1
|
Schmidt TL. Evolutionary consequences of long-distance dispersal in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101325. [PMID: 39675628 DOI: 10.1016/j.cois.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Long-distance dispersal (LDD) provides a means for mosquitoes to invade new regions and spread adaptive alleles, including those conferring insecticide resistance. Most LDD takes place on human transport vessels and will typically be rarer and more directionally constrained than active flight but can connect populations and regions that are otherwise mutually inaccessible. These features make LDD worthy of specific consideration in mosquito research. This paper reviews recent evolutionary research on LDD and its consequences for mosquito populations and mosquito control. LDD is the main source of mosquito range expansions, and genomic methods can now trace the origins of new invasions to specific towns or cities. Genomic methods can also give a rough indication of the number of invaders, which if very small may lead to the stochastic loss of advantageous alleles during invasion bottlenecks. Once invasions are established, LDD spreads adaptive alleles between populations. Emerging insights into insecticide resistance evolution indicate that LDD has repeatedly spread resistance mutations across global species ranges, but these broad patterns are convoluted by two other evolutionary processes: parallel adaptation at the same gene or gene cluster and polygenic adaptation at different genes in different populations. Together, these processes have produced patterns of similarity and dissimilarity at resistance genes that are decoupled from geographical distance. LDD within cities is less well studied but is important for planning and evaluating local control efforts. Urban investigations of LDD may help identify areas experiencing weaker selection pressures from insecticides and isolated areas to target for control.
Collapse
Affiliation(s)
- Thomas L Schmidt
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
2
|
Le Goff G, Damiens D, Ruttee AH, Jean F, Payet L, Lebon C, Taconet P, Gaudillat B, Habchi-Hanriot N, Dehecq JS, Simard F, Gouagna LC. Spatial and temporal characterization of Aedes albopictus oviposition activity in candidate urban settings for sterile insect technique testing in La Reunion Island. Infect Dis Poverty 2024; 13:78. [PMID: 39456106 PMCID: PMC11515404 DOI: 10.1186/s40249-024-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Understanding of mosquito spatiotemporal dynamics is central to characterize candidate field sites for the sterile insect technique (SIT) testing, and is critical to the effective implementation and evaluation of pilot sterile male release programs. Here, we present a detailed description of Aedes albopictus (Skuse) egg-laying activity over a 6-year period in urban areas identified as potential SIT testing sites on Reunion Island. METHOD Weekly entomological collections using ovitraps were carried out in residential and adjacent uninhabited habitats in two urban areas, Duparc and Bois Rouge, in the municipality of Sainte Marie, Reunion Island. Time-series data incorporating the frequency of positive ovitraps and the total number of eggs/ovitrap recorded each time at each locality during the study period from May 2013 to December 2018 were analyzed with multifaceted statistical approaches including descriptive statistics and spatiotemporal analyses incorporating the role of climatic factors on overall ovitrap productivity. RESULTS During the ovitrap survey, the proportion of egg-positive ovitraps differed among study sites (χ2 = 50.21, df = 2, P < 0.001), being relatively lower in Duparc (89.5%) than in Bois-Rouges (95.3%) and the adjacent buffer zone (91.2%). Within each neighborhood, Ae. albopictus egg abundance varied by month in a roughly seasonal pattern marked by a single peak occurring more regularly February each year, a decline at the onset of the austral winter in July, followed by a period of lower ovitrap productivity in August and September. Fluctuation in both positivity rate and eggs densities per ovitraps were related to annual and seasonal variations in local temperature and rainfall (P < 0.001 in all cases). The spatial analysis also captured substantial between- and within-habitats heterogeneity, whereby the overall ovitrap productivity was higher in residential areas than in the buffer zone. CONCLUSIONS Collectively, these results reveal that the distribution of Ae. albopictus oviposition activity is shaped by local habitat heterogeneity and seasonal climatic factors. Overall, this study provides baseline insights into the reproductive dynamics of Ae. albopictus, which would assist in planning locally tailored SIT interventions, while addressing concerns related to focal areas of high egg-laying intensity and potential immigration of females from natural areas.
Collapse
Affiliation(s)
- Gilbert Le Goff
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - David Damiens
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Abdoul-Hamid Ruttee
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Frédéric Jean
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Laurent Payet
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Cyrille Lebon
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Paul Taconet
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
| | - Benjamin Gaudillat
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Nausicaa Habchi-Hanriot
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Jean-Sébastien Dehecq
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Frédéric Simard
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
| | - Louis-Clément Gouagna
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France.
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France.
| |
Collapse
|
3
|
North HL, Fu Z, Metz R, Stull MA, Johnson CD, Shirley X, Crumley K, Reisig D, Kerns DL, Gilligan T, Walsh T, Jiggins CD, Sword GA. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. Mol Biol Evol 2024; 41:msae129. [PMID: 38941083 PMCID: PMC11259193 DOI: 10.1093/molbev/msae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Zhen Fu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Richard Metz
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Matt A Stull
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Xanthe Shirley
- Animal and Plant Health Inspection Service, United States Department of Agriculture, College Station, TX, USA
| | - Kate Crumley
- Agrilife Extension, Texas A&M University, Wharton, TX, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, NC, 27962, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Todd Gilligan
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Tom Walsh
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
McGaughran A, Dhami MK, Parvizi E, Vaughan AL, Gleeson DM, Hodgins KA, Rollins LA, Tepolt CK, Turner KG, Atsawawaranunt K, Battlay P, Congrains C, Crottini A, Dennis TPW, Lange C, Liu XP, Matheson P, North HL, Popovic I, Rius M, Santure AW, Stuart KC, Tan HZ, Wang C, Wilson J. Genomic Tools in Biological Invasions: Current State and Future Frontiers. Genome Biol Evol 2024; 16:evad230. [PMID: 38109935 PMCID: PMC10776249 DOI: 10.1093/gbe/evad230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Dianne M Gleeson
- Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Carolyn K Tepolt
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kathryn G Turner
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Kamolphat Atsawawaranunt
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Carlos Congrains
- Entomology Section, Department of Plant and Environmental Protection Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
- US Department of Agriculture-Agricultural Research Service, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169–007, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claudia Lange
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Xiaoyue P Liu
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Iva Popovic
- School of the Environment, University of Queensland, Brisbane, QLD, Australia
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc, Blanes, Spain
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg 2006, South Africa
| | - Anna W Santure
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Katarina C Stuart
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Hui Zhen Tan
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Cui Wang
- The Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|