1
|
Xiang T, Zhu Y, Wang Y, Chen X, Zhang Z, Lai J, Zhou P, Ming R, Yue J. The dynamic regulatory network of stamens and pistils in papaya. BMC PLANT BIOLOGY 2025; 25:254. [PMID: 39994552 PMCID: PMC11853724 DOI: 10.1186/s12870-025-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Papaya exhibits three sex types: female (XX), male (XY), and hermaphrodite (XYh), making it an unusual trioecious model for studying sex determination. A critical aspect of papaya sex determination is the pistil abortion in male flowers. However, the regulatory networks that control the development of pistils and stamens in papaya remain incompletely understood. RESULTS In this study, we identified three organ-specific clusters involved in papaya pistils and stamens development. We found that pistil development is primarily characterized by the significant expression of auxin-related genes, while the pistil abortion genes in males is mainly associated with cytokinin, gibberellin, and auxin pathways. Additionally, we constructed expression regulatory networks for the development of female pistils, aborted pistils and stamens in male flowers, revealing key regulatory genes and signaling pathways involved in papaya organ development. Furthermore, we systematically identified 65 members of the MADS-box gene family and 10 ABCDE subfamily MADS-box genes in papaya. By constructing a phylogenetic tree of the ABCDE subfamily, we uncovered gene contraction and expansion in papaya, providing an improved understanding of the developmental mechanisms and evolutionary history of papaya floral organs. CONCLUSIONS These findings provide a robust framework for identifying candidate sex-determining genes and constructing the sex determination regulatory network in papaya, providing insights and genomic resources for papaya breeding.
Collapse
Affiliation(s)
- Tao Xiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yating Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhibin Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Lai
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Cheng JL, Wei XP, Chen Y, Qi YD, Zhang BG, Liu HT. Comparative transcriptome analysis reveals candidate genes related to the sex differentiation of Schisandra chinensis. Funct Integr Genomics 2023; 23:344. [PMID: 37991590 DOI: 10.1007/s10142-023-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Schisandra chinensis is a monoecious plant with unisex flowers. The fruit of S. chinensis is of high medical with economic value. The yield of S. chinensis fruit is related to the ratio of its female and male flowers. However, there is little research on its floral development and sex differentiation. To elucidate the possible mechanism for the sex differentiation of S. chinensis, we collected 18 samples of female and male flowers from three developmental stages and performed a comparative RNA-seq analysis aimed at identifying differentially expressed genes (DEGs) that may be related to sex differentiation. The results showed 936, 7179, and 6890 differentially expressed genes between female and male flowers at three developmental stages, respectively, and 466 candidate genes may play roles in sex differentiation. KEGG analysis showed genes involved in the flavonoid biosynthesis pathway and DNA replication pathway were essential for the development of female flowers. 51 MADS-box genes and 10 YABBY genes were identified in S. chinensis. The DEGs analysis indicated that MADS-box and YABBY genes were strongly related to the sex determination of S. chinensis. RT-qPCR confirmed the RNA-seq results of 20 differentially expressed genes, including three male-biased genes and 17 female-biased genes. A possible regulatory model of sex differentiation in S. chinensis was proposed according to our results. This study helps reveal the sex-differentiation mechanism of S. chinensis and lays the foundation for regulating the male-female ratio of S. chinensis in the future.
Collapse
Affiliation(s)
- Ji-Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Ávila-Hernández JG, Cárdenas-Aquino MDR, Camas-Reyes A, Martínez-Antonio A. Sex determination in papaya: Current status and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111814. [PMID: 37562730 DOI: 10.1016/j.plantsci.2023.111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Papaya (Carica papaya L.) is an economically significant plant that produces fruit consumed worldwide due to its organoleptic characteristics. Since their commercial production, papaya fruits have faced several problems, such as pests, which have been partly resolved using transgenic varieties. Nevertheless, a principal challenge in this cultivation is the plant's sex determination. The sex issue in papaya is complex because papaya flowers can bear three sex forms: male, female, and hermaphrodite, which affects their fruit production, shape, and yield. Fruits from hermaphrodite plants are preferred more by consumers than female ones, and male plants rarely produce fruits without commercial value. Chromosomes are responsible for sex determination in papaya, denoted as XY for male, XX for female, and XYh for hermaphrodite. However, genes related to sex have been reported but are not conclusive. Factors such as the environment, hormones, and genetic and epigenetic background can also affect sex expression. Therefore, in this review, we will discuss recent research on the sex of papaya, from reported genes to date, their biology, and sexing approaches using molecular markers and their advantages.
