the most significantly enriched pathways and central genes were involved in "chromatin organization", highlighting another potential epigenetic mechanism. Altogether, our findings underscore the utility of interactome-assisted pathway analysis in elucidating the genomic architecture of polygenic traits and suggest that epigenetic regulation may play a crucial role in the domestication of European seabass.
Collapse
Affiliation(s)
- Aristotelis Moulistanos
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Konstantinos Papasakellariou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis Kavakiotis
- Department of Science and TechnologyInternational Hellenic UniversityThessalonikiGreece
| | - Konstantinos Gkagkavouzis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Nikoleta Karaiskou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Spiros Papakostas
- Department of Science and TechnologyInternational Hellenic UniversityThessalonikiGreece
| |
Collapse
|
3
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Götsch H, Bürger R. Polygenic dynamics underlying the response of quantitative traits to directional selection. Theor Popul Biol 2024; 158:21-59. [PMID: 38677378 DOI: 10.1016/j.tpb.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
We study the response of a quantitative trait to exponential directional selection in a finite haploid population, both at the genetic and the phenotypic level. We assume an infinite sites model, in which the number of new mutations per generation in the population follows a Poisson distribution (with mean Θ) and each mutation occurs at a new, previously monomorphic site. Mutation effects are beneficial and drawn from a distribution. Sites are unlinked and contribute additively to the trait. Assuming that selection is stronger than random genetic drift, we model the initial phase of the dynamics by a supercritical Galton-Watson process. This enables us to obtain time-dependent results. We show that the copy-number distribution of the mutant in generation n, conditioned on non-extinction until n, is described accurately by the deterministic increase from an initial distribution with mean 1. This distribution is related to the absolutely continuous part W+ of the random variable, typically denoted W, that characterizes the stochasticity accumulating during the mutant's sweep. A suitable transformation yields the approximate dynamics of the mutant frequency distribution in a Wright-Fisher population of size N. Our expression provides a very accurate approximation except when mutant frequencies are close to 1. On this basis, we derive explicitly the (approximate) time dependence of the expected mean and variance of the trait and of the expected number of segregating sites. Unexpectedly, we obtain highly accurate approximations for all times, even for the quasi-stationary phase when the expected per-generation response and the trait variance have equilibrated. The latter refine classical results. In addition, we find that Θ is the main determinant of the pattern of adaptation at the genetic level, i.e., whether the initial allele-frequency dynamics are best described by sweep-like patterns at few loci or small allele-frequency shifts at many. The number of segregating sites is an appropriate indicator for these patterns. The selection strength determines primarily the rate of adaptation. The accuracy of our results is tested by comprehensive simulations in a Wright-Fisher framework. We argue that our results apply to more complex forms of directional selection.
Collapse
Affiliation(s)
- Hannah Götsch
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria; Vienna Graduate School of Population Genetics, Austria.
| | - Reinhard Bürger
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Riesch R, Arriaga LR, Schlupp I. Sex-specific life-history trait expression in hybrids of a cave- and surface-dwelling fish ( Poecilia mexicana, Poeciliidae). Curr Zool 2024; 70:421-429. [PMID: 39176061 PMCID: PMC11336658 DOI: 10.1093/cz/zoad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/24/2023] [Indexed: 08/24/2024] Open
Abstract
Evaluating the fitness of hybrids can provide important insights into genetic differences between species or diverging populations. We focused on surface- and cave-ecotypes of the widespread Atlantic molly Poecilia mexicana and raised F1 hybrids of reciprocal crosses to sexual maturity in a common-garden experiment. Hybrids were reared in a fully factorial 2 × 2 design consisting of lighting (light vs. darkness) and resource availability (high vs. low food). We quantified survival, ability to realize their full reproductive potential (i.e., completed maturation for males and 3 consecutive births for females) and essential life-history traits. Compared to the performance of pure cave and surface fish from a previous experiment, F1s had the highest death rate and the lowest proportion of fish that reached their full reproductive potential. We also uncovered an intriguing pattern of sex-specific phenotype expression, because male hybrids expressed cave molly life histories, while female hybrids expressed surface molly life histories. Our results provide evidence for strong selection against hybrids in the cave molly system, but also suggest a complex pattern of sex-specific (opposing) dominance, with certain surface molly genes being dominant in female hybrids and certain cave molly genes being dominant in male hybrids.
Collapse
Affiliation(s)
- Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Luis R Arriaga
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
6
|
Chang Y, Wu S, Li J, Bao H, Wu C. Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses. Int J Mol Sci 2024; 25:2175. [PMID: 38396851 PMCID: PMC10888696 DOI: 10.3390/ijms25042175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.
Collapse
Affiliation(s)
| | | | | | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.W.); (J.L.); (C.W.)
