1
|
Tu S, Wang J, Yang P, He Y, Gong Z, Zhong W. Enhanced chlorogenic acid production from glucose via systematic metabolic engineering of Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:707-718. [PMID: 40248482 PMCID: PMC12002710 DOI: 10.1016/j.synbio.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 04/19/2025] Open
Abstract
Chlorogenic acid (CGA) is a valuable phenolic acid with various pharmaceutical functions. In our previous study, de novo synthesis of CGA in Saccharomyces cerevisiae was achieved. However, its yield required improvement before large scale production. In this study, systematic metabolic engineering strategy was used to reconstruct chassis cell S. cerevisiae YC0707 to enhance its CGA yield from glucose. To balance the supply of phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P), ZWF1 (encoding glucose-6-phosphate dehydrogenase) and GND1 (encoding 6-phosphogluconate dehydrogenase) were overexpressed by strong promoter P TEF1 swapping, thereby strengthening the pentose phosphate pathway. The mutant of phosphofructokinase (PFK2 S718D ) was further introduced to weaken the glycolytic pathway. Then, the p-coumaric acid synthesis capacity was enhanced by employing tyrosine ammonia lyase from Rhodotorula glutinis (RgTAL), ΔHAM1, and ΔYJL028W. Fusion expression of AtC4H (cinnamate-4-hydroxylase) and At4CL1 (4-coumarate CoA ligase 1), together with CsHQT (hydroxycinnamoyl CoA quinate transferase) and AtC3'H (p-coumaroyl shikimate 3-hydroxylase), improved biosynthetic flux to CGA. Subsequently, the microenvironment of P450 enzymes was improved by overexpressing INO2 (a transcription factor for lipid biosynthesis) and removal of heme oxygenase gene HMX1. Furthermore, screening potential transporters to facilitate CGA accumulation. Finally, we optimized the fermentation conditions. Using these strategies, CGA titers increased from 234.8 mg/L to 837.2 mg/L in shake flasks and reached 1.62 g/L in a 5-L bioreactor, representing the highest report in S. cerevisiae and providing new insights for CGA production.
Collapse
Affiliation(s)
- Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengming Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhixing Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Sobhy SE, Khalifa AM, Hafez EE, Elsherif DE. Biosynthesized sulfur nanoparticles: a novel strategy to enhance antioxidant secondary metabolites in Lotus arabicus L. callus cultures. BMC PLANT BIOLOGY 2025; 25:601. [PMID: 40335942 DOI: 10.1186/s12870-025-06573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Secondary metabolites are distinct compounds with significant medicinal value, yet their production and chemical synthesis present considerable challenges. This necessitates the development of innovative strategies to improve their yield. This study investigated the potential of biosynthesized sulfur nanoparticles (SNPs) as an eco-friendly elicitor to enhance the synthesis of antioxidant secondary metabolites in Lotus arabicus L. callus cultures. RESULTS After seven weeks, induced calli of L. arabicus L were transferred to MS media supplemented with SNPs at different concentrations (0, 25, 50, 100, and 200 mg/l). The results indicated that SNPs (100 mg/l) induced significantly higher profiles for biomass and secondary metabolite compared to the control treatments. Enzyme activities related to secondary metabolite biosynthesis, specifically phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) were enhanced in a dose-dependent manner, with the greatest increases observed at 100 mg/l SNPs. The SNPs also modulated oxidative stress markers (MDA and H2O2), generally improving callus growth conditions by reducing oxidative stress, except at the highest concentration of 200 mg/l. Additionally, the application of SNPs at 100 mg/l markedly upregulated the expression levels of six crucial genes in the biosynthesis pathway of secondary metabolites (chalcone synthase (CHS), phenylalanine ammonia lyase (PAL), flavonol synthase (FLS), chalcone isomerase (CHI), hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT), and deoxyxylulose phosphate reductoisomerase (DXR)). Quantitative HPLC profiling of 16 phenolic and flavonoid compounds revealed that supplementation with SNPs resulted in noticeable boots in the majority of the measured compounds with SNP supplementation. CONCLUSION Overall, the supplementation of SNPs in the culture media of L. arabicus L callus positively influenced secondary metabolite production at the molecular and physiological levels, increasing its potential for medicinal use.
Collapse
Affiliation(s)
- Sherien E Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934, Egypt
| | - Asmaa M Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), 11754 , Nasr City, Cairo, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934, Egypt
| | - Doaa E Elsherif
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Sozoniuk M, Petrova M, Mishev K, Miladinova-Georgieva K, Geneva M. Identification and validation of reference genes with stable expression under elicitor treatments of the medicinal plant Arnica montana L. BMC PLANT BIOLOGY 2025; 25:546. [PMID: 40287638 PMCID: PMC12032789 DOI: 10.1186/s12870-025-06557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND In view of enhancing secondary metabolites biosynthesis in Arnica montana through elicitation, comprehensive studies are needed to fully understand the molecular background of biosynthetic pathways in this species. Analysis of transcriptional changes via RT-qPCR technique might shed light on the molecular mechanisms underlying plant reaction to elicitors. This study aimed to identify reference genes which are stably expressed in Arnica under methyl jasmonate, salicylic acid, and yeast extract treatment to provide the basis for current and future gene expression studies in this important medicinal plant. RESULTS The expression stability of nine candidate reference genes was evaluated using four widely used algorithms (geNorm, NormFinder, BestKeeper, and ΔCt method). A comprehensive analysis of the obtained results showed that the most stably expressed pair of genes under elicitation conditions was ATP-synthase and ACT. The PP2A and TUBb were the pair of least stable candidates as they presented substantial variation in transcript levels in response to elicitor agents. For validation purposes, the transcriptional profile of PAL, 4CL and HQT genes was analyzed. Substantial induction of two of these biosynthetic genes was confirmed after methyl jasmonate treatment. CONCLUSIONS The ATP-synthase in combination with ACT were identified as the best endogenous controls for RT-qPCR data normalization in elicitation studies of A. montana. The research outcomes shed light on transcriptional changes associated with arnica's response to elicitation and contribute to the understanding of secondary metabolism regulation in medicinal plants.