Collapse
Affiliation(s)
- José Guadalupe Ávila-Hernández
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | - María Del Rosario Cárdenas-Aquino
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | - Alberto Camas-Reyes
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department. Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico..
| |
Collapse
|
4
|
Jiang N, Feng MQ, Cheng LC, Kuang LH, Li CC, Yin ZP, Wang R, Xie KD, Guo WW, Wu XM. Spatiotemporal profiles of gene activity in stamen delineate nucleo-cytoplasmic interaction in a male-sterile somatic cybrid citrus. HORTICULTURE RESEARCH 2023; 10:uhad105. [PMID: 37577401 PMCID: PMC10419853 DOI: 10.1093/hr/uhad105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Cytoplasmic male sterility (CMS) has long been used to produce seedless fruits in perennial woody crops like citrus. A male-sterile somatic cybrid citrus (G1 + HBP) was generated by protoplast fusion between a CMS callus parent 'Guoqing No. 1' Satsuma mandarin (Citrus unshiu, G1) and a fertile mesophyll parent Hirado Buntan pummelo (Citrus grandis, HBP). To uncover the male-sterile mechanism of G1 + HBP, we compared the transcriptome profiles of stamen organ and cell types at five stages between G1 + HBP and HBP, including the initial stamen primordia, enlarged stamen primordia, pollen mother cells, tetrads, and microspores captured by laser microdissection. The stamen organ and cell types showed distinct gene expression profiles. A majority of genes involved in stamen development were differentially expressed, especially CgAP3.2, which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1 + HBP compared with HBP. Jasmonic acid- and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia, and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1 + HBP. In contrast, the content of auxin biosynthesis metabolites was lower in G1 + HBP. The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia, meiocytes, and microspores, indicating the dysfunction of mitochondria in stamen organ and cell types of G1 + HBP. Taken together, the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development, and thus lead to male sterility in the citrus cybrid.
Collapse
Affiliation(s)
- Nan Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lai-Chao Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Hua Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao-Chao Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhao-Ping Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Ma X, Fatima M, Li J, Zhou P, Zaynab M, Ming R. Post-pollination sepal longevity of female flower co-regulated by energy-associated multiple pathways in dioecious spinach. FRONTIERS IN PLANT SCIENCE 2022; 13:1010149. [PMID: 36589106 PMCID: PMC9795224 DOI: 10.3389/fpls.2022.1010149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Reproductive growth is a bioenergetic process with high energy consumption. Pollination induces female flower longevity in spinach by accelerating sepal retention and development. Cellular bioenergetics involved in cellular growth is at the foundation of all developmental activities. By contrast, how pollination alter the sepal cells bioenergetics to support energy requirement and anabolic biomass accumulation for development is less well understood. To investigate pollination-induced energy-associated pathway changes in sepal tissues after pollination, we utilized RNA-sequencing to identify transcripts that were differentially expressed between unpollinated (UNP) and pollinated flower sepals at 12, 48, and 96HAP. In total, over 6756 non-redundant DEGs were identified followed by pairwise comparisons (i.e. UNP vs 12HAP, UNP vs 48HAP, and UNP vs 96HAP). KEGG enrichment showed that the central carbon metabolic pathway was significantly activated after pollination and governed by pivotal energy-associated regulation pathways such as glycolysis, the citric acid cycle, oxidative phosphorylation, photosynthesis, and pentose phosphate pathways. Co-expression networks confirmed the synergistically regulation interactions among these pathways. Gene expression changes in these pathways were not observed after fertilization at 12HAP, but started after fertilization at 48HAP, and significant changes in gene expression occurred at 96HAP when there is considerable sepal development. These results were also supported by qPCR validation. Our results suggest that multiple energy-associated pathways may play a pivotal regulatory role in post-pollination sepal longevity for developing the seed coat, and proposed an energy pathway model regulating sepal retention in spinach.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zhou
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
6
|