| | | |
Collapse
|
7
|
Sherpa S, Paris JR, Silva‐Rocha I, Di Canio V, Carretero MA, Ficetola GF, Salvi D. Genetic depletion does not prevent rapid evolution in island-introduced lizards. Ecol Evol 2023; 13:e10721. [PMID: 38034325 PMCID: PMC10682264 DOI: 10.1002/ece3.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Experimental introductions of species have provided some of the most tractable examples of rapid phenotypic changes, which may reflect plasticity, the impact of stochastic processes, or the action of natural selection. Yet to date, very few studies have investigated the neutral and potentially adaptive genetic impacts of experimental introductions. We dissect the role of these processes in shaping the population differentiation of wall lizards in three Croatian islands (Sušac, Pod Kopište, and Pod Mrčaru), including the islet of Pod Mrčaru, where experimentally introduced lizards underwent rapid (~30 generations) phenotypic changes associated with a shift from an insectivorous to a plant-based diet. Using a genomic approach (~82,000 ddRAD loci), we confirmed a founder effect during introduction and very low neutral genetic differentiation between the introduced population and its source. However, genetic depletion did not prevent rapid population growth, as the introduced lizards exhibited population genetic signals of expansion and are known to have reached a high density. Our genome-scan analysis identified just a handful of loci showing large allelic shifts between ecologically divergent populations. This low overall signal of selection suggests that the extreme phenotypic differences observed among populations are determined by a small number of large-effect loci and/or that phenotypic plasticity plays a major role in phenotypic changes. Nonetheless, functional annotation of the outlier loci revealed some candidate genes relevant to diet-induced adaptation, in agreement with the hypothesis of directional selection. Our study provides important insights on the evolutionary potential of bottlenecked populations in response to new selective pressures on short ecological timescales.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Josephine R. Paris
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'AmbienteUniversità degli Studi dell'AquilaL'Aquila‐CoppitoItaly
| | - Iolanda Silva‐Rocha
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Viola Di Canio
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Miguel Angel Carretero
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | | | - Daniele Salvi
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'AmbienteUniversità degli Studi dell'AquilaL'Aquila‐CoppitoItaly
| |
Collapse
|
8
|
Lin Y, Darolti I, van der Bijl W, Morris J, Mank JE. Extensive variation in germline de novo mutations in Poecilia reticulata. Genome Res 2023; 33:1317-1324. [PMID: 37442578 PMCID: PMC10547258 DOI: 10.1101/gr.277936.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
The rate of germline mutation is fundamental to evolutionary processes, as it generates the variation upon which selection acts. The guppy, Poecilia reticulata, is a model of rapid adaptation, however the relative contribution of standing genetic variation versus de novo mutation (DNM) to evolution in this species remains unclear. Here, we use pedigree-based approaches to quantify and characterize germline DNMs in three large guppy families. Our results suggest germline mutation rate in the guppy varies substantially across individuals and families. Most DNMs are shared across multiple siblings, suggesting they arose during early embryonic development. DNMs are randomly distributed throughout the genome, and male-biased mutation rate is low, as would be expected from the short guppy generation time. Overall, our study shows remarkable variation in germline mutation rate and provides insights into rapid evolution of guppies.
Collapse
Affiliation(s)
- Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada;
| | - Iulia Darolti
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jake Morris
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
9
|
Reid BN, Star B, Pinsky ML. Detecting parallel polygenic adaptation to novel evolutionary pressure in wild populations: a case study in Atlantic cod ( Gadus morhua). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220190. [PMID: 37246382 DOI: 10.1098/rstb.2022.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/13/2023] [Indexed: 05/30/2023] Open
Abstract
Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod (Gadus morhua) were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially replicated temporal genomic data to test for a shared polygenic adaptive response to fishing using methods previously applied to evolve-and-resequence experiments. Cod populations on either side of the Atlantic show covariance in allele frequency change across the genome that are characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree of covariance in allele frequency change observed in cod is unlikely to be explained by neutral processes or background selection. As human pressures on wild populations continue to increase, understanding and attributing modes of adaptation using methods similar to those demonstrated here will be important in identifying the capacity for adaptive responses and evolutionary rescue. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Brendan N Reid
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | - Bastiaan Star
- Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| |
Collapse
|
10
|
Poore HA, Stuart YE, Rennison DJ, Roesti M, Hendry AP, Bolnick DI, Peichel CL. Repeated genetic divergence plays a minor role in repeated phenotypic divergence of lake-stream stickleback. Evolution 2023; 77:110-122. [PMID: 36622692 DOI: 10.1093/evolut/qpac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 01/10/2023]
Abstract
Recent studies have shown that the repeated evolution of similar phenotypes in response to similar ecological conditions (here "parallel evolution") often occurs through mutations in the same genes. However, many previous studies have focused on known candidate genes in a limited number of systems. Thus, the question of how often parallel phenotypic evolution is due to parallel genetic changes remains open. Here, we used quantitative trait locus (QTL) mapping in F2 intercrosses between lake and stream threespine stickleback (Gasterosteus aculeatus) from four independent watersheds on Vancouver Island, Canada to determine whether the same QTL underlie divergence in the same phenotypes across, between, and within watersheds. We find few parallel QTL, even in independent crosses from the same watershed or for phenotypes that have diverged in parallel. These findings suggest that different mutations can lead to similar phenotypes. The low genetic repeatability observed in these lake-stream systems contrasts with the higher genetic repeatability observed in other stickleback systems. We speculate that differences in evolutionary history, gene flow, and/or the strength and direction of selection might explain these differences in genetic parallelism and emphasize that more work is needed to move beyond documenting genetic parallelism to identifying the underlying causes.
Collapse
Affiliation(s)
- Hilary A Poore
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Diana J Rennison
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States
| | - Marius Roesti
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Daniel I Bolnick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
11
|
Paris JR, Whiting JR, Daniel MJ, Ferrer Obiol J, Parsons PJ, van der Zee MJ, Wheat CW, Hughes KA, Fraser BA. A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy. Nat Commun 2022; 13:1233. [PMID: 35264556 PMCID: PMC8907176 DOI: 10.1038/s41467-022-28895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a ‘supergene’ on the sex chromosome. Here, we phenotype and genotype four guppy ‘Iso-Y lines’, where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis. Extreme colour pattern variation in male Trinidadian guppies are influenced by natural selection and sexual selection. Here, the authors phenotype and genotype four guppy lineages finding that colour pattern is associated with a diverse haplotype on an autosome.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - James R Whiting
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Mitchel J Daniel
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Joan Ferrer Obiol
- Departament de Microbiologia, Genètica i Estadística and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Paul J Parsons
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.,NERC Environmental Omics Facility, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mijke J van der Zee
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Bonnie A Fraser
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|