Collapse
Affiliation(s)
- Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, Lublin, 20 - 950, Poland.
| | - Maria Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| | - Kamelia Miladinova-Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| | - Maria Geneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, Sofia, 1113, Bulgaria
| |
Collapse
|
4
|
Zhang A, Liu J, Li W, Yang L, Duan W, Zhao P, Pu Z, Ding Y. Revealing the dynamic changes of metabolites and molecular mechanisms of chlorogenic acid accumulation during the leaf development of Vaccinium dunalianum based on multi-omic analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1440589. [PMID: 39544533 PMCID: PMC11560443 DOI: 10.3389/fpls.2024.1440589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Vaccinium dunalianum, a medicinal plant, is utilized for Quezui Tea production from its leaf buds and young leaves. Despite prior research on V. dunalianum revealing several medicinal compounds, the comprehensive variations in metabolites during its growth and development, along with the molecular mechanisms underlying high chlorogenic acid (CGA) yield, remain unclear. Through a joint analysis of transcriptomics and proteomics, our study first identified 15 key structural genes and 3 transcription factors influencing CGA biosynthesis in V. dunalianum, offering new evidence to understand its regulatory network. Furthermore, non-targeted metabolomics analysis provides the first extensive report on the metabolic profile of V. dunalianum, furnishing a valuable dataset for deeper exploration of its nutritional and medicinal value, and the development of a quality evaluation system for its product Quezui Tea. This study offers the most comprehensive molecular information on V. dunalianum, marking a significant step toward understanding and enhancing the plant's potential for medicinal and nutritional applications. Additionally, this study also reveals V. dunalianum holds promise as a natural antioxidant source for functional foods, providing data support for network pharmacology.
Collapse
Affiliation(s)
- Anmian Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jiaxin Liu
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Weicheng Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Lihong Yang
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Wenjin Duan
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Ping Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhiyu Pu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yong Ding
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
5
|
Chen Y, Shan L, Zheng W, Chen J, Deng L, Tian X, Xie R, Yang Y, Zhang L, Yang B. Global lysine succinylation analysis unveils post-translational regulation effect on phenylpropanoid metabolism remodeling during Lonicera japonica flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108978. [PMID: 39084169 DOI: 10.1016/j.plaphy.2024.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Lonicera japonica plays a significant role in traditional Chinese medicine and as a food source, making it a focus of studies on protein succinylation and its potential role in regulating secondary metabolism during flower development. This study aimed to clarify the regulatory mechanism of protein succinylation on phenylpropanoid-related phenotypic changes by conducting a global lysine succinylation proteomic analysis across different flowering stages. A total of 586 lysine succinylated peptides in 303 proteins were identified during early and late floral stages. Functional enrichment analysis revealed that succinylated proteins primarily participated in the tricarboxylic acid (TCA) cycle, amino acid metabolism, and secondary metabolism. The abundance of succinylated aspartate transaminase (AT), 4-coumarate-CoA ligase (4CL), and phenylalanine N-hydroxylase (CYP79A2) in phenylpropanoid metabolism varied during flower development. In vitro experiments demonstrated that succinylation increased AT activity while inhibited 4CL activity. Decreased levels of total flavonoids and phenolic acids indicated significant alterations in phenylpropanoid metabolism during later floral stages. These results suggest that succinylation of TCA cycle proteins not only influences flower development but also, together with AT-4CL-CYP79A2 co-succinylation, redirects phenylpropanoid metabolism during flower development in L. japonica.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxi Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jie Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Xu Tian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruili Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunhong Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Aseel DG, Ibrahim OM, Abdelkhalek A. Biosynthesized silver nanoparticles mediated by Ammi visnaga extract enhanced systemic resistance and triggered multiple defense-related genes, including SbWRKY transcription factors, against tobacco mosaic virus infection. BMC PLANT BIOLOGY 2024; 24:756. [PMID: 39107683 PMCID: PMC11305019 DOI: 10.1186/s12870-024-05449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Tobacco mosaic virus (TMV) is a highly infectious plant virus that affects a wide variety of plants and reduces crop yields around the world. Here, we assessed the effectiveness of using Ammi visnaga aqueous seed extract to synthesize silver nanoparticles (Ag-NPs) and their potential to combat TMV. Different techniques were used to characterize Ag-NPs, such as scanning and transmission electron microscopy (SEM, TEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). RESULTS TEM demonstrated that the synthesized Ag-NPs had a spherical form with an average size of 23-30 nm and a zeta potential value of -15.9 mV, while FTIR revealed various functional groups involved in Ag-NP stability and capping. Interestingly, the Pre-treatment of tobacco plants (protective treatment) with Ag-NPs at 100-500 µg/mL significantly suppressed viral symptoms, while the Post-treatment (curative treatment) delayed their appearance. Furthermore, protective and curative treatments significantly increased chlorophyll a and b, total flavonoids, total soluble carbohydrates, and antioxidant enzymes activity (PPO, POX and CAT). Simultaneously, the application of Ag-NPs resulted in a decrease in levels of oxidative stress markers (H2O2 and MDA). The RT-qPCR results and volcano plot analysis showed that the Ag-NPs treatments trigger and regulate the transcription of ten defense-related genes (SbWRKY-1, SbWRKY-2, JERF-3, GST-1, POD, PR-1, PR-2, PR-12, PAL-1, and HQT-1). The heatmap revealed that GST-1, the primary gene involved in anthocyanidin production, was consistently the most expressed gene across all treatments throughout the study. Analysis of the gene co-expression network revealed that SbWRKY-19 was the most central gene among the studied genes, followed by PR-12 and PR-2. CONCLUSIONS Overall, the reported antiviral properties (protective and/or curative) of biosynthesized Ag-NPs against TMV lead us to recommend using Ag-NPs as a simple, stable, and eco-friendly agent in developing pest management programs against plant viral infections.