Zhou P, Zhang X, Ma X, Yue J, Liao Z, Ming R. Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya. HORTICULTURE RESEARCH 2022; 9:uhab065. [PMID: 35048102 PMCID: PMC8935930 DOI: 10.1093/hr/uhab065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Morphological, genic and epigenetic differences often exist in separate sexes of dioecious and trioecious plants. However, the connections and relationships among them in different breeding systems are still unclear. Papaya has three sex types, which is genetically determined and epigenetically regulated, and was chosen as a model to study sex differentiation. Bisulfite sequencing of genomic DNA extracted from early-stage flowers revealed sex-specific genomic methylation landscapes and seasonally methylome reprogramming processes in dioecious and gynodioecious papaya grown in spring and summer. Extensive methylation of sex-determining region (SDR) was the distinguishing epigenetic characteristics of nascent XY sex chromosomes in papaya. Seasonal methylome reprogramming of early-stage flowers in both dioecy and gynodioecy systems were detected, resulting from transcriptional expression pattern alterations of methylation-modification-related and chromatin-remodeling-related genes, particularly from those genes involved in active demethylation. Genes involved in phytohormone signal transduction pathway in male flowers have played an important role in the formation of male-specific characteristics. These findings enhanced the understanding of the genetic and epigenetic contributions to sex differentiation and the complexity of sex chromosome evolution in trioecious plants.
Collapse
Affiliation(s)
- Ping Zhou
- Fruit Research Institute,Fujian Academy of Agricultural Sciences,Fuzhou 350013,Fujian, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinyi Ma
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhenyang Liao
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Xie X, Wang Y, Datla R, Ren M. Auxin and Target of Rapamycin Spatiotemporally Regulate Root Organogenesis. Int J Mol Sci 2021; 22:ijms222111357. [PMID: 34768785 PMCID: PMC8583787 DOI: 10.3390/ijms222111357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
The programs associated with embryonic roots (ERs), primary roots (PRs), lateral roots (LRs), and adventitious roots (ARs) play crucial roles in the growth and development of roots in plants. The root functions are involved in diverse processes such as water and nutrient absorption and their utilization, the storage of photosynthetic products, and stress tolerance. Hormones and signaling pathways play regulatory roles during root development. Among these, auxin is the most important hormone regulating root development. The target of rapamycin (TOR) signaling pathway has also been shown to play a key role in root developmental programs. In this article, the milestones and influential progress of studying crosstalk between auxin and TOR during the development of ERs, PRs, LRs and ARs, as well as their functional implications in root morphogenesis, development, and architecture, are systematically summarized and discussed.
Collapse
Affiliation(s)
- Xiulan Xie
- Labarotary of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (Y.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Ying Wang
- Labarotary of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (Y.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Raju Datla
- Global Institute for Food Security in Saskatoon, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
- Correspondence: (R.D.); (M.R.)
| | - Maozhi Ren
- Labarotary of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (Y.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (R.D.); (M.R.)
| |
Collapse
|
8
|
Su L, Xu M, Zhang J, Wang Y, Lei Y, Li Q. Genome-wide identification of auxin response factor ( ARF) family in kiwifruit ( Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1261-1276. [PMID: 34177147 PMCID: PMC8212266 DOI: 10.1007/s12298-021-01011-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 05/13/2023]
Abstract
UNLABELLED Auxin response factor (ARF) acts as a vital component of auxin signaling and participates in growth, development, and stress responses in plants. In the present study, we comprehensively analyzed kiwifruit's (Actinidia chinensis) ARF genes (AcARFs) and their involvement in abiotic stress response. We identified a total of 41 AcARFs encoding ARFs in the A. chinensis genome. AcARF genes were characterized by the classic ARF_resp and a B3 domain and primarily localized on the cytoplasm and nucleus. AcARFs were categorized into eight subgroups as per the phylogenetic analysis. Synteny analysis showed that 35 gene pairs in AcARF family underwent segmental and whole genome duplication events. Promoter cis-element prediction revealed that AcARFs might be involved in abiotic factors related to stress response, which was later assessed and validated by qRT-PCR based expression analysis. Additionally, AcARFs showed tissue-specific expression. These findings extend our understanding of the functional roles of AcARFs in stress responses. Taken together, the systematic annotation of the AcARF family genes provides a platform for the functional and evolutionary study, which might help in elucidating the precise roles of the AcARFs in stress responses. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01011-4.