Collapse
Affiliation(s)
- Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| | - Omar M Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| |
Collapse
|
7
|
Huang Y, Wang H, Zhang Y, Zhang P, Xiang Y, Zhang Y, Fu R. SCPL acyltransferases catalyze the metabolism of chlorogenic acid during purple coneflower seed germination. THE NEW PHYTOLOGIST 2024; 243:229-239. [PMID: 38666323 DOI: 10.1111/nph.19776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/05/2024] [Indexed: 06/07/2024]
Abstract
The metabolism of massively accumulated chlorogenic acid is crucial for the successful germination of purple coneflower (Echinacea purpurea (L.) Menoch). A serine carboxypeptidase-like (SCPL) acyltransferase (chicoric acid synthase, CAS) utilizes chlorogenic acid to produce chicoric acid during germination. However, it seems that the generation of chicoric acid lags behind the decrease in chlorogenic acid, suggesting an earlier route of chlorogenic acid metabolism. We discovered another chlorogenic acid metabolic product, 3,5-dicaffeoylquinic acid, which is produced before chicoric acid, filling the lag phase. Then, we identified two additional typical clade IA SCPL acyltransferases, named chlorogenic acid condensing enzymes (CCEs), that catalyze the biosynthesis of 3,5-dicaffeoylquinic acid from chlorogenic acid with different kinetic characteristics. Chlorogenic acid inhibits radicle elongation in a dose-dependent manner, explaining the potential biological role of SCPL acyltransferases-mediated continuous chlorogenic acid metabolism during germination. Both CCE1 and CCE2 are highly conserved among Echinacea species, supporting the observed metabolism of chlorogenic acid to 3,5-dicaffeoylquinic acid in two Echinacea species without chicoric acid accumulation. The discovery of SCPL acyltransferase involved in the biosynthesis of 3,5-dicaffeoylquinic acid suggests convergent evolution. Our research clarifies the metabolism strategy of chlorogenic acid in Echinacea species and provides more insight into plant metabolism.
Collapse
Affiliation(s)
- Yuqing Huang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hsihua Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yuting Zhang
- Chengdu Branch, Sichuan Provincial Academy of Natural Resource Sciences, Wild Plants Sharing and Service Platform of Sichuan Province, Chengdu, 610015, China
| | - Pingyu Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yuting Xiang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
8
|
Tarahi M, Gharagozlou M, Niakousari M, Hedayati S. Protein-Chlorogenic Acid Interactions: Mechanisms, Characteristics, and Potential Food Applications. Antioxidants (Basel) 2024; 13:777. [PMID: 39061846 PMCID: PMC11273606 DOI: 10.3390/antiox13070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The interactions between proteins and chlorogenic acid (CGA) have gained significant attention in recent years, not only as a promising approach to modify the structural and techno-functional properties of proteins but also to enhance their bioactive potential in food systems. These interactions can be divided into covalent (chemical or irreversible) and non-covalent (physical or reversible) linkages. Mechanistically, CGA forms covalent bonds with nucleophilic amino acid residues of proteins by alkaline, free radical, and enzymatic approaches, leading to changes in protein structure and functionality, such as solubility, emulsification properties, and antioxidant activity. In addition, the protein-CGA complexes can be obtained by hydrogen bonds, hydrophobic and electrostatic interactions, and van der Waals forces, each offering unique advantages and outcomes. This review highlights the mechanism of these interactions and their importance in modifying the structural, functional, nutritional, and physiological attributes of animal- and plant-based proteins. Moreover, the potential applications of these protein-CGA conjugates/complexes are explored in various food systems, such as beverages, films and coatings, emulsion-based delivery systems, and so on. Overall, this literature review provides an in-depth overview of protein-CGA interactions, offering valuable insights for future research to develop novel protein-based food and non-food products with improved nutritional and functional characteristics.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Maryam Gharagozlou
- Center for Organic Farming, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| |
Collapse
|
9
|
Luo Q, Chen P, Zong J, Gao J, Qin R, Wu C, Lv Q, Xu Y, Zhao T, Fu Y. Integrated transcriptomic and CGAs analysis revealed IbGLK1 is a key transcription factor for chlorogenic acid accumulation in sweetpotato (Ipomoea batatas [L.] Lam.) blades. Int J Biol Macromol 2024; 266:131045. [PMID: 38547942 DOI: 10.1016/j.ijbiomac.2024.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Sweetpotato blades are rich in the functional secondary metabolite chlorogenic acid (CGA), which deepen potential for effective utilization of the blade in industry. In this study, we evaluated the type and content of CGA in the blades of 16 sweetpotato genotypes and analyzed the correlation between CGA content and antioxidant capacity. Then we isolated and characterized IbGLK1, a GARP-type transcription factor, by comparative transcriptome analysis. A subcellular localization assay indicated that IbGLK1 is located in the nucleus. Overexpression and silencing of IbGLK1 in sweetpotato blade resulted in a 0.90-fold increase and 1.84-fold decrease, respectively, in CGA content compared to the control. Yeast one-hybrid and dual-luciferase assays showed that IbGLK1 binds and activates the promoters of IbHCT, IbHQT, IbC4H, and IbUGCT, resulting in the promotion of CGA biosynthesis. In conclusion, our study provides insights into a high-quality gene for the regulation of CGA metabolism and germplasm resources for breeding sweetpotato.
Collapse
Affiliation(s)
- Qingqing Luo
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Peitao Chen
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jikai Zong
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jilong Gao
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Ruihua Qin
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chunli Wu
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Qina Lv
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Yuanjiang Xu
- Chongqing Research Institute of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Tengfei Zhao
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Yufan Fu
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Al-Askar AA, Aseel DG, El-Gendi H, Sobhy S, Samy MA, Hamdy E, El-Messeiry S, Behiry SI, Elbeaino T, Abdelkhalek A. Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate ( Punica granatum L.) Peel Extract against Tobacco Mosaic Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112103. [PMID: 37299082 DOI: 10.3390/plants12112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3-3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.
Collapse
Affiliation(s)
- Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt
| | - Sherien Sobhy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Marwa A Samy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Esraa Hamdy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari, Via Ceglie 9, 70010 Valenzano Bari, Italy
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| |
Collapse
|
12
|
Torres-Contreras AM, Nair V, Senés-Guerrero C, Pacheco A, González-Agüero M, Ramos-Parra PA, Cisneros-Zevallos L, Jacobo-Velázquez DA. Cross-Talk and Physiological Role of Jasmonic Acid, Ethylene, and Reactive Oxygen Species in Wound-Induced Phenolic Biosynthesis in Broccoli. PLANTS (BASEL, SWITZERLAND) 2023; 12:1434. [PMID: 37050060 PMCID: PMC10097011 DOI: 10.3390/plants12071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Wounding induces phenolic biosynthesis in broccoli. However, there is scarce information about the physiological and molecular mechanisms governing this stress response. In the present study, a chemical-genetics approach was used to elucidate the role of reactive oxygen species (ROS), jasmonic acid (JA), and ethylene (ET) as stress-signaling molecules in the wound-induced phenolic biosynthesis in broccoli. Wounding activated the biosynthesis of ET and JA. Likewise, the wound-induced biosynthesis of ET and JA was regulated by ROS. JA activated primary metabolism, whereas the three signaling molecules activated phenylpropanoid metabolism. The signaling molecules inhibited the wound-induced activation of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) gene, which is involved in caffeoylquinic acids biosynthesis, and the main phenolics accumulated in wounded broccoli, suggesting that an alternative caffeoylquinic biosynthesis pathway is activated in the tissue due to wounding. ROS mediated the biosynthesis of most individual phenolic compounds evaluated. In conclusion, ROS, ET, and JA are essential in activating broccoli's primary and secondary metabolism, resulting in phenolic accumulation.
Collapse
Affiliation(s)
- Ana Mariel Torres-Contreras
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A & M University, College Station, TX 77843-2133, USA
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo Mexico, Zapopan C.P. 45138, Jalisco, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Mauricio González-Agüero
- Institute for Agricultural Research, INIA-La Platina, Postharvest Unit, Santa Rosa 11610, Santiago 8831314, Chile
| | - Perla A. Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A & M University, College Station, TX 77843-2133, USA
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo Mexico, Zapopan C.P. 45138, Jalisco, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. General Ramón Corona 2514, Nuevo Mexico, Zapopan C.P. 45138, Jalisco, Mexico
| |
Collapse
|
13
|
Chen Y, Xu N, Du L, Zhang J, Chen R, Zhu Q, Li W, Wu C, Peng G, Rao L, Wang Q. Light plays a critical role in the accumulation of chlorogenic acid in Lonicera macranthoides Hand.-Mazz. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:793-806. [PMID: 36848865 DOI: 10.1016/j.plaphy.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRT‒PCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Nan Xu
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Du
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Jinhao Zhang
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Rong Chen
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Qianfeng Zhu
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, PR China
| | - Guoping Peng
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| | - Liqun Rao
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiming Wang
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
14
|
Barta CÉ, Jenkins BC, Lindstrom DS, Zahnd AK, Székely G. The First Evidence of Gibberellic Acid's Ability to Modulate Target Species' Sensitivity to Honeysuckle ( Lonicera maackii) Allelochemicals. PLANTS (BASEL, SWITZERLAND) 2023; 12:1014. [PMID: 36903875 PMCID: PMC10005159 DOI: 10.3390/plants12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Invasive species employ competitive strategies such as releasing allelopathic chemicals into the environment that negatively impact native species. Decomposing Amur honeysuckle (Lonicera maackii) leaves leach various allelopathic phenolics into the soil, decreasing the vigor of several native species. Notable differences in the net negative impacts of L. maackii metabolites on target species were argued to depend on soil properties, the microbiome, the proximity to the allelochemical source, the allelochemical concentration, or environmental conditions. This study is the first to address the role of target species' metabolic properties in determining their net sensitivity to allelopathic inhibition by L. maackii. Gibberellic acid (GA3) is a critical regulator of seed germination and early development. We hypothesized that GA3 levels might affect the target sensitivity to allelopathic inhibitors and evaluated differences in the response of a standard (control, Rbr), a GA3-overproducing (ein), and a GA3-deficient (ros) Brassica rapa variety to L. maackii allelochemicals. Our results demonstrate that high GA3 concentrations substantially alleviate the inhibitory effects of L. maackii allelochemicals. A better understanding of the importance of target species' metabolic properties in their responses to allelochemicals will contribute to developing novel invasive species control and biodiversity conservation protocols and may contribute to applications in agriculture.
Collapse
Affiliation(s)
- Csengele Éva Barta
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Brian Colby Jenkins
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Devon Shay Lindstrom
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Alyka Kay Zahnd
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Guo L, Yao H, Chen W, Wang X, Ye P, Xu Z, Zhang S, Wu H. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. HORTICULTURE RESEARCH 2022; 9:uhac223. [PMID: 36479585 PMCID: PMC9720450 DOI: 10.1093/hr/uhac223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Globally, medicinal plant natural products (PNPs) are a major source of substances used in traditional and modern medicine. As we human race face the tremendous public health challenge posed by emerging infectious diseases, antibiotic resistance and surging drug prices etc., harnessing the healing power of medicinal plants gifted from mother nature is more urgent than ever in helping us survive future challenge in a sustainable way. PNP research efforts in the pre-genomic era focus on discovering bioactive molecules with pharmaceutical activities, and identifying individual genes responsible for biosynthesis. Critically, systemic biological, multi- and inter-disciplinary approaches integrating and interrogating all accessible data from genomics, metabolomics, structural biology, and chemical informatics are necessary to accelerate the full characterization of biosynthetic and regulatory circuitry for producing PNPs in medicinal plants. In this review, we attempt to provide a brief update on the current research of PNPs in medicinal plants by focusing on how different state-of-the-art biotechnologies facilitate their discovery, the molecular basis of their biosynthesis, as well as synthetic biology. Finally, we humbly provide a foresight of the research trend for understanding the biology of medicinal plants in the coming decades.