Collapse
Affiliation(s)
- Liyan Su
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Ming Xu
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Jiudong Zhang
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
| | - Yihang Wang
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
| | - Yushan Lei
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Xiema street, Beibei, Chongqing, 400712 People’s Republic of China
| |
Collapse
|
9
|
Chae T, Harkess A, Moore RC. Sex-linked gene expression and the emergence of hermaphrodites in Carica papaya. AMERICAN JOURNAL OF BOTANY 2021; 108:1029-1041. [PMID: 34156700 DOI: 10.1002/ajb2.1689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/08/2021] [Indexed: 06/13/2023]
Abstract
PREMISE One evolutionary path from hermaphroditism to dioecy is via a gynodioecious intermediate. The evolution of dioecy may also coincide with the formation of sex chromosomes that possess sex-determining loci that are physically linked in a region of suppressed recombination. Dioecious papaya (Carica papaya) has an XY chromosome system, where the presence of a Y chromosome determines maleness. However, in cultivation, papaya is gynodioecious, due to the conversion of the male Y chromosome to a hermaphroditic Yh chromosome during its domestication. METHODS We investigated gene expression linked to the X, Y, and Yh chromosomes at different floral developmental stages to identify differentially expressed genes that may be involved in the sexual transition of males to hermaphrodites. RESULTS We identified 309 sex-biased genes found on the sex chromosomes, most of which are found in the pseudoautosomal regions. Female (XX) expression in the sex-determining region was almost double that of X-linked expression in males (XY) and hermaphrodites (XYh ), which rules out dosage compensation for most sex-linked genes; although, an analysis of hemizygous X-linked loci found evidence of partial dosage compensation. Furthermore, we identified a candidate gene associated with sex determination and the transition to hermaphroditism, a homolog of the MADS-box protein SHORT VEGETATIVE PHASE. CONCLUSIONS We identified a pattern of partial dosage compensation for hemizygous genes located in the papaya sex-determining region. Furthermore, we propose that loss-of-expression of the Y-linked SHORT VEGETATIVE PHASE homolog facilitated the transition from males to hermaphrodites in papaya.
Collapse
Affiliation(s)
- Taylor Chae
- Department of Biology, Miami University, Oxford, OH
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | |
Collapse
|
10
|
Zhou P, Zhang X, Fatima M, Ma X, Fang H, Yan H, Ming R. DNA methylome and transcriptome landscapes revealed differential characteristics of dioecious flowers in papaya. HORTICULTURE RESEARCH 2020; 7:81. [PMID: 32528693 PMCID: PMC7261803 DOI: 10.1038/s41438-020-0298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 05/21/2023]
Abstract
Separate sexes in dioecious plants display different morphology and physiological characteristics. The differences between the two sexes lie in their highly differentiated floral characteristics and in sex-related phenotype, which is genetically determined and epigenetically modified. In dioecious papaya (Carica papaya L.), global comparisons of epigenetic DNA methylation and gene expressions were still limited. We conducted bisulfite sequencing of early-stage flowers grown in three seasons (spring, summer and winter) and compared their methylome and transcriptome profiles to investigate the differential characteristics of male and female in papaya. Methylation variances between female and male papaya were conserved among three different seasons. However, combined genome-scale transcriptomic evidence revealed that most methylation variances did not have influence on the expression profiles of neighboring genes, and the differentially expressed genes were most overrepresented in phytohormone signal transduction pathways. Further analyses showed diverse stress-responsive methylation alteration in male and female flowers. Male flower methylation was more responsive to stress whereas female flower methylation varied less under stress. Early flowering of male papaya in spring might be associated with the variation in the transcription of CpSVP and CpAP1 coinciding with their gene-specific hypomethylation. These findings provide insights into the sex-specific DNA methylation and gene expression landscapes of dioecious papaya and a foundation to investigate the correlation between differentiated floral characteristics and their candidate genes.
Collapse
Affiliation(s)
- Ping Zhou
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, 350013 Fuzhou, Fujian China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Xinyi Ma
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Hongkun Fang
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Hansong Yan
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Ray Ming
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|