Collapse
Affiliation(s)
- Li Guo
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Weikai Chen
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Ye
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sisheng Zhang
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Seco A, Basílio N, Brás NF, Yoshida K, Kondo T, Oyama KI, Pina F. Intermolecular Copigmentation Between Delphinidin 3- O-Glucoside and Chlorogenic Acid: Taking into Account the Existence of Neutral and Negatively Charged Forms of the Copigment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11391-11400. [PMID: 36040134 DOI: 10.1021/acs.jafc.2c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stopped flow corroborated by UV-vis measurements allowed for the calculation of the copigmentation constants of delphinidin 3-O-glucoside with the neutral (CP) and negatively charged CP(-) forms of chlorogenic acid. Solutions of delphinidin 3-O-glucoside in the absence and presence of the copigment were equilibrated at several pH values in the acidic region, pH < 6, and reverse pH jumps monitored by stopped flow were carried out by adding sufficient acid to give flavylium cation at pH ≤ 1. This procedure allows for the separation of three contributions: (i) all flavylium cation and quinoidal base species, (ii) all hemiketal species, and (iii) all cis-chalcone species. Reverse pH jumps can also be performed at fixed pH versus copigment addition. The contribution of trans-chalcone, minor species in the present system, requires reverse pH jumps from the equilibrium followed by a common spectrophotometer. The system was also studied by UV-vis as a function of the copigment addition at different pH values. A global fitting of all experimental data allowed for determination of the copigmentation constants with flavylium cation, KAH+CP = 167 M-1, KAH+CP(-) = 338 M-1; and quinoidal base, KACP = 1041 M-1, KACP(-)= 221 M-1. No significant copigmentation was observed for hemiketal and chalcones. Computational calculations confirm different geometries for the interactions of flavylium cation and quinoidal base with the neutral or the negatively charged forms of the copigment as well as predict identical relative order for the binding energies of the four adducts.
Collapse
Affiliation(s)
- André Seco
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Tecnology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Tecnology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Natércia F Brás
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Kumi Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Tadao Kondo
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kin-Ichi Oyama
- Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Tecnology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Harding SA, Tuma TT, Aulakh K, Ortega MA, Ci D, Ou Y, Tsai CJ. Tonoplast Sucrose Trafficking Modulates Starch Utilization and Water Deficit Behavior in Poplar Leaves. PLANT & CELL PHYSIOLOGY 2022; 63:1117-1129. [PMID: 35727111 PMCID: PMC9381566 DOI: 10.1093/pcp/pcac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Leaf osmotic adjustment by the active accrual of compatible organic solutes (e.g. sucrose) contributes to drought tolerance throughout the plant kingdom. In Populus tremula x alba, PtaSUT4 encodes a tonoplast sucrose-proton symporter, whose downregulation by chronic mild drought or transgenic manipulation is known to increase leaf sucrose and turgor. While this may constitute a single drought tolerance mechanism, we now report that other adjustments which can occur during a worsening water deficit are damped when PtaSUT4 is constitutively downregulated. Specifically, we report that starch use and leaf relative water content (RWC) dynamics were compromised when plants with constitutively downregulated PtaSUT4 were subjected to a water deficit. Leaf RWC decreased more in wild-type and vector control lines than in transgenic PtaSUT4-RNAi (RNA-interference) or CRISPR (clustered regularly interspersed short palindromic repeats) knockout (KO) lines. The control line RWC decrease was accompanied by increased PtaSUT4 transcript levels and a mobilization of sucrose from the mesophyll-enriched leaf lamina into the midvein. The findings suggest that changes in SUT4 expression can increase turgor or decrease RWC as different tolerance mechanisms to reduced water availability. Evidence is presented that PtaSUT4-mediated sucrose partitioning between the vacuole and the cytosol is important not only for overall sucrose abundance and turgor, but also for reactive oxygen species (ROS) and antioxidant dynamics. Interestingly, the reduced capacity for accelerated starch breakdown under worsening water-deficit conditions was correlated with reduced ROS in the RNAi and KO lines. A role for PtaSUT4 in the orchestration of ROS, antioxidant, starch utilization and RWC dynamics during water stress and its importance in trees especially, with their high hydraulic resistances, is considered.
Collapse
Affiliation(s)
| | - Trevor T Tuma
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| | - Kavita Aulakh
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Maria A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| | - Dong Ci
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yongbin Ou
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Biotechnology, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| |
Collapse
|
18
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
19
|
Comparative transcriptome and weighted correlation network analyses reveal candidate genes involved in chlorogenic acid biosynthesis in sweet potato. Sci Rep 2022; 12:2770. [PMID: 35177832 PMCID: PMC8854667 DOI: 10.1038/s41598-022-06794-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorogenic acids (CGAs) are important secondary metabolites produced in sweet potato. However, the mechanisms of their biosynthesis and regulation remain unclear. To identify potential genes involved in CGA biosynthesis, analysis of the dynamic changes in CGA components and RNA sequencing were performed on young leaves (YL), mature leaves (ML), young stems (YS), mature stems (MS) and storage roots (SR). Accordingly, we found that the accumulation of six CGA components varied among the different tissues and developmental stages, with YS and YL recording the highest levels, while SR exhibited low levels. Moreover, the transcriptome analysis yielded 59,287 unigenes, 3,767 of which were related to secondary-metabolite pathways. The differentially expressed genes (DEGs) were identified based on CGA content levels by comparing the different samples, including ML vs. YL, MS vs. YS, SR vs. YL and SR vs. YS. A total of 501 common DEGs were identified, and these were mainly implicated in the secondary metabolites biosynthesis. Additionally, eight co-expressed gene modules were identified following weighted gene co-expression network analysis, while genes in darkgrey module were highly associated with CGA accumulation. Darkgrey module analysis revealed that 12 unigenes encoding crucial enzymes (PAL, 4CL, C4H, C3H and HCT/HQT) and 42 unigenes encoding transcription factors (MYB, bHLH, WD40, WRKY, ERF, MADS, GARS, bZIP and zinc finger protein) had similar expression patterns with change trends of CGAs, suggesting their potential roles in CGA metabolism. Our findings provide new insights into the biosynthesis and regulatory mechanisms of CGA pathway, and will inform future efforts to build a genetically improve sweet potato through the breeding of high CGA content varieties.
Collapse
|
20
|
Cai Z, Wang C, Chen C, Zou L, Yin S, Liu S, Yuan J, Wu N, Liu X. Comparative transcriptome analysis reveals variations of bioactive constituents in Lonicera japonica flowers under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:87-96. [PMID: 35114506 DOI: 10.1016/j.plaphy.2022.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/25/2023]
Abstract
Lonicera japonica flowers (LJF) is a traditional Chinese medicine packed with phenols constituents and widely used in the treatments of various diseases throughout the world. However, there is still very little known on how LJF identifies and resists salt stress. Here in, we systematically investigated the effect of salt on the phenotypic, metabolite, and transcriptomic in LJF. During long term stress (35 days), 1055 differential expression genes (DEGs) involved in the biosynthesis of secondary metabolites were screened through transcriptome analysis, among which the candidate genes and pathways involved in phenols biosynthesis were highlighted; and performed by phylogenetic tree analysis and multiple nucleotide sequence alignment. Ninety compounds were identified and their relative levels were compared between the control and stressed groups based on the LC-MS analysis, Putative biosynthesis networks of phenolic acid and flavonoid were con-structed with structural DEGs. Strikingly, the expression patterns of structural DEGs were mostly consistent with the variations of phenols under salt stress. Notably, the upregulation of UDP-glycosyl transferases under salt stress indicated post-modification of glycosyl transferases may participate in downstream flavonoids synthesis. This study reveals the relationships of the gene regulation and the phenols biosynthesis in LJF under salt stress, paving the way for the use of gene-specific expression to improve the yield of biocomponent.
Collapse
Affiliation(s)
- Zhichen Cai
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengcheng Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cuihua Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lisi Zou
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengxin Yin
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengjin Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiahuan Yuan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Wu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunhong Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
21
|
Liao L, Zhang W, Zhang B, Cai Y, Gao L, Ogutu C, Sun J, Zheng B, Wang L, Li L, Han Y. Evaluation of chlorogenic acid accumulation in cultivated and wild apples. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Magaña AA, Kamimura N, Soumyanath A, Stevens JF, Maier CS. Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1299-1319. [PMID: 34171156 PMCID: PMC9084498 DOI: 10.1111/tpj.15390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 05/02/2023]
Abstract
Caffeoylquinic acids (CQAs) are specialized plant metabolites we encounter in our daily life. Humans consume CQAs in mg-to-gram quantities through dietary consumption of plant products. CQAs are considered beneficial for human health, mainly due to their anti-inflammatory and antioxidant properties. Recently, new biosynthetic pathways via a peroxidase-type p-coumaric acid 3-hydroxylase enzyme were discovered. More recently, a new GDSL lipase-like enzyme able to transform monoCQAs into diCQA was identified in Ipomoea batatas. CQAs were recently linked to memory improvement; they seem to be strong indirect antioxidants via Nrf2 activation. However, there is a prevalent confusion in the designation and nomenclature of different CQA isomers. Such inconsistencies are critical and complicate bioactivity assessment since different isomers differ in bioactivity and potency. A detailed explanation regarding the origin of such confusion is provided, and a recommendation to unify nomenclature is suggested. Furthermore, for studies on CQA bioactivity, plant-based laboratory animal diets contain CQAs, which makes it difficult to include proper control groups for comparison. Therefore, a synthetic diet free of CQAs is advised to avoid interferences since some CQAs may produce bioactivity even at nanomolar levels. Biotransformation of CQAs by gut microbiota, the discovery of new enzymatic biosynthetic and metabolic pathways, dietary assessment, and assessment of biological properties with potential for drug development are areas of active, ongoing research. This review is focused on the chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity recently reported for mono-, di-, tri-, and tetraCQAs.
Collapse
Affiliation(s)
- Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
23
|
Tang N, Cao Z, Yang C, Ran D, Wu P, Gao H, He N, Liu G, Chen Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110924. [PMID: 34034872 DOI: 10.1016/j.plantsci.2021.110924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Lonicera macranthoides Hand-Mazz is an important medicinal plant widely distributed in southern China that has long been used in Chinese traditional medicines. Chlorogenic acid (CGA, 3-caffeoylquinic acid) is the major biologically active ingredient in L. macranthoides. Although key CGA biosynthetic genes have been well documented, their transcriptional regulation remains largely unknown. In this study, we observed that a R2R3 MYB transcription factor LmMYB15 showed a significant correlation with CGA content, indicating its potential role in CGA biosynthesis. A yeast two-hybrid assay suggested that LmMYB15 functions as a transcriptional activator. Overexpression of LmMYB15 in tobacco led to increased accumulation of CGA compared to those in wild-type leaves. To elucidate its functional mechanism, genome-wide DAP-seq was employed and identified the conserved binding motifs of LmMYB15, that is [(C/T) (C/T) (C/T) ACCTA(C/A) (C/T) (A/T)], as well as its direct downstream target genes, including 4CL, MYB3, MYB4, KNAT6/7, IAA26, and ETR2. Subsequently, yeast one-hybrid and dual-luciferase reporter assays verified that LmMYB15 could bind and activate the promoters of 4CL, MYB3 and MYB4, thereby facilitating CGA biosynthesis and phenylpropanoid metabolism. Our findings provide a new track for breeding strategies aiming to enhance CGA content in L. macranthoides that can significantly contribute to better mechanical properties.
Collapse
Affiliation(s)
- Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China; Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| | - Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Cheng Yang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Dongsheng Ran
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Na He
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Guohua Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China; Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| |
Collapse
|
24
|
Cai Z, Wang C, Chen C, Zou L, Chai C, Chen J, Tan M, Liu X. Quality evaluation of Lonicerae Japonicae Flos and Lonicerae Flos based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:129-140. [PMID: 31411767 PMCID: PMC7228296 DOI: 10.1002/pca.2882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) belong to different genera of Caprifoliaceae. They have been historically utilised as herbal medicine to treat various diseases. However, the comprehensive assessment of them still remains a challenge. OBJECTIVE To develop a comprehensive method of ultra-fast liquid chromatography-tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) coupled with multivariate statistical analysis for the quality evaluation and reveal differential components of LJF and LF. METHODOLOGY A validated UFLC-QTRAP-MS/MS method was established for simultaneous determination of 50 constituents, including 12 organic acids, 12 flavonoids, 6 iridoids, 3 saponins, 13 amino acids and 4 nucleosides. The obtained data were employed to multivariate statistical analysis. Principal component anlysis (PCA) and partial least squares determinant analysis (PLS-DA) were performed to classify and reveal differential components of samples; grey relational analysis (GRA) was introduced to assess the samples according to the contents of 50 constituents by calculating the relative correlation degree of each sample. RESULTS Fifty constituents were simultaneously determined of LJF and LF. Based on obtained data, PCA and PLS-DA were easy to distinguish samples and the classification of the samples was related to 11 chemical constituents. GRA implied the quality of LJF was better, and that the flower buds were superior to the flowers. Moreover, organic acids are the main components of samples. CONCLUSION This study not only established a method of simultaneous determination of multiple bioactive constituents in LJF and LF, but provided comprehensive information on the quality control of them. The developed method is conducive to distinguish orthologues or paralogues of them, and supply the support for "heterologous effects".
Collapse
Affiliation(s)
- Zhichen Cai
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Chengcheng Wang
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Cuihua Chen
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Lisi Zou
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Chuan Chai
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Jiali Chen
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Mengxia Tan
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Xunhong Liu
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
25
|
Fu R, Zhang P, Jin G, Wang L, Qi S, Cao Y, Martin C, Zhang Y. Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower. Nat Commun 2021; 12:1563. [PMID: 33692355 PMCID: PMC7946891 DOI: 10.1038/s41467-021-21853-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
Purple coneflower (Echinacea purpurea (L.) Moench) is a popular native North American herbal plant. Its major bioactive compound, chicoric acid, is reported to have various potential physiological functions, but little is known about its biosynthesis. Here, taking an activity-guided approach, we identify two cytosolic BAHD acyltransferases that form two intermediates, caftaric acid and chlorogenic acid. Surprisingly, a unique serine carboxypeptidase-like acyltransferase uses chlorogenic acid as its acyl donor and caftaric acid as its acyl acceptor to produce chicoric acid in vacuoles, which has evolved its acyl donor specificity from the better-known 1-O-β-D-glucose esters typical for this specific type of acyltransferase to chlorogenic acid. This unusual pathway seems unique to Echinacea species suggesting convergent evolution of chicoric acid biosynthesis. Using these identified acyltransferases, we have reconstituted chicoric acid biosynthesis in tobacco. Our results emphasize the flexibility of acyltransferases and their roles in the evolution of specialized metabolism in plants.
Collapse
Affiliation(s)
- Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Pingyu Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ge Jin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Lianglei Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Cathie Martin
- Department of Metabolic Biology and Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
26
|
Huai B, Bai M, Tong PP, He HJ, Liang MJ, Chen CY, Wu H. CgPBA1 may be involved in nuclear degradation during secretory cavity formation by programmed cell death in Citrus grandis 'Tomentosa' fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:306-314. [PMID: 33545608 DOI: 10.1016/j.plaphy.2021.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Caspase-3 is the crucial executor caspase of apoptosis in mammalian cells, which is essential for chromatin condensation and DNA fragmentation. Although plants have no caspase-3 homologs, PBA1 acts as a plant caspase-3-like enzyme in plant programmed cell death (PCD). PCD occurs during the formation of secretory cavities in Citrus fruits; hence, secretory cavities could be utilized as a new cell biology model for investigating the regulatory mechanisms of plant PCD. To further study the association between PBA1 and PCD during secretory cavity development in Citrus fruits, CgPBA1 was identified in the fruit of Citrus grandis 'Tomentosa'. The temporal and spatial expression of CgPBA1 during secretory cavity development were analyzed using quantitative real-time PCR and in situ hybridization, and the morphological changes in the apoptotic cell nuclei were observed using TUNEL assay and ultra-thin section technology. The results revealed that the full-length cDNA of CgPBA1 contains a 711 bp ORF that encodes a putative protein containing 236 amino acid with a proteasome-β-6 functional domain that belongs to the Ntn hydrolase super family. CgPBA1 was predominantly expressed in the secretory cavities; its expression changes coincided with the morphological changes and DNA fragmentation in apoptotic cell nuclei. The green fluorescent fusion protein of CgPBA1 is also located in the nucleus of tobacco epidermal cells. Based on previous research and the findings of the present study, we speculate that CgPBA1 is a highly functional conserved protein in plants, and it might be involved in nuclear degradation during PCD for secretory cavity formation in C. grandis 'Tomentosa' fruits.
Collapse
Affiliation(s)
- B Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - M Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| | - P P Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - H J He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - M J Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - C Y Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - H Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Liu Y, Su W, Wang L, Lei J, Chai S, Zhang W, Yang X. Integrated transcriptome, small RNA and degradome sequencing approaches proffer insights into chlorogenic acid biosynthesis in leafy sweet potato. PLoS One 2021; 16:e0245266. [PMID: 33481815 PMCID: PMC7822329 DOI: 10.1371/journal.pone.0245266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022] Open
Abstract
Leafy sweet potato is rich in total phenolics (TP) which play key roles in health protection, the chlorogenic acid (CGA) constitutes the major components of phenolic compounds in leafy sweet potato. Unfortunately, the mechanism of CGA biosynthesis in leafy sweet potato is unclear. To dissect the mechanisms of CGA biosynthesis, we performed transcriptome, small RNA (sRNA) and degradome sequencing of one low-CGA content and one high-CGA content genotype at two stages. A total of 2,333 common differentially expressed genes (DEGs) were identified, and the enriched DEGs were related to photosynthesis, starch and sucrose metabolism and phenylpropanoid biosynthesis. The functional genes, such as CCR, CCoAOMT and HCT in the CGA biosynthetic pathway were down-regulated, indicating that the way to lignin was altered, and two possible CGA biosynthetic routes were hypothesized. A total of 38 DE miRNAs were identified, and 1,799 targets were predicated for 38 DE miRNAs by using in silico approaches. The target genes were enriched in lignin and phenylpropanoid catabolic processes. Transcription factors (TFs) such as apetala2/ethylene response factor (AP2/ERF) and Squamosa promoter binding protein-like (SPL) predicated in silico were validated by degradome sequencing. Association analysis of the DE miRNAs and transcriptome datasets identified that miR156 family negatively targeted AP2/ERF and SPL. Six mRNAs and six miRNAs were validated by qRT-PCR, and the results showed that the expression levels of the mRNAs and miRNAs were consistent with the sequencing data. This study established comprehensive functional genomic resources for the CGA biosynthesis, and provided insights into the molecular mechanisms involving in this process. The results also enabled the first perceptions of the regulatory roles of mRNAs and miRNAs, and offered candidate genes for leafy sweet potato improvements.
Collapse
Affiliation(s)
- Yi Liu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
| | - Wenjin Su
- Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
| | - Lianjun Wang
- Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
| | - Jian Lei
- Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
| | - Shasha Chai
- Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
| | - Wenying Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Xinsun Yang
- Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
| |
Collapse
|
28
|
Liu Z, Mohsin A, Wang Z, Zhu X, Zhuang Y, Cao L, Guo M, Yin Z. Enhanced Biosynthesis of Chlorogenic Acid and Its Derivatives in Methyl-Jasmonate-Treated Gardenia jasminoides Cells: A Study on Metabolic and Transcriptional Responses of Cells. Front Bioeng Biotechnol 2021; 8:604957. [PMID: 33469531 PMCID: PMC7813945 DOI: 10.3389/fbioe.2020.604957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Chlorogenic acid and its derivatives (CQAs) are considered as important bioactive secondary metabolites in Gardenia jasminoides Ellis (G. jasminoides). However, few studies have investigated the biosynthesis and regulation of CQAs in G. jasminoides. In this study, methyl jasmonate (MeJA) was used to enhance CQAs accumulation in cultured G. jasminoides cells. Moreover, the possible molecular mechanism of MeJA-mediated accumulation of CQAs is also explored. To this end, time-course transcriptional profiles of G. jasminoides cells responding to MeJA were used to investigate the mechanism from different aspects, including jasmonate (JAs) biosynthesis, signal transduction, biosynthesis of precursor, CQAs biosynthesis, transporters, and transcription factors (TFs). A total of 57,069 unigenes were assembled from the clean reads, in which 80.7% unigenes were successfully annotated. Furthermore, comparative transcriptomic results indicated that differentially expressed genes (DEGs) were mainly involved in JAs biosynthesis and signal transduction (25 DEGs), biosynthesis of precursor for CQAs (18 DEGs), CQAs biosynthesis (19 DEGs), and transporters (29 DEGs). Most of these DEGs showed continuously upregulated expressions over time, which might activate the jasmonic acid (JA) signal transduction network, boost precursor supply, and ultimately stimulate CQAs biosynthesis. Additionally, various TFs from different TF families also responded to MeJA elicitation. Interestingly, 38 DEGs from different subgroups of the MYB family might display positive or negative regulations on phenylpropanoids, especially on CQAs biosynthesis. Conclusively, our results provide insight into the possible molecular mechanism of regulation on CQAs biosynthesis, which led to a high CQAs yield in the G. jasminoides cells under MeJA treatment.
Collapse
Affiliation(s)
- Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaofeng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liming Cao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
29
|
Graziani G, Docimo T, Palma MD, Sparvoli F, Izzo L, Tucci M, Ritieni A. Changes in Phenolics and Fatty Acids Composition and Related Gene Expression during the Development from Seed to Leaves of Three Cultivated Cardoon Genotypes. Antioxidants (Basel) 2020; 9:antiox9111096. [PMID: 33171628 PMCID: PMC7695130 DOI: 10.3390/antiox9111096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cultivated cardoon (Cynara cardunculus var. altilis) has long been used as a food and medicine remedy and nowadays is considered a functional food. Its leaf bioactive compounds are mostly represented by chlorogenic acids and coumaroyl derivatives, known for their nutritional value and bioactivity. Having antioxidant and hepatoprotective properties, these molecules are used for medicinal purposes. Apart from the phenolic compounds in green tissues, cultivated cardoon is also used for the seed oil, having a composition suitable for the human diet, but also valuable as feedstock for the production of biofuel and biodegradable bioplastics. Given the wide spectrum of valuable cardoon molecules and their numerous industrial applications, a detailed characterization of different organs and tissues for their metabolic profiles as well as an extensive transcriptional analysis of associated key biosynthetic genes were performed to provide a deeper insight into metabolites biosynthesis and accumulation sites. This study aimed to provide a comprehensive analysis of the phenylpropanoids profile through UHPLC-Q-Orbitrap HRMS analysis, of fatty acids content through GC-MS analysis, along with quantitative transcriptional analyses by qRT-PCR of hydroxycinnamoyl-quinate transferase (HQT), stearic acid desaturase (SAD), and fatty acid desaturase (FAD) genes in seeds, hypocotyls, cotyledons and leaves of the cardoon genotypes “Spagnolo”, “Bianco Avorio”, and “Gigante”. Both oil yield and total phenols accumulation in all the tissues and organs indicated higher production in “Bianco Avorio” and “Spagnolo” than in “Gigante”. Antioxidant activity evaluation by DPPH, ABTS, and FRAP assays mirrored total phenols content. Overall, this study provides a detailed analysis of tissue composition of cardoon, enabling to elucidate value-added product accumulation and distribution during plant development and hence contributing to better address and optimize the sustainable use of this natural resource. Besides, our metabolic and transcriptional screening could be useful to guide the selection of superior genotypes.
Collapse
Affiliation(s)
- Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Correspondence: (G.G.); (M.T.)
| | - Teresa Docimo
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Monica De Palma
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
| | - Marina Tucci
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
- Correspondence: (G.G.); (M.T.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Unesco Chair for Health Education and Sustainable Development, 80131 Naples, Italy
| |
Collapse
|
30
|
Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:80-89. [PMID: 31951944 DOI: 10.1016/j.plaphy.2020.01.006] [Citation(s) in RCA: 441] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 01/04/2020] [Indexed: 05/25/2023]
Abstract
Secondary metabolites (SMs) of medicinal plants are the material basis of their clinically curative effects. They are also important indicators for evaluating the quality of medicinal materials. However, the synthesis and accumulation of SMs are very complex, which are affected by many factors including internal developmental genetic circuits (regulated gene, enzyme) and by external environment factors (light, temperature, water, salinity, etc.). Currently, lots of literatures focused on the effect of environmental factors on the synthesis and accumulation of SMs of medicinal plants, the effect of the developmental growth and genetic factors on the synthesis and accumulation of SMs still lack systematic classification and summary. Here, we have given the review base on our previous works on the morphological development of medicinal plants and their secondary metabolites, and systematically outlined the literature reports how different environmental factors affected the synthesis and accumulation of SMs. The results of our reviews can know how developmental and environmental factors qualitatively and quantitatively influence SMs of medicinal plants and how these can be integrated as tools to quality control, as well as on the improvement of clinical curative effects by altering their genomes, and/or growth conditions.
Collapse
Affiliation(s)
- Yanqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Fu